KR100228057B1 - Recovering method of cerium through ion-sieve method - Google Patents

Recovering method of cerium through ion-sieve method Download PDF

Info

Publication number
KR100228057B1
KR100228057B1 KR1019970034479A KR19970034479A KR100228057B1 KR 100228057 B1 KR100228057 B1 KR 100228057B1 KR 1019970034479 A KR1019970034479 A KR 1019970034479A KR 19970034479 A KR19970034479 A KR 19970034479A KR 100228057 B1 KR100228057 B1 KR 100228057B1
Authority
KR
South Korea
Prior art keywords
cerium
rare earth
leaching
solution
sulfuric acid
Prior art date
Application number
KR1019970034479A
Other languages
Korean (ko)
Other versions
KR19990011392A (en
Inventor
김준수
윤호성
김성돈
김철수
Original Assignee
이경운
한국자원연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경운, 한국자원연구소 filed Critical 이경운
Priority to KR1019970034479A priority Critical patent/KR100228057B1/en
Publication of KR19990011392A publication Critical patent/KR19990011392A/en
Application granted granted Critical
Publication of KR100228057B1 publication Critical patent/KR100228057B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 불탄산염 희토류 정광인 bastnasite를 산화배소 및 황산침출한 용액중에서 세륨이온과 기타 희토류이온들을 분리, 회수하는 방법에 관한 것으로, 특히 양이온교환수지에 의한 흡탈착하여 분리하는 ion-sieve법에 의해 침출용액중의 희토류이온들과 세륨이온들을 분리하는 방법이다. 이 방법은 4가 세륨 이온의 특성을 이용하는 것인데, 황산침출한 용액중에 적정 착화물을 존재하게 하여 세륨은 착화물과 결합해서 착합음이온을 형성시키고, 다른 희토류원소들은 3가의 양이온으로 잔류시키는 방법이다. 다음에 양이온 교환수지를 이용하여 침출용액중의 희토류 양이온들을 양이온교환수지에 흡착시킴으로써 세륨의 착합음이온을 기타 희토류원소들로부터 분리하는 방법으로서, 종래의 산도조절법과 비교하여 세륨의 분리능이 크고 공정시간이 단축된다는 장점을 가지고 있다.The present invention relates to a method for separating and recovering cerium ions and other rare earth ions from a solution of roasted sulfuric acid and bastnasite, which is a fluorite rare earth concentrate, and particularly, an ion-sieve method for adsorption and desorption by cation exchange resins. By separating the rare earth ions and cerium ions in the leaching solution. This method takes advantage of the properties of tetravalent cerium ions, in which an appropriate complex is present in the sulfuric acid leached solution, cerium combines with the complex to form a complex anion, and other rare earth elements remain as trivalent cations. . Next, the complex anion of cerium is separated from other rare earth elements by adsorbing rare earth cations in the leaching solution to the cation exchange resin using a cation exchange resin. This has the advantage of being shortened.

Description

불탄산염 희토류 정광인 bastnasite의 산화배소 및 황산침출용액으로부터 ion-sieve법에 의한 고품위 세륨의 분리회수방법Separation and Recovery of High Quality Cerium by Ion-Sieve Method from Rotating Oxidation and Sulfuric Acid Leaching Solution of Bastnasite

본 발명은 불탄산염 희토류 정광의 산화배소 및 황산침출 과정을 거친 침출용액으로부터 양이온교환수지를 이용하여 세륨이온과 기타 희토류 이온들을 분리하여 세륨을 회수하는 방법으로서, 고급광택유리연마제, TV브라운관, 벌브(bulb)유리 원료 첨가제 및 촉매등 고순도 세륨산화물 제조에 적합한 고품위 세륨의 분리회수 방법에 관한 것이다.The present invention is a method for recovering cerium by separating cerium ions and other rare earth ions from a leaching solution undergoing oxidation and sulfuric acid leaching of fluorate rare earth concentrate using cation exchange resin. (bulb) The present invention relates to a high-quality cerium oxide separation recovery method suitable for producing high purity cerium oxide such as glass raw material additives and catalysts.

일반적으로 세륨은 희토류원소중에서 쉽게 3가에서 4가로 산화되는 원소이기 때문에 희토류원소 분리에 있어서, 희토류 정광의 분해 및 침출을 통한 침출용액으로부터 세륨을 산화하여 다른 3가의 희토류원소로부터 분리하는 산도조절법은 설비가 간단하고 조업이 간편하여 세륨을 회수할 때 널리 이용되고 있는 방법이다. 이러한 산도조절법은 4가의 세륨이 가수분해하여 수산화물을 형성할 때의 매질 pH가 기타 희토류원소들 보다도 낮다는 점을 이용하고 있다. 예를들면, 황산매질에서 세롭 4가 이온은 pH 2.6근처에서 침전되는 반면에 기타 희토류원소 이온들은 pH 6.5 이상에서 침전이 일어나기 때문에, 침출용액의 산도를 조절함으로써 세륨을 기타 희토류이온들로부터 분리시켜 회수할 수 있다. 그러나 세륨의 산화에 사용되는 산화제로 인하여 불순물이 침전되어 침전물을 오염시키며, 용액의 산도를 엄격하게 조절해야 하는 단점이 있다. 또한 산화제 첨가량의 증가에 따라 세륨의 회수율은 증가하고 반면에 다른 희토류가 공침되어 세륨의 순도는 감소하기 때문에 산도조절법에 의해 고회수율과 고품위를 얻기 위하여는 한 번의 산화침전 보다는 두 번이상의 다단 산화침전이 요구된다.In general, cerium is an element that oxidizes easily from trivalent to tetravalent among rare earth elements, so in the separation of rare earth elements, the acidity control method of oxidizing cerium from the leaching solution through decomposition and leaching of rare earth concentrates to separate from other trivalent rare earth elements It is a widely used method for recovering cerium due to its simple equipment and easy operation. This acidity control method takes advantage of the fact that the pH of the medium when the tetravalent cerium is hydrolyzed to form hydroxide is lower than that of other rare earth elements. For example, in a sulfuric acid medium, cerium tetravalent ions precipitate near pH 2.6, while other rare earth element ions precipitate above pH 6.5, thereby separating cerium from other rare earth ions by controlling the acidity of the leaching solution. It can be recovered. However, due to the oxidizing agent used for the oxidation of cerium, impurities precipitate to contaminate the precipitate, and there is a disadvantage in that the acidity of the solution must be strictly controlled. In addition, the recovery rate of cerium increases with increasing amount of oxidizing agent, while the purity of cerium decreases due to co-precipitation of other rare earths, so that the high recovery rate and high quality can be obtained by acidity control method. Is required.

본 발명은 전술한 바와 같이 종래 산도조절법에 의한 세륨의 분리,회수방법에서 드러난 문제점들을 효과적으로 해결하기 위하여 연구개발된 것으로, 특히 불탄산염 희토류정광의 산화배소에 의한 황산 침출 및 침출용액으로부터 양이온을 교화수지탑(ion-sieve column)을 통하여 세륨을 흡,탈착공정으로서 분리하므로서, 각종 용도에 적합한 세륨산화물을 제조할 수 있는 고품위 세륨분리회수방법을 제공하는데 그 목적이 있다.The present invention has been researched and developed in order to effectively solve the problems revealed in the separation and recovery method of cerium by the acidity control method as described above, in particular the cation from sulfuric acid leaching and leaching solution by the oxidation of fluorite rare earth concentrates It is an object of the present invention to provide a high-quality cerium separation recovery method capable of producing cerium oxide suitable for various applications by separating cerium as an adsorption and desorption process through an ion-sieve column.

상기한 목적을 달성하기 위하여 본 발명은, 불탄산염 희토류 정광의 산화배소를 통하여 세륨을 3가에서 4가로 산화시킨 다음, 산화배소광의 황산침출골정을 거친후 침출용액으로부터 양이온교환수지를 이용하여 고품위의 세륨을 분리,회수하는 방법을 제공한다.In order to achieve the above object, the present invention, by oxidizing cerium from trivalent to tetravalent through the oxidation of the fluorite rare earth concentrate, and then through the sulfuric acid leaching goal of the roasted oxide ore using a cation exchange resin from the leaching solution Provides a method for separating and recovering high quality cerium.

제1도는 본 발명의 처리공정도.1 is a process chart of the present invention.

이하에서 본 발명에 대해 첨부한 도면을 참조하여 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

즉, 본 발명은 불탄산염 희토류광을 적절한 온도와 시간에서 산화배소한 후 산화배소광을 황산으로 침출하여 얻어진 침출용액을 대상으로 양이온교화수지탑을 이용하여 세륨과 기타 희토류원소를 분리하여 세륨을 회수하는 것으로서, 첨부도면 제1도를 참조하여 본 발명의 처리공정을 살펴보면 다음과 같다.That is, according to the present invention, cerium is separated from cerium and other rare earth elements by using a cationic crosslinking resin tower for a leaching solution obtained by oxidizing fluorite rare earth light at an appropriate temperature and time, and then leaching the oxide oxide with sulfuric acid. As a recovery, the processing of the present invention will be described with reference to FIG. 1 as follows.

우선, 불탄산염 희토류광의 수분을 제거하기 위하여 100

Figure kpo00002
에서 건조공정을 수행한다. 건조공정후 100메쉬(mesh)의 테일러(Taylor)표준망체를 사용하여 체가름에 의한 1차분급공정을 수행한다.First of all, in order to remove the moisture of the fluoride rare earth
Figure kpo00002
The drying process is carried out in. After the drying process, the first classification process by sifting is performed using a Taylor standard mesh of 100 mesh.

이때, 상기와 같이 불탄산염 희토류광을 건조하고 망체로 분급하는 것은, 산화배소시 희토류광의 수분이 제거되지 않은 상태에서 산화배소공정이 수행되면 희토류광 입자들의 응집에 의하여 산화배소가 균질하게 진행되지 않으며, 또한 입자 크기가 150㎛ 보다 큰 경우에는 산화배소공정후 황산침출시 침출률이 저하된다. 그러므로 상기의 100메쉬 망체를 통과하지 못한 150㎛ 초과의 입자크기를 갖는 희토류광은 로드밀(rod mill)과 파쇄기를 이용하여 파쇄공정을 수행한 후 망체에 의한 2차의 분급공정을 거치게 한다. 이와같은 공정은 희토류광의 손실을 줄이고, 산화배소 및 화산침출의 효율을 높히기 위함이다.In this case, as described above, the drying of the fluoride rare earth light and classifying it as a mesh, when the oxidation oxidation process is performed in the state that the water of the rare earth light is not removed during the oxidation roasting, the oxidation of the rare earth light does not proceed uniformly by aggregation of the rare earth light particles. If the particle size is larger than 150 µm, the leaching rate during leaching of sulfuric acid after the oxidation oxidation process is lowered. Therefore, rare earth light having a particle size of more than 150 μm that does not pass through the 100 mesh network is subjected to the second classification process by the mesh after performing the crushing process using a rod mill and a crusher. This process is to reduce the loss of rare earth light, and to increase the efficiency of roasting and volcanic leaching.

상기와 같이 건조한 분급이 수행된 희토류 정광을 회전배소로에서 적정온도와 시간으로 산화배소하는데, 이 과정에서 세륨은 3가에서 4가로 산하되며 불소의 일부와 이탄화산소가 방출된다. 이때 산화배소온도가 너무 높으면 불소의 상당량이 방출되어 황산침출시 4가의 세륨이 불소와 결합하여 음이온착화물을 형성하기가 어려워지므로 적정 산화배소온도의 선정이 요구된다.As described above, the rare earth concentrates subjected to the dry classification are oxidized and roasted at a suitable temperature and time in a rotary furnace. In this process, cerium is dispersed from trivalent to tetravalent, and part of fluorine and dicarbonate are released. At this time, if the oxidation oxide temperature is too high, a considerable amount of fluorine is released, and it is difficult to form an anionic complex by combining tetravalent cerium with fluorine during leaching of sulfuric acid, so that an appropriate oxidation temperature is selected.

산화배소가 끝난 후 산화배소광은 적정농도의 황산으로 침출되며, 이과정에서 4가의 세륨양이온은 불소와 결합하여 세륨불화물음이온을 형성하며, 기타 3가 희토류들은 양이온으로 존재한다. 황산침출후 여과과정을 거친침출용액중의 희토류 이온 농도를 적정 농도로 유지하도록 희석하여 양이온 교환수지탑으로 흘려보내므로써 3가의 양이온 희토류원소들을 양이온교환수지에 흡착시키고 세륨은 세륨착화물 음이온 형태로 용액중에 잔류시킴으로써 혼합희토용액중의 세륨을 분리회수하는 것이다.After the oxidation is completed, the roasted oxide is leached into sulfuric acid at an appropriate concentration. In this process, tetravalent cerium cations combine with fluorine to form cerium fluoride anions, and other trivalent rare earths exist as cations. After leaching sulfuric acid, the rare earth ion concentration in the filtered leaching solution is diluted to maintain an appropriate concentration and flowed to the cation exchange resin tower, thereby adsorbing trivalent cation rare earth elements to the cation exchange resin and cerium in the form of cerium complex anion. By remaining in the solution, the cerium in the mixed rare earth solution is separated and recovered.

회수된 세륨착화물음이온 함유 용액은 탈철과 탈토륨 공정을 거쳐서 세륨산화물로 전환되며, 이렇게 얻어진 세륨산화물의 품위는 약 96

Figure kpo00003
이상으로 TV브라운관 및 각종 광학기구 유리제품의 소색제로 사용될 수 있다.The recovered cerium complex anion-containing solution is converted to cerium oxide through the process of iron removal and thallium, and the grade of cerium oxide thus obtained is about 96
Figure kpo00003
It can be used as a colorant for TV brown tube and glass products of various optical instruments.

다음은 전술한 바와같은 본 발명을 보다 구체화하고자 행한 여러 실험례 및 제조예를 나타낸 것으로, 이에 대하여 상세히 설명한다.The following shows a number of experimental examples and preparations made to further embody the present invention as described above, which will be described in detail.

(1) 불탄산염 희토류광에 대한 산화배소 실험례(1) Experimental Example of Oxidation of Oxalate Rare Earth Ore

본 발명에서 사용된 불탄산염 희토류광은 중국 산동성(山東省)의 미산(微山)산 bastnasite로서 화학성분은 ICP를 이용하여 원소별 정량분석을 하였으며, 분석 결과는 다음 표 1과 같다.The fluorite rare earth ore used in the present invention is a bastnasite of Misan acid in Shandong Province, China, and its chemical composition was quantitatively analyzed by element using ICP, and the analysis results are shown in Table 1 below.

Figure kpo00004
Figure kpo00004

표 1에 의하면, bastnasite 정광은 전체희토류산화물(TREO)의 함량이 59.12

Figure kpo00005
이며, 희토류원소중에서 세륨이 26.30
Figure kpo00006
로서 가장 많이 함유되어 있고, 다음으로 란타늄등 경희토류가 주성분을 이루고 있다.According to Table 1, bastnasite concentrate has a total rare earth oxide (TREO) content of 59.12.
Figure kpo00005
Cerium is 26.30 among rare earth elements
Figure kpo00006
It is the most abundant, and light rare earth such as lanthanum is the main component.

상기와 같이 건조와 분급이 이루어진 희토류 정광을 회전배소로에서 산화배소하고, 황산침출을 행하는 공정의 반응식들은 다음과 같다.The reaction formulas of the process of oxidizing and roasting rare earth concentrates, which are dried and classified as described above, in a rotary furnace and leaching sulfuric acid are as follows.

Figure kpo00007
Figure kpo00007

희토류원소중에서 쉽게 3가에서 4가로 산화되는 세륨의 성질을 이용한 산화배소는 희토류 정광내 3가의 세륨을 4가로 산화시키는 공정으로서, 이때 희토류 정광내 함유되어 있는 불소는 황산침출용액중 4가의 세륨이온과 결합하여 세륨불화물 음이온을 형성하여 양이온교환수지에 흡착되지 않는다. 그러므로 산화배소시 온도가 너무 높으면 식(1)에서의 REFO 중 불소가 과도하게 분해되어 자체불소함유량이줄어들기 때문에 가능한 한 낮은 산화배소온도의 선정이 중요하다.Oxidation roasting using the property of cerium which is easily trivalent to tetravalent in rare earth elements is a process of oxidizing trivalent cerium in rare earth concentrate to tetravalent, where fluorine contained in rare earth concentrate is tetravalent cerium ion in sulfuric acid leaching solution. To form a cerium fluoride anion and is not adsorbed on a cation exchange resin Therefore, if the temperature is too high during roasting, it is important to select the lowest roasting temperature as much as possible because the fluorine in the REFO in Equation (1) is excessively decomposed and its fluorine content is reduced.

본 연구소에서 원료중에 함유된 이산화탄소(CO2)의 제거와 3가의 세륨을 4가로 산화시킬 목적으로 사용된 산화배소로는 길이 63inch, 지름 4inch의 회전배소로(rotary kiln)로서 실험조건은 산화배소온도 550

Figure kpo00008
700
Figure kpo00009
, 시료의 공급속도는 분당 45g, 체류시간 1시간, 회전수 4rpm 그리고 경사각 1.5°이었다.The furnace used for the purpose of removing carbon dioxide (CO 2 ) contained in the raw material and oxidizing trivalent cerium to tetravalent is a rotary kiln of 63 inches in length and 4 inches in diameter. Temperature 550
Figure kpo00008
700
Figure kpo00009
The sample feed rate was 45 g per minute, residence time 1 hour, rotational speed 4rpm and tilt angle 1.5 °.

표 2는 시료인 희토류광의 산화온도에 따른 전체희토류산화물의 함량을 나타내고 있다.Table 2 shows the total rare earth oxide content according to the oxidation temperature of the rare earth light as a sample.

Figure kpo00010
Figure kpo00010

전체희토류산화물의 함량이 59.12

Figure kpo00011
인 bastnasite 정광을 회전배소로에서 온도별로 배소한 결과, 산화배소온도 550
Figure kpo00012
700
Figure kpo00013
에서는 전체희토류산화물 함량이 75
Figure kpo00014
이상으로 증가하였으며, 배소온도에는 큰 영향을 받지 않고 있음을 알 수 있다. 따라서 산화배소온도는 불소의 방출이 가장 적을 것이라 사료되는 550
Figure kpo00015
600
Figure kpo00016
가 적절하다.The total rare earth oxide content is 59.12
Figure kpo00011
Oxidized roasting temperature of 550
Figure kpo00012
700
Figure kpo00013
Has a total rare earth oxide content of 75
Figure kpo00014
Increased above, it can be seen that the roasting temperature is not significantly affected. Therefore, the roasting oxide temperature is expected to be the least emitted 550
Figure kpo00015
600
Figure kpo00016
Is appropriate.

(2) 산화배소광의 황산침출 실험례(2) Experimental example of sulfuric acid leaching of oxidized oxide

상기와 같이 산화배소가 수행된 후 산화배소산물의 황산침물이 수행되는데, 황산농도를 변화시키면서 수행한 침출결과에 따르면, 황산농도가 증가함에 따라 침출률이 증가하고 황산농도 6N에서 최대값을 보이다가 이 이상의 황산농도에서는 침출률이 감소한다. 이렇게 어는 이상의 황산농도하에서 침출률이 감소하는 이유는 침출용액내 황산의 과다 존재에 따라 3가의 희토류이온과 황산기 이온이 RE2(SO4)를 형성하는데, RE2(SO4)3는 온도가 증가하면 수용액내에서 용해도가 감소하게 된다. 따라서 황산침출시 온도가 발열반응에 의해 평균적으로 60

Figure kpo00017
정도가 유지됨에 따라 RE2(SO4)3의 용해도가 낮아 침출률이 저하된다. 따라서 침출률을 향상시키기 위해서는 과량의 황산농도는 피해야 하며 6N 황산농도가 가장 적절하였다.After the roasting oxide is carried out as described above, the sulfuric acid precipitate of the roasted oxide product is carried out. According to the leaching result of varying the sulfuric acid concentration, the leaching rate increases as the sulfuric acid concentration increases and shows the maximum value at the sulfuric acid concentration of 6N. At higher sulfuric acid concentrations, the leaching rate decreases. The reason for this is that the leach rate decreases under freezing or more sulfate concentrations to form a RE 2 (SO 4) 3-valent rare earth ions and sulfate ions according to the excessive presence of the sulfuric acid leaching solution, RE 2 (SO 4) 3 is the temperature Increasing decreases solubility in aqueous solution. Therefore, the temperature of sulfuric acid leaching is 60 on average due to the exothermic reaction.
Figure kpo00017
As the degree is maintained, the solubility of RE 2 (SO 4 ) 3 is low and the leaching rate is lowered. Therefore, excessive sulfuric acid concentration should be avoided and 6N sulfuric acid concentration was most appropriate to improve the leaching rate.

광액의 농도가 증가함에 따라 침출률이 감소하는데 그 정도는 크지 않다. 그러나 광액의 농도가 증가할수록 희토류 산화배소광의 처리량이 많아 유리하지만 광액의 농도가 너무 높으면 침출률 저하 및 희토류 농도의 과다등 문제가 발생되기 때문에 약 20

Figure kpo00018
정도가 적절하였다. 또한 침출시간이 증가함에 따라 침출률은 증가추세를 보이지만 침출시간 3시간 이후에는 침출률이 일정해지는 것을 알수 있으며, 따라서 침출시간 약 3시간이 가장 적절하였다. 표 2는 본 발명의 최적 조건하에서 수행된 황산침출후 침출여액의 조성을 나타내고 있다.As the concentration of mineral solution increases, the leaching rate decreases, but not so much. However, as the concentration of the mineral liquid increases, the throughput of rare earth oxidized oxide is much higher. However, if the concentration of the mineral liquid is too high, problems such as lowering of leaching rate and excessive rare earth concentration occur.
Figure kpo00018
The degree was appropriate. Also, as leaching time increased, leaching rate increased, but leaching rate became constant after 3 hours. Therefore, leaching time was about 3 hours. Table 2 shows the composition of the leaching filtrate after sulfuric acid leaching carried out under the optimum conditions of the present invention.

Figure kpo00019
Figure kpo00019

앞에서도 언급하였듯이 사용된 불탄산염 희토류광은 주로 경희토류가 전체 희토류 성분의 약 95

Figure kpo00020
이상을 차지하고 있기 때문에 본 발명에서 ICP를 이용한 희토류 조성분석을 주로 경희토류인 La, Ce, Pr, Nd 등 4가지 성분으로 국한하였다.As mentioned earlier, the fluoride rare earth ore used is mainly composed of light rare earths containing about 95% of the total rare earth components.
Figure kpo00020
Since the present invention occupies the above, the rare earth composition analysis using ICP is mainly limited to four components such as La, Ce, Pr, and Nd which are light rare earths.

(3) 양이온교환수지를 이용한 세륨의 분리회수 실험례(3) Experimental example of separation recovery of cerium using cation exchange resin

본 발명에서 사용된 양이온교환수지는 Amberlite IR-120으로서 수지의 입도는 50

Figure kpo00021
80메쉬 어었으며, 양이온교환수지의 전처리 과정은 다음과 같다.The cation exchange resin used in the present invention is Amberlite IR-120, the particle size of the resin is 50
Figure kpo00021
80 mesh, the pretreatment of cation exchange resin is as follows.

즉, 양이온교환수지를 2.5

Figure kpo00022
3.0N H2SO4수용액으로 24시간 동안 산처리를 한다. 산처리 된 양이온교환수지를 Ion-Sieve column(지름 5cm, 높이 80cm)에 충진을 한후, 1.5
Figure kpo00023
2.0N H2SO4수용액으로 산세를 한 다음, 증류수로 수세를 하고, 0.2
Figure kpo00024
0.3N H2SO4수용액으로 산세를 하는 과정을 통하여 양이온교환수지를 처리하여 Ion-Sieve method에 의한 세륨의 분리회수에 사용하였다.That is, cation exchange resin 2.5
Figure kpo00022
Acid treatment with 3.0NH 2 SO 4 aqueous solution for 24 hours. After acid-treated cation exchange resin was filled in Ion-Sieve column (diameter 5cm, height 80cm), 1.5
Figure kpo00023
Pickling with 2.0NH 2 SO 4 aqueous solution, washing with distilled water, 0.2
Figure kpo00024
The cation exchange resin was treated by pickling with 0.3NH 2 SO 4 aqueous solution and used to recover the cerium by Ion-Sieve method.

양이온교환수지를 이용한 세륨의 분리회수방법은 다음과 같은 과정을 거쳐수행하였다. 즉, 양이온교환수지를 전처리하여 탑(column)내에 충진한 후, 상기와 같은 황산침출용액을 TREO가 적정농도가 되도록 증류수로 희석하여 일정한 유속으로 양이온 교환수지탑(ion-Sieve column)내로 통과시켜 침출용액중의 세륨을 제외한 3가 희토류 양이온들을 수지에 흡착시킨다. 탑을 통과한 용액을 재취하여 I.C.P.로 용액의 조성을 분석하였다. 희토류이온들에 대한 양이온교환수지가 포화상태에 이르면, 용리액으로 3N H2SO4수용액을 사용하여 탑내에 통과시켜 흡착된 3가 희토류 양이온을 용리시켰다.Separation and recovery of cerium using a cation exchange resin was carried out through the following process. That is, after pre-treatment of cation exchange resin and filling it in a column, the sulfuric acid leaching solution is diluted with distilled water so that TREO is an appropriate concentration and passed through a cation exchange resin column at a constant flow rate. Trivalent rare earth cations except cerium in the leaching solution are adsorbed onto the resin. The solution passed through the tower was retaken and analyzed for composition of the solution by ICP. When the cation exchange resin for the rare earth ions reached saturation, the adsorbed trivalent rare earth cation was eluted by passing through the column using a 3N H 2 SO 4 aqueous solution as the eluent.

Ion Sieve method에 의한 세륨의 회수는 양이온교화수지에 4가 세륨이외의 3가 희토류원소들을 선택적으로 흡착시켜 세륨을 분리,회수하는 방법이다. 이 방법은 4가 세륨이온의 특성을 이용하는 것인데, 적정 착화물을 선정하여 첨출용액에 첨가하면 다른 희토류원소들은 3가의 양이온으로 존재하는 반면에, 세륨은 착화물과 결합하여 다음 식(3)과 같이 착합이온을 형성한다.Recovery of cerium by the ion sieve method is a method of selectively adsorbing trivalent rare earth elements other than tetravalent cerium to cation exchange resins to separate and recover cerium. This method takes advantage of the properties of tetravalent cerium ions. When the appropriate complex is selected and added to the addition solution, other rare earth elements are present as trivalent cations, while cerium is combined with the complex so that To form a complex ion.

Figure kpo00025
Figure kpo00025

따라서 양이온교환수지를 이용하여 침출용액중의 희토류 3가 양이온들을 수지에 흡착시킴으로써 세륨의 착합음이온을 기타 희토류원소들로부터 분리하는 방법이다. 이 방법은 공정이 간단하며 회수된 세륨의 회수율 및 품위가 높은 장점을 가지고 있다.Therefore, the rare earth trivalent cations in the leaching solution are adsorbed onto the resin using a cation exchange resin to separate the complex anion of cerium from other rare earth elements. This method has the advantages of simple process and high recovery rate and quality of recovered cerium.

본 발명에서는 침출용액의 TREO 농도를 각각 55,70,105 g/l로 변화시키면서 일정조건하(용액의 속도=0.48cm/mim, resin 높이=45cm)에서 3가 희토류이온들의 흡,탈착 실험을 수행하였다. 표 4는 침출용액의 TREO 농도변화에 따라 ICP 분석을 통하여 3가 희토류이온들의 흡착후 여액중에 함유되어 있는 전체 희토류원소중에 세륨원소의 백분율을 나타내고 있다.In the present invention, the adsorption and desorption experiments of trivalent rare earth ions were performed under constant conditions while changing the TREO concentration of the leaching solution to 55,70,105 g / l, respectively (speed of solution = 0.48cm / mim, resin height = 45cm). . Table 4 shows the percentage of cerium elements in the total rare earth elements contained in the filtrate after adsorption of trivalent rare earth ions through ICP analysis according to the change of TREO concentration in the leaching solution.

Figure kpo00026
Figure kpo00026

표 4에 의하면, 일정량의 레진(resin)부피에서 침출용액내 전체 희토류산화물의 농도 증가에 따른 3가 희토류이온들의 흡착후 여액내 전체 희토류에 대한 세륨의 함유량이 약간 감소하였으나, 그 차이는 크지 않음을 알 수 있다. 그러나 침출용액의 TREO 농도가 낮을수록 세륨회수율은 증가하는 것을 알 수 있었다. 따라서 침출용액의 TREO 농도는 약 80g/l 이하가 적절하다는 것을 알 수 있었다.According to Table 4, after the adsorption of trivalent rare earth ions with increasing concentrations of total rare earth oxides in the leaching solution in a certain amount of resin volume, the content of cerium in the filtrate was slightly decreased, but the difference was not large. It can be seen. However, the lower the TREO concentration of the leaching solution, the higher the recovery rate of cerium. Therefore, it was found that the TREO concentration of the leaching solution was about 80 g / l or less.

침출용액의 column 통과속도를 각각 0.28, 0.49, 0.71, 0.97 cm/min으로 변화시키면서 일정 조건하 [resin 높이 45cm(resin 부피:880

Figure kpo00027
), 침출용액중 TREO 농도 70g/l(침출원액 3배 희석)]에서 3가 희토류이온들의 흡, 탈착, 실험을 수행하였다. 표 5는 침출용액의 선속도 변화에 따른 ion-sieve column 통과 여액중에 함유된 전체 희토류원소중에 세륨원소의 백분율을 나타내고 있다.The column height of the leaching solution was changed to 0.28, 0.49, 0.71 and 0.97 cm / min, respectively, and the height of the resin was 45 cm (resin volume: 880).
Figure kpo00027
), Adsorption, desorption, and experiment of trivalent rare earth ions at TREO concentration of 70 g / l (three dilutions of leachate). Table 5 shows the percentage of cerium elements in the total rare earth elements contained in the ion-sieve column pass filtrate with the linear velocity of the leaching solution.

Figure kpo00028
Figure kpo00028

이 결과에 따르면, 용액의 선속도가 증가할수록 3가 희토류이온들의 흡착후 여액내 전체 희토류에 대한 세륨의 함유량 변화는 크지 않으나, 세륨회수율은 약간 감소하였다. 따라서 침출용액의 신속도가 늦을수록 세륨의 회수율은 증가하며 용액의 신속도는 0.49cm/min 이하가 적절하다는 것을 알 수 있었다.According to this result, as the linear velocity of the solution increased, the change of cerium content of the total rare earth in the filtrate after adsorption of trivalent rare earth ions was not large, but the cerium recovery was slightly decreased. Therefore, the slower the leaching solution was, the higher the recovery rate of cerium was and the rapidity of the solution was found to be 0.49 cm / min or less.

양이온교환수지의 높이를 각각 35, 45, 55, 75cm로 변화시키면서 일정조건하[용액의 속도=0.49cm/min, 침출용액 TREO=70g/l(침출원액 3배 희석)]에서 3가 희토류이온들의 흡,탈착실험을 수행하였다. 표 6은 침출용액의 양이온교환수지의 높이 변화에 따라 3가 희토류이온들의 흡착후 여액중에 함유되어 전체 희토류원소중에 세륨원소의 백분율을 나타내고 있다.Trivalent rare earth ions under constant conditions (velocity of solution = 0.49 cm / min, leaching solution TREO = 70 g / l (three dilutions of leaching stock)) while varying the height of the cation exchange resin to 35, 45, 55 and 75 cm, respectively. Their adsorption and desorption experiments were performed. Table 6 shows the percentage of cerium elements in the total rare earth elements contained in the filtrate after adsorption of trivalent rare earth ions according to the change in the height of the cation exchange resin of the leaching solution.

Figure kpo00029
Figure kpo00029

이 결과에 의하면, 양이온교환수지의 높이가 증가함에 따라 고순도 세륨음이온착화물 함유용액과 높은 세륨회수율을 얻을 수 있다. 또한 이 결과로 부터 양이온교환수지탑 설계시 탑의 높이와 지름의 비가 9이상의 되어야 높은 회수율은 갖는 고순도 세륨을 분리할 수 있음을 알 수 있었다.According to this result, as the height of the cation exchange resin increases, a high purity cerium anion complex-containing solution and a high cerium recovery rate can be obtained. From the results, it was found that when the cation exchange resin tower design, the ratio of the height and diameter of the tower should be 9 or more to separate the high purity cerium having high recovery.

(4) 세륨산화물 제조실험례(4) Cerium Oxide Manufacturing Experiment

Ion-Sieve Column 통과한 여액중에는 3가의 희토류이온을 제외한 4가세륨의 음이온 착화물([CeF6]--)이 존재한다. 이러한 여액에서 세륨산화물을 회수하는 방법은 다음의 반응식에 따라 진행된다.In the filtrate passed through the Ion-Sieve Column, an anionic complex of tetravalent cerium ([CeF6] - ), except trivalent rare earth ions, is present. The method for recovering cerium oxide from this filtrate proceeds according to the following reaction formula.

Figure kpo00030
Figure kpo00030

Figure kpo00031
Figure kpo00031

즉, ico-Sieve column을 통과한 여액에 옥살산을 첨가하여 세륨을 Ce2(C2O4)3침전시킨후, 이 침전물을 900

Figure kpo00032
에서 2시간 소성하여 세륨산화물을 제조할 수 있었다. 표 7은 본 발명에서 제조한 대표적인 세륨산화물의 조성을 나타내고 있다.That is, oxalic acid was added to the filtrate through the ico-Sieve column to precipitate Ce 2 (C 2 O 4 ) 3 , and then the precipitate was 900
Figure kpo00032
The cerium oxide was prepared by firing at 2 hours. Table 7 shows the composition of the representative cerium oxide prepared in the present invention.

Figure kpo00033
Figure kpo00033

이상에서 살펴본 바와같은 본 발명은 불탄산염 희토류 정광의 산화배소에 의한 황산침출 및 침출용액으로부터 ion-sieve column을 통하여 혼합희토용액중의 세륨을 분리하므로서, 각종 용도에 적합한 세륨산화물을 제조할 수 있는 고품위 세륨 분리회수방법이다. 이 방법은 종래 산도조절법에 의한 세륨의 분리, 회수방법에서의 문제점을 지적하는 황산화분해반응시 불소와 아황산가스의 방출로 인한 대기오염등 환경문제를 해결함과 동시에 회토류원소로부터 세륨의 분리회수시 낮은 회수율과 저품위 등 여러 문제점들을 효과적으로 해결할 수 있는 등의 여러 장점을 구현한다.The present invention as described above, by separating the cerium in the mixed rare earth solution through the ion-sieve column from the sulfuric acid leaching and leaching solution by oxidizing roasting of fluorite rare earth concentrate, cerium oxide suitable for various applications can be produced High quality cerium separation recovery method. This method solves environmental problems such as air pollution due to the release of fluorine and sulfurous acid gas in the sulfuric acid decomposition reaction, which points out the problems in the separation and recovery of cerium by the conventional acidity control method. Many advantages such as low recovery rate and low quality can be effectively solved.

Claims (3)

불탄산염 희토류광으로부터 세륨을 분리,회수함에 있어서, 불탄산염 희토류광의 산화배소시 온도를 550
Figure kpo00034
650
Figure kpo00035
, 시간을 2시간으로 하며, 산화배소광의 황산침출시 5
Figure kpo00036
6N의 황산농도와 광액농도 15
Figure kpo00037
20
Figure kpo00038
, 그리고 침출시간은 2
Figure kpo00039
3시간으로 한 조건하에서 얻은 침출용액으로부터 양이온교환수지(IR120)에 의한 흡,탈착 고정으로서 ion-sieve법으로 세륨을 분리, 회수하는 것을 특징으로 하는 불탄산염 희토류 정광인 bastnasite의 산화배소 및 황산침출용액으로부터 ion-sieve법에 의한 고품위 세륨의 분리회수방법.
In the separation and recovery of cerium from the carbonate rare earth ore, the temperature during oxidation oxidation of the carbonate rare earth ore is 550
Figure kpo00034
650
Figure kpo00035
, 2 hours, when leaching sulfuric acid oxide 5
Figure kpo00036
Sulfuric Acid Concentration and Mineral Liquid Concentration of 6N 15
Figure kpo00037
20
Figure kpo00038
, And leaching time is 2
Figure kpo00039
Oxidation and sulfuric acid leaching of bastnasite, a fluorite rare earth concentrate, characterized in that cerium is separated and recovered by ion-sieve method as an adsorption and desorption fixation by cation exchange resin (IR120) from a leaching solution obtained under a condition of 3 hours. Separation and recovery method of high quality cerium from the solution by ion-sieve method.
제1항에 있어서, 상기 양이온 교화수지에 의한 흡.탈착공정은 상기 침출용액중의 희토류 이온농도를 적정농도로 유지하도록 증류수로 희석하여 양이온 교환수지탑으로 흘려 보내므로써 3가의 양이온 희토류 원소들은 양이온 교환수지에 흡착시키고 세륨은 세륨착화물 음이온 형태로 용액중에 잔류시키되 상기 세륨착화물 음이온 함유용액은 탈철과 탈토륨의 탈착공정을 거쳐서 세륨산화물로 분리, 회수하는 것을 특징으로 하는 불탄산염 희토류 정광인 bastnasite의 산화배소 및 황산침출용액으로부터 ion-sieve법에 의한 고품위 세륨의 분리회수방법.The trivalent cation rare earth elements according to claim 1, wherein the adsorption / desorption process by the cationic crosslinking resin is diluted with distilled water to flow to the cation exchange resin tower to maintain the rare earth ion concentration in the leaching solution at an appropriate concentration. Adsorbed to the exchange resin and cerium is left in the solution in the form of cerium complex anion, but the solution containing cerium complex anion is separated and recovered as cerium oxide through the desorption process of iron and de-thorium concentrate. Separation and recovery of high quality cerium from the oxidation and sulfuric acid leaching solution of bastnasite by ion-sieve method. 제2항에 있어서, 상기 음이온 교환수지탑 통과시 침출용액의 TREO 농도 50
Figure kpo00040
100g/ℓ, 침출용액의 선속도는 0.2
Figure kpo00041
0.7cm/min 그리고 양이온 교환수지탑의 높이와 지금의 비는 7
Figure kpo00042
10으로 하는 것을 특징으로 하는 불탄산염 희토류 정광인 bastnasite의 산화배소 및 황산침출용액으로부터 ion-sieve법에 의한 고품위 세륨의 분리회수방법.
According to claim 2, TREO concentration of the leaching solution 50 when passing through the anion exchange resin tower
Figure kpo00040
100 g / ℓ, the linear velocity of the leaching solution is 0.2
Figure kpo00041
0.7 cm / min and the height of the cation exchange resin tower
Figure kpo00042
A method for separating and recovering high-quality cerium by ion-sieve method from the roasted oxide and sulfuric acid leaching solution of bastnasite, which is fluorite rare earth concentrate, characterized in that 10.
KR1019970034479A 1997-07-23 1997-07-23 Recovering method of cerium through ion-sieve method KR100228057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970034479A KR100228057B1 (en) 1997-07-23 1997-07-23 Recovering method of cerium through ion-sieve method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970034479A KR100228057B1 (en) 1997-07-23 1997-07-23 Recovering method of cerium through ion-sieve method

Publications (2)

Publication Number Publication Date
KR19990011392A KR19990011392A (en) 1999-02-18
KR100228057B1 true KR100228057B1 (en) 1999-11-01

Family

ID=19515402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970034479A KR100228057B1 (en) 1997-07-23 1997-07-23 Recovering method of cerium through ion-sieve method

Country Status (1)

Country Link
KR (1) KR100228057B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561539A (en) * 2015-02-16 2015-04-29 包头市锦园化工科技有限公司 Energy-saving and high-efficiency rare earth ore concentrate sulfuric acid stepped roasting method
CN111411227A (en) * 2020-03-12 2020-07-14 清华大学 Method for extracting and separating trivalent cerium and trivalent lanthanide ions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459734B1 (en) * 2012-12-21 2014-11-10 주식회사 포스코 Method of separating cerium from rare earth compounds
US10597754B2 (en) * 2014-05-15 2020-03-24 Vale S.A. System and process for selective rare earth extraction with sulphur recovery
CN111549216A (en) * 2020-05-22 2020-08-18 包头稀土研究院 Method for decomposing rare earth concentrate
CN115725868A (en) * 2022-11-23 2023-03-03 包头华美稀土高科有限公司 Hot dipping tank, device and method for improving leaching rate of high-temperature roasting rare earth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222123A (en) * 1988-03-31 1990-01-25 Reo Lp Fractionation of rare earth metal mixture by ion exchange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222123A (en) * 1988-03-31 1990-01-25 Reo Lp Fractionation of rare earth metal mixture by ion exchange

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561539A (en) * 2015-02-16 2015-04-29 包头市锦园化工科技有限公司 Energy-saving and high-efficiency rare earth ore concentrate sulfuric acid stepped roasting method
CN111411227A (en) * 2020-03-12 2020-07-14 清华大学 Method for extracting and separating trivalent cerium and trivalent lanthanide ions

Also Published As

Publication number Publication date
KR19990011392A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
DE69925903T2 (en) WATER TREATMENT METHOD
CN105692698B (en) The depth separation method of molybdenum, vanadium in a kind of vanadium solution containing molybdenum
DE2558160B2 (en) Process for cleaning technical molybdenum oxide
CN108026609A (en) The production of the concentrate containing scandium and therefrom further extraction high-purity mangesium oxide scandium
RU2669737C1 (en) Method for preparation of scandium oxide from scandium-containing concentrates
WO2020154699A1 (en) Systems and methods to treat flue gas desulfurization and metal-bearing waste streams to recover value-added materials
RU2477327C1 (en) Complex processing method of carbon-silicic black-shale ores
CN110241309A (en) A kind of method that useless polishing powder from rare earth extracts white carbon black and rare earth water purification agent
KR100228057B1 (en) Recovering method of cerium through ion-sieve method
CN1114564C (en) Technological process of preparing pure cerium hydroxide
US5068095A (en) Method for reducing the amount of colorants in a caustic liquor
CN116888079A (en) Method for processing water-soluble mineral lithium-containing raw material
CA1150517A (en) Method of decreasing the organic substance of alum earth production cycle performed according to the bayer technology
CN109207720B (en) Leaching method for extracting vanadium from stone coal
JP2002256354A (en) Method for separating and recovering vanadium
EP3666912A1 (en) Method for recovering scandium from red mud from alumina production
JPS5845341A (en) Separation of rare earth metal
RU2729282C1 (en) Method of extracting scandium from scandium-containing materials
KR100230093B1 (en) Method for collecting a manganese oxided substance from powder and system for method for collecting a manganese oxided substance from powder
CN115522076B (en) Method for preparing ammonium metavanadate and vanadium pentoxide from vanadium-containing metallurgical waste residues
CN1119424C (en) Process for extracting cerium by oxydol oxidation method
CN110711551A (en) Lithium adsorbent and preparation method thereof
Peganov et al. Technology for Obtaining Natural-Uranium Concentrates to ASTM C 967–08 Specifications
RU2170647C1 (en) Method of production of ultradispersed metal powder
CN1300350C (en) Technique for producing ammonium paratungstate from raw material of tungsten through iron exchange method of alkali breakdown

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 18

EXPY Expiration of term