KR100225694B1 - Solid waste landfill leachate treatment process - Google Patents

Solid waste landfill leachate treatment process Download PDF

Info

Publication number
KR100225694B1
KR100225694B1 KR1019960061359A KR19960061359A KR100225694B1 KR 100225694 B1 KR100225694 B1 KR 100225694B1 KR 1019960061359 A KR1019960061359 A KR 1019960061359A KR 19960061359 A KR19960061359 A KR 19960061359A KR 100225694 B1 KR100225694 B1 KR 100225694B1
Authority
KR
South Korea
Prior art keywords
tank
anaerobic reactor
leachate
denitrification
landfill leachate
Prior art date
Application number
KR1019960061359A
Other languages
Korean (ko)
Other versions
KR19980043482A (en
Inventor
박칠림
유희찬
박미경
공민근
Original Assignee
장병주
주식회사대우
이일쇄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장병주, 주식회사대우, 이일쇄 filed Critical 장병주
Priority to KR1019960061359A priority Critical patent/KR100225694B1/en
Publication of KR19980043482A publication Critical patent/KR19980043482A/en
Application granted granted Critical
Publication of KR100225694B1 publication Critical patent/KR100225694B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은, 도시폐기물 매립지에서 발생하는 침출수를 정화처리하는 폐기물 매립지 침출수 처리공법에 관한 것으로, 더욱 상세하게는, 침출수는 생분해성 유기물질의 제거와 질산성 질소의 탈질을 위한 상향류식 혐기성 반응조, 잔여하는 질산성 질소의 탈질을 위한 무산소조, 암모니아성 질소의 질산화를 위한 포기조, 난분해성 유기물질을 위한 응집침전조, 화학적 산화조, 응집침전조에서 순차적으로 처리되고, 탈질과정은 포기조에서 질산화된 질산성 질소를 혐기성 반응조와 무산소조로 반송시켜 이루어지며, 성상이 다변화하는 침출수는 상향류식 혐기성 공정을 적용하여 후속공정인 호기성 공정에 안정된 수질을 공급하고, 고농도의 암모니아성 질소는 질산화 및 탈질공정을 통하여 제거하며, 난분해성 유기물질은 최적의 화학적 응집반응과 산화반응을 통하여 높은 효율로 제거되어 최종 유출수가 양질의 수질을 나타내게 된다.The present invention relates to a waste landfill leachate treatment method for purifying leachate from municipal waste landfill. More specifically, the leachate is an upflow anaerobic reactor for the removal of biodegradable organic substances and denitrification of nitrate nitrogen, The anoxic tank for denitrification of residual nitrate nitrogen, the aeration tank for nitrification of ammonia nitrogen, the flocculation settler for hardly decomposable organic substances, the chemical oxidation tank and the flocculation settler, are sequentially processed. It is made by returning nitrogen to anaerobic reactor and anaerobic tank, and leachate with varying properties supplies stable water quality to aerobic process, which is a subsequent process by applying upflow anaerobic process, and high concentration of ammonia nitrogen is removed through nitrification and denitrification process. Hardly decomposable organic materials are used for optimal chemical flocculation and acid The effluent is removed with high efficiency resulting in high quality water.

Description

폐기물 매립지 침출수 처리공법Waste Landfill Leachate Treatment Method

본 발명은 도시폐기물 매립지에서 발행하는 침출수를 정화처리하는 폐기물 매립지 침출수 처리공법에 관한 것이다.The present invention relates to a waste landfill leachate treatment method for purifying leachate issued from municipal waste landfills.

종래의 침출수 처리공법은 년중 다변화하는 침출수 성상에 대한 처리능력이 저조하여 만족할 만한 수질을 얻지 못하였으며, 고농도 유기 물질의 대부분을 재래식 혐기성 반응조에 의존하여 처리하는 관계로 상기 혐기성 반응조의 능력부족으로 호기성 처리에 의존하여 긴 체류시간, 넓은 부지면적과 많은 에너지가 필요하였다. 이러한 조건에도 불구하고 종래의 방법으로는 유입수내 고농도의 질소를 거의 제거시키지 못하였고, 특히 난분해성 유기물질의 제거효율이 저조하여 화학약품의 의존도가 높아 약품비가 과다하게 소모되는 문제점이 있었다.The conventional leachate treatment method has not been able to obtain satisfactory water quality due to the poor treatment ability of various leachate properties throughout the year, and due to the lack of capacity of the anaerobic reactor because of treating most of the high concentration organic materials in the conventional anaerobic reactor. Depending on the treatment, a long residence time, large land area and a lot of energy were required. Despite these conditions, the conventional method hardly removes a high concentration of nitrogen in the influent, and in particular, the removal efficiency of hardly decomposable organic substances is low, and the dependency of chemicals is high, resulting in excessive consumption of chemical costs.

본 발명의 목적은 종래의 문제점을 해결하기 위하여, 본 발명은, 침출수는 생분해성 유기물질 제거와 질산성 질소의 탈질을 위한 상향류식 혐기성 반응조, 잔여하는 질산성 질소의 탈질을 위한 무산소조, 암모니아성 질소의 질산화를 위한 포기조, 난분해성 유기물질을 위한 응집침전조, 화학적 산소조, 응집침전조에서 순차적으로 처리되고, 포기조에서 질산화된 질산성 질소를 혐기성 반응조와 무산소조로 반송시키는 폐기물 매립지 침출수 처리공법을 제공하고자 하는 것이다.The object of the present invention is to solve the conventional problems, the present invention, the leachate is an upflow anaerobic reactor for the removal of biodegradable organic substances and denitrification of nitrate nitrogen, anoxic tank for the denitrification of the residual nitrate nitrogen, ammonia Provides a waste landfill leachate treatment process which is sequentially processed in aeration tank for nitrification of nitrogen, flocculation settling tank for hardly decomposable organic substances, chemical oxygen tank, flocculation settling tank, and nitrate nitrogenized in the aeration tank is returned to anaerobic reactor and anoxic tank. I would like to.

본 발명의 폐기물 매립지 침출수 처리공법에 의하면, 성상이 다변화하는 침출수는 상향류식 혐기성 공정을 적용하여 후속공정인 호기성 공정에 안정된 수질을 공급하고, 고농도의 암모니아성 질소는 질산화 및 탈질공정을 통하여 제거하며, 난분해성 유기물질은 최적의 화학적 응집반응과 산화반응을 통하여 높은 효율로 제거되어 최종 유출수가 양질의 수질을 나타내게 된다.According to the waste landfill leachate treatment method of the present invention, leachate with varying properties supplies stable water quality to the aerobic process, which is a subsequent process by applying an upflow anaerobic process, and removes high concentration of ammonia nitrogen through nitrification and denitrification process. In addition, hardly decomposable organic substances are removed with high efficiency through optimal chemical flocculation and oxidation, resulting in high quality water.

제1도는 본 발명의 전체 침출수 처리공정을 개략적으로 나타내는 도면.1 is a diagram schematically showing the entire leachate treatment process of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 조정조 2 : 상향류식 혐기성 반응조1: Adjustment tank 2: Upflow anaerobic reactor

3 : 무산소조 4 : 포기조3: anaerobic tank 4: abandon tank

5 : 슬러지 반송라인5: sludge return line

6 : 호기성 유출수의 무산소조 반송라인6: anoxic tank return line for aerobic effluent

7 ; 급속교반조 8 : pH 조정조7; Rapid stirring tank 8: pH adjusting tank

9 : 완속교반조 10 : 약품침전조9: slow stirring 10: chemical precipitation

11 : 펜톤산화조 12 : 급속교반조11: Fenton oxidation tank 12: Rapid stirring

13 : 완속 교반조 14 : 약품침전조13: slow stirring tank 14: chemical precipitation tank

15 : 방류관 17 : 침전조15 discharge pipe 17 sedimentation tank

16 : 호기성 유출수의 혐기성 반응조의 반송라인16: Return Line of Anaerobic Reactor for Aerobic Effluent

본 발명의 침출수 처리공정을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Referring to the leachate treatment process of the present invention in detail with reference to the accompanying drawings as follows.

도 1은 본 발명의 침출수 처리공정을 개략적으로 나타내는 도면으로서, 국내 폐기물 매립지에서 발생하는 침출수는 높은 알칼리도와 영양 물질중 인(P)이 부족한 특성을 지니고 있다. 이에 따라 조정조(1)에서 (1+1)HCl을 이용하여 ph를 중성(ph7)으로 조절하여 주고, KH2PO4을 이용하여 부족한 인(P)을 보충하여 상향류식 혐기성 반응조(UASB)(2)로 유입시켜 상기 상향류식 혐기성 반응조(2)내의 혐기성 미생물에 악영향이 미치지 않도록 한다.1 is a view schematically showing a leachate treatment process of the present invention, the leachate generated in domestic landfill has a high alkalinity and lack of phosphorus (P) of nutrients. Accordingly, in the adjusting tank (1), the pH is adjusted to neutral (ph7) using (1 + 1) HCl, and the phosphorus (P) is compensated using KH 2 PO 4 to supplement the upflow anaerobic reactor (UASB) ( 2) so as not to adversely affect the anaerobic microorganisms in the upflow anaerobic reactor (2).

상기 혐기성 반응조(2)를 여러 운전조건으로 실험한 결과 체류시간 1일 ,유기물 부하 8kg CODcr/m3/d 정도에서 BOD 제거효율이 95 내지 98% 정도였다.The anaerobic reactor 2 was tested under various operating conditions, and the BOD removal efficiency was about 95 to 98% at a residence time of 1 day and an organic load of about 8 kg CODcr / m 3 / d.

상기 상향류식 혐기성 반응조(2)의 유출수는 무산소조(3)로 유입되며, 무산소조(3)의 미생물 농도를 유지시키기 위해 포기조(4)의 후단 침전조(17)의 슬러지를 슬러지 반송라인(5)을 통하여 무산소조(3)로 유입시킨다. 상기 무산소조(3)내의 DO 농도를 0.5mg/L 이하로 유지하도록 하며, 체류시간 1 내지 2일, MLSS 1,500mg/L의 조건으로 운전하여 포기조(4)에서 질산화된 유출수를 침전조(17) 이후에서 반송라인(6)을 통해 반송시켜 무산소조(3)에서 탈질반응이 일어나도록 한다.The outflow water of the upflow anaerobic reactor 2 is introduced into the anaerobic tank 3, and the sludge conveying line 5 of the sludge of the rear settling tank 17 of the aeration tank 4 is maintained in order to maintain the microbial concentration of the anaerobic tank 3; Inflow to the anaerobic tank (3) through. Maintain the DO concentration in the oxygen-free tank (3) to 0.5mg / L or less, the residence time 1 to 2 days, operating under the conditions of MLSS 1,500mg / L after the nitrified effluent from the aeration tank (4) after the precipitation tank (17) In this case, the denitrification reaction takes place in the oxygen-free tank 3 by conveying through the conveying line 6.

또한, 본 발명에서는 탈질반응이 더욱 완전히 이루어지도록 하기 위하여 포기조(4)에서 질산화된 유출수의 일부를 침전조(17)의 이후에서 반송라인(16)을 통하여 상향류식 혐기성 반응조(2)로 반송시킨다. 이는 상기 상향류식 혐기성 반응조(2)내의 혐기성 상태와 유입 침출수내의 많은 유기물질은 탈질반응 조건에 적합하기 때문이다.In addition, in the present invention, a part of the nitrified effluent from the aeration tank 4 is returned to the upflow anaerobic reactor 2 after the settling tank 17 through the transfer line 16 in order to make the denitrification reaction more complete. This is because the anaerobic state in the upflow anaerobic reactor 2 and many organic substances in the influent leachate are suitable for the denitrification reaction conditions.

또한, 본 발명에서 포기조 유출수를 침전조(17) 이후에서 반송시키는 이유는 상향류식 혐기성 반응조(2)내의 혐기성 미생물에 DO의 영향을 없게하기 위함이다.In addition, the reason for returning the aeration tank effluent after the settling tank 17 in the present invention is to avoid the influence of DO on the anaerobic microorganisms in the upflow anaerobic reactor (2).

상기 무산소조(3)에서 탈질반응에 필요한 탄소원은 혐기성 반응조 유출수에 잔여하는 유기물질을 이용하고 부족시 메탄올을 첨가하도록 한다.The carbon source required for the denitrification in the anoxic tank 3 uses the organic material remaining in the anaerobic reactor effluent and adds methanol when insufficient.

이후 포기조(4)에서는 유입하는 암모니아성 질소를 질산화시키기 위하여 충분한 체류시간(5일 정도)을 주고, DO농도를 2ml/L 이상으로 유지하기 위하여 공기를 공급하며, 질산화에 의한 pH 강하를 막기위해 중탄산나트륨을 첨가한다.Then, the aeration tank 4 gives sufficient residence time (about 5 days) to nitrify the incoming ammonia nitrogen, supplies air to maintain the DO concentration above 2ml / L, and prevents the pH drop by nitrification. Sodium bicarbonate is added.

pH는 6내지 8정도, MLSS는 1,500mg/L 정도로 운전하여 본 반응조에서 질산화된 질소를 탈질시키기위해 상기에 언급한 바와 같이 상기 상향류식 혐기성 반응조(2)와 무산소조(3)로 반송시킨다. 호기성 반응조를 거친 유출수는 생물학적 반응으로 제거 불가능한 난분해성 유기물질이 다량 포함되어 있으며, 이 난분해성 유기물질을 제거하기 위해서는 화학적 처리를 해야한다.The pH is about 6 to 8, and the MLSS is operated at about 1,500 mg / L, and is returned to the upflow anaerobic reactor (2) and the anaerobic tank (3) as mentioned above to denitrate nitrogen in the reactor. The effluent from the aerobic reactor contains a large amount of hardly decomposable organic substances that cannot be removed by biological reactions, and chemically treated to remove the hardly degradable organic substances.

이를 위해서 본 발명에서는 첫단계로 응집 침전반응을 실시하였다. 응집 반응조는 급속 교반조(7), pH 조정조(8), 완속 교반조(9)로 구성된다. 실험결과 여러 응집제중 염화제1철(FeCl3)을 사용한 경우가 우수하고 경제적이라는 결론을 얻어 본 공정에 적용하였으며, 급속 교반조(7)로 염화제1철과 호기성 유출수를 유입시키고 pH 조정조(8)에서 황산을 이용하여 pH를 5정도로 유지시키면서, 급속 교반조(7)와 pH 조정조(8)를 각각, 회전속도 200, 200rpm, 체류시간 5,30분의 조건으로 운전하였다.To this end, in the present invention, a coagulation precipitation reaction was carried out in the first step. The coagulation reaction tank is composed of a rapid stirring tank 7, a pH adjusting tank 8, and a slow stirring tank 9. Experimental results showed that ferrous chloride (FeCl 3 ) among the various flocculants was excellent and economical and applied to this process.The ferrous chloride and aerobic effluent were introduced into the rapid stirring tank (7), and the pH adjusting tank ( In step 8), sulfuric acid was used to maintain the pH at about 5, and the rapid agitation tank 7 and the pH adjusting tank 8 were operated under conditions of a rotational speed of 200, 200 rpm and a residence time of 5, 30 minutes, respectively.

이후 완속 교반조(9)로 유입되어 30rpm, 20분의 체류시간을 거쳐 약품 침전조(10)에서 1시간동안 침전시킨다.Thereafter, the mixture was introduced into the slow stirring tank 9 and settled in the chemical precipitation tank 10 for 1 hour through a residence time of 30 rpm and 20 minutes.

본 반응에서 난분해성 유기물질은 약 30 내지 45% 정도 제거되며 이후 화학적 산화조로 유입된다. 화학적 산화는 관산화수소수(H2O2)와 황산철염(FeSO4)을 이용한 펜톤 산화조(11)를 이용하였으며 여러 조건실험을 통하여 두 물질의 최적비 1:1.25(무게비)을 얻었다. 화학적 산화조는 200rpm, 체류시간 60분, pH 2 내지 3정도로 운전되었으며 이후 다시 응집반응을 시켰다. 이 때 화학적 산화반응과 재응집침전 반응결과 난분해성 유기물질은 45%정도의 제거율을 나타내었다.In this reaction, the hardly decomposable organic matter is removed by about 30 to 45% and then introduced into the chemical oxidation tank. Fenton's oxidation tank (11) using hydrogen peroxide (H 2 O 2 ) and ferrous sulfate (FeSO 4 ) was used for chemical oxidation, and the optimum ratio of the two materials was obtained through various conditions. The chemical oxidation tank was operated at 200 rpm, residence time 60 minutes, pH 2 to 3 and then coagulated again. At this time, as a result of chemical oxidation and reaggregation precipitation, the hardly degradable organic material showed removal rate of about 45%.

2차 응집반응은 상기의 화학적 산화조(11)에서 낮아진 pH를 8.5이상으로 유지시키기위해 수산화나트륨을 이용하였으며 급속 교반조(12)의 운전조건을 200rpm, 체류시간 30분으로 하였다, 완속 교반조(13)에서 충분한 반응이 일어나도록 운전조건을 30rpm, 20분의 체류시간을 유지하여 최종약품 침전지(14)에서 60분의 체류시간을 거친 후 최종적으로 방류관(15)으로 배출하였다.In the second coagulation reaction, sodium hydroxide was used to maintain the pH lowered in the chemical oxidation tank 11 above 8.5. The operating conditions of the rapid stirring tank 12 were 200 rpm and a residence time of 30 minutes. Operation conditions were maintained at 30 rpm for 20 minutes to allow sufficient reaction to occur at (13), and after 60 minutes at the final drug sedimentation basin 14, it was finally discharged to the discharge pipe 15.

본 발명의 폐기물 매립지 침출수 처리공법에 따르면, 유입되는 침출원수는 전체적으로 유기물 제거효율이 CODmn로 91%, BOD로 99% 정도이며, 질소제거효율이 80%의 우수한 제거양상을 보였다.According to the waste landfill leachate treatment method of the present invention, the inflow of leachate is an organic removal efficiency of 91% CODmn, 99% BOD, nitrogen removal efficiency of 80% showed an excellent removal pattern.

Claims (2)

매립지 침출수를 유입하는 조정조(1), 상기 조정조에서 pH를 중성(pH7)으로 조절하고 KH2PO4을 이용하여 부족한 인(P)을 보충하여 BOD성분을 제거한 유출수를 유입하는 상향류식 혐기성 반응조(2), 상기 상향류식 혐기성 반응조(2)의 유출수를 유입하는 한편, 무산소조의 미생물 농도를 유지시키기 위해 포기조의 후단에 설치된 침전조의 슬러지를 슬러지 반송라인을 통하여 유입하는 무산소조(3), 상기 무산소조와 연결되고 일측에 공기(Air)를 공급하는 공급원과 연결하는 다수의 포기조(4), 상기 포기조와 연결되고 펌프(p)를 설치한 침전조(17)를 거쳐 난분해성 유기물질을 제거하기 위하여 1차응집 침전반응을 실시하는 급속 교반조(7), pH 조정조(8), 완속 교반조(9)를 거친 후 약품 침전조(10)를 지나며 상기 1차응집 침전반응을 실시한 유출수를 유입하여 최종적으로 난분해성 COD 성분을 화학적으로 산화시키는 펜톤 산화조(11), 급속 교반조(12), 완속교반조(13) 및 약품 침전조(14)에서 순차적으로 처리되는 폐기물 매립지 침출수 처리공법.An upflow anaerobic reactor (1) for introducing the landfill leachate, a pH adjusted to neutral (pH7) and supplemented with insufficient phosphorus (P) using KH 2 PO 4 to introduce effluent from which BOD components are removed. 2), an anoxic tank (3), in which the effluent of the upflow anaerobic reactor (2) flows in, and the sludge of the sedimentation tank installed in the rear end of the aeration tank is introduced through a sludge conveying line to maintain the microbial concentration of the aerobic tank. A plurality of aeration tanks 4 connected to a supply source for supplying air to one side, and a settling tank 17 connected to the aeration tanks and a pump p are installed to remove the hardly decomposable organic substances. After passing through the rapid agitation tank (7), pH adjustment tank (8), slow stirring tank (9) for performing the coagulation precipitation reaction, and passing through the chemical precipitation tank (10), the effluent water subjected to the first flocculation precipitation reaction was introduced into The I landfill leachate treatment process are sequentially processed in the Fenton oxidation tank 11, a stirring tank 12, and slow agitation tank 13 and a settling tank chemicals 14 rapidly to chemical oxidation with the decomposable COD component. 제 1항에 있어서, 상기 혐기성 반응조(2)와 무산소조(3)는 질산성 질소의 탈질을 위하여 사용되고, 상기 혐기성 반응조(2)와 무산소조(3)에는 산소의 영향이 덜 미치도록 반송라인(6) 및 (16)을 호기성 침전조(17) 이후에서 연결하는 것을 특징으로 하는 폐기물 매립지 침출수 처리공법.According to claim 1, wherein the anaerobic reactor (2) and the anoxic tank (3) is used for the denitrification of nitrate nitrogen, the anaerobic reactor (2) and the anaerobic tank (3) to the return line (6) to less influence the oxygen ) And (16) is a waste landfill leachate treatment method characterized in that after the aerobic sedimentation tank (17).
KR1019960061359A 1996-12-03 1996-12-03 Solid waste landfill leachate treatment process KR100225694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960061359A KR100225694B1 (en) 1996-12-03 1996-12-03 Solid waste landfill leachate treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960061359A KR100225694B1 (en) 1996-12-03 1996-12-03 Solid waste landfill leachate treatment process

Publications (2)

Publication Number Publication Date
KR19980043482A KR19980043482A (en) 1998-09-05
KR100225694B1 true KR100225694B1 (en) 1999-10-15

Family

ID=19485575

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960061359A KR100225694B1 (en) 1996-12-03 1996-12-03 Solid waste landfill leachate treatment process

Country Status (1)

Country Link
KR (1) KR100225694B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386926B1 (en) * 2000-07-26 2003-06-09 대한주택공사 Compact System of the Advanced Wastewater Treatment
CN103408189A (en) * 2013-07-30 2013-11-27 杭州天城环境发展有限公司 Method for treating GZBS garbage leachate
CN104692594A (en) * 2015-03-03 2015-06-10 扬州大学 Treatment method for regenerated polyester production wastewater
CN105621799A (en) * 2016-01-12 2016-06-01 岑溪市华鸿污水处理有限公司 Fructus momordicae processing waste liquid treatment system and technique
CN105948411A (en) * 2016-06-29 2016-09-21 盐城工学院 Novel industrial wastewater treatment process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384390B1 (en) * 1998-06-11 2003-07-16 현대중공업 주식회사 Leachate Treatment Method and Apparatus with UV Irradiation
CN102583908B (en) * 2012-03-22 2013-09-04 南京工业大学 Garbage leachate treatment process
CN108640212A (en) * 2018-05-18 2018-10-12 俞小峰 A kind of landfill leachate treatment agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386926B1 (en) * 2000-07-26 2003-06-09 대한주택공사 Compact System of the Advanced Wastewater Treatment
CN103408189A (en) * 2013-07-30 2013-11-27 杭州天城环境发展有限公司 Method for treating GZBS garbage leachate
CN103408189B (en) * 2013-07-30 2015-07-15 杭州天城环境发展有限公司 Method for treating GZBS garbage leachate
CN104692594A (en) * 2015-03-03 2015-06-10 扬州大学 Treatment method for regenerated polyester production wastewater
CN105621799A (en) * 2016-01-12 2016-06-01 岑溪市华鸿污水处理有限公司 Fructus momordicae processing waste liquid treatment system and technique
CN105948411A (en) * 2016-06-29 2016-09-21 盐城工学院 Novel industrial wastewater treatment process
CN105948411B (en) * 2016-06-29 2019-02-01 盐城工学院 A kind of technique for treating industrial wastewater

Also Published As

Publication number Publication date
KR19980043482A (en) 1998-09-05

Similar Documents

Publication Publication Date Title
CN108946944A (en) The method that short-cut denitrification promotes the removal of waste water total nitrogen
KR100254701B1 (en) Treatment device for leachate containing high organic and ammonia nitrogen
CN111268872A (en) Pesticide wastewater treatment process and treatment device thereof
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
Subramaniam et al. Efficient biological nutrient removal in high strength wastewater using combined anaerobic-sequencing batch reactor treatment
KR100225694B1 (en) Solid waste landfill leachate treatment process
CN105712564A (en) Equipment for processing waste water through glyphosate production
KR20010025386A (en) Biological, pysical and chemical treatment method of waste water from livestock
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
CN102010100B (en) Technology and device for advanced treatment flow of industrially comprehensive wastewater
KR100192144B1 (en) Solid waste made land leachate treatment process
KR100814743B1 (en) Removal of nitrogen and phosphate using small sewage treatment system with an anaerobic, anoxic, aerobic combined biofilters
DE69729249D1 (en) wastewater treatment processes
CN212222737U (en) Pesticide effluent treatment plant
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
KR20000055318A (en) Nutrient removal system by using fixed biofilm
KR100340098B1 (en) An elevated disposal process for the leakage water of reclaimed land
JPS6222678B2 (en)
KR100235252B1 (en) Improved method for removing nitrogen of wastewater with abs type
KR0165170B1 (en) Elimination method of nitrogen from waste water containing acrylonitrile butadiene styrene(abs)
KR100474667B1 (en) Method for generating methane gas using anaerobic buried layer
KR100420301B1 (en) method and equipment for advanced wastewater-treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090709

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee