KR100222459B1 - Process for producing hydrochloromethanes - Google Patents

Process for producing hydrochloromethanes Download PDF

Info

Publication number
KR100222459B1
KR100222459B1 KR1019920703206A KR920703206A KR100222459B1 KR 100222459 B1 KR100222459 B1 KR 100222459B1 KR 1019920703206 A KR1019920703206 A KR 1019920703206A KR 920703206 A KR920703206 A KR 920703206A KR 100222459 B1 KR100222459 B1 KR 100222459B1
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
selectivity
carbon tetrachloride
chloroform
Prior art date
Application number
KR1019920703206A
Other languages
Korean (ko)
Other versions
KR930701369A (en
Inventor
신스께 모리까와
마사루 요시따께
신 다떼마쓰
Original Assignee
사또 기미히꼬
에이지 테크놀로지가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3119457A external-priority patent/JPH04327546A/en
Priority claimed from JP3352257A external-priority patent/JP3004115B2/en
Application filed by 사또 기미히꼬, 에이지 테크놀로지가부시키가이샤 filed Critical 사또 기미히꼬
Publication of KR930701369A publication Critical patent/KR930701369A/en
Application granted granted Critical
Publication of KR100222459B1 publication Critical patent/KR100222459B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • C07C19/04Chloroform

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 환원촉매의 존재하에 사염화탄소의 폴리클로로메탄류를 환원시켜 클로로포름등의 함수소 클로로메탄류를 고선택율 또한 고수율로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing hydrous chloromethanes such as chloroform in high selectivity and high yield by reducing polychloromethanes of carbon tetrachloride in the presence of a reducing catalyst.

본 발명에 있어서는 환원반응을 액상으로 하는 것이 중요하며, 이것에 의해 촉매를 불활성화시키는 중합물 등의 불순물의 부생을 효과적으로 억제하여 환원촉매의 고선택성 및 고활성을 충분히 발휘시킬수 있는 것이다.In the present invention, it is important to make the reduction reaction in the liquid phase, thereby effectively suppressing by-products of impurities such as a polymer which inactivates the catalyst, thereby sufficiently exhibiting high selectivity and high activity of the reduction catalyst.

환원촉매로서는 루테늄, 로듐, 팔라듐, 백금 등의 8족, 9족, 10족 원소로부터 선택되는 적어도 1종의 적합하게 채용되고, 또 이것들의 원소를 주성분으로 하고, 이것에 구리, 은, 금 등의 11족 원소를 적어도 1종 첨가한 촉매도 적합하게 채용될 수 있다.As the reduction catalyst, at least one kind selected from Group 8, Group 9 and Group 10 elements such as ruthenium, rhodium, palladium and platinum is suitably employed, and these elements are mainly composed of copper, silver, gold and the like. The catalyst which added at least 1 sort (s) of group 11 element of can also be employ | adopted suitably.

액상 환원 반응을 연속적으로 행할 경우에는 고정상 방식의 채용이 바람직하고, 특히 적하상 방식이 바람직하다.In the case of performing the liquid phase reduction reaction continuously, the use of the fixed bed method is preferable, and the dropping method is particularly preferable.

본 발명 방법은 지구환경보호의 입장에서 규제대상으로 되어있는 사염화탄소를 여러 가지의 불소계 화합물의 원료로서 유용한 클로로포름 등으로 전환하는 방법으로서도 가치가 높은 것이다.The method of the present invention is also highly valuable as a method of converting carbon tetrachloride, which is regulated from the standpoint of global environmental protection, into chloroform or the like useful as a raw material for various fluorine compounds.

Description

[발명의 명칭][Name of invention]

함수소 클로로메탄류의 제조방법Method for preparing water-containing chloromethanes

[발명의 상세한 설명]Detailed description of the invention

[산업상의 이용분야][Industrial use]

본 발명은 폴리클로로메탄류, 특히 지구환경보호의 입장에서 규제 대상으로 되고 있는 사염화탄소를 원료로 하여, 이것을 여러 가지의 불소계 화합물의 원료로서 유용한 클로로포름 등의 함수소 클로로 메탄류로 전환하는 방법에 관한 것이다.The present invention relates to a method for converting polychloromethanes, particularly carbon tetrachloride, which is regulated from the standpoint of global environmental protection, into hydrous chloromethanes such as chloroform, which are useful as raw materials for various fluorine compounds. will be.

[배경 기술]Background Technology

종래, 사염화탄소는 주로 각종 프레온류의 원료로서 이용되어 왔으나, 이들 프레온류는 원래 원료인 사염화탄소도 제조가 규제되기로 되어 있으므로, 이것들을 분해하거나 유용한 것으로 전환하는 기술이 널리 세계적으로 요구되고 있다.Conventionally, carbon tetrachloride has been mainly used as a raw material for various freons. However, since the production of carbon tetrachloride, which is a raw material, is regulated, the technique for decomposing these or converting them into useful ones is widely required worldwide.

한편, 사염화탄소중의 염소원자를 수소원자와 치환하므로써 얻어지는 클로로포름 등의 함수소클로로 메탄류는, 여러 가지의 화학제품의 원료로서 유용하다. 따라서 사염화탄소들의 폴리클로로 메탄류에 효율적으로 수소를 도입하여 함수소클로로 메탄류로 전환시키는 기술개발이 급속히 요구되고 있다.On the other hand, hydrous chloromethanes such as chloroform obtained by substituting a chlorine atom in carbon tetrachloride with a hydrogen atom are useful as raw materials for various chemical products. Therefore, there is a rapid demand for the development of technology to efficiently convert hydrogen into polychloromethanes of carbon tetrachloride and convert them into hydrous chloromethanes.

사염화탄소에 수소를 도입하는 방법으로서는 여러 가지의 방법이 알려져 있다. 프로톤성 용매의 존재하에 전해환원하는 방법은 반응속도가 느리다는 등의 결점을 가지므로 고업적으로는 채용하기 어렵다.Various methods are known as a method of introducing hydrogen into carbon tetrachloride. The method of electrolytic reduction in the presence of a protic solvent has disadvantages such as a slow reaction rate, so it is difficult to employ it industrially.

한편, 일본국 특개평 3-133939 호 공보 등의 환원촉매를 사용하여 수소환원하는 방법은, 반응속도가 빠르고, 또 부생물인 염화수소도 이용할 수가 있어 공업적인 이용에 유리하다고 생각된다. 그러나 특개평 3-133939호 공보의 방법은 철이나 백금 등의 일반적인 촉매를 사용하는 기상 수고 환원 방법이며, 극히 짧은시간중에 촉매활서이 저하한다고 판명되었다. 또 사염화탄소의 기상 수소 환원 방법에서는 예를 들면, 헥사클로로에탄과 같은 이량화물이나 특히 고온에 있어서, 탄소수 5~7개의 중합물이 부생되는등, 반드시 목적 생성물의 수율이 높지 않은 등의 문제점을 갖고 있었다.On the other hand, the method of hydrogen reduction using a reducing catalyst such as Japanese Patent Application Laid-open No. 3-133939 has a high reaction rate and can also use hydrogen chloride as a by-product, which is considered to be advantageous for industrial use. However, the method disclosed in Japanese Patent Laid-Open No. 3-133939 is a gas phase effort reduction method using a general catalyst such as iron or platinum, and it has been found that the catalyst activity decreases in a very short time. In addition, in the gas phase hydrogen reduction method of carbon tetrachloride, for example, dimers such as hexachloroethane and, in particular, high temperature, by-products of 5 to 7 carbon atoms are by-produced, the yield of the desired product is not necessarily high. .

본 발명자는 상기의 기상 수소 환원 방법에 관하여 여러 가지로 검토하였다. 먼저 불활성화된 촉매상의 유기 성분을 분석한 결과, 대부분이 종합물이라는 것이 판명되었다. 또 투과형 전자현미경에 의한 관찰 및 X선 회절에 의한 분석으로부터 촉매 입경은 미사용시와 거의 동일하였다. 그 때문에 중합물의 퇴적이 주된 불활성 원인이라고 추정되었다.The present inventors studied variously about the said gaseous-phase hydrogen reduction method. First, the organic components on the deactivated catalyst were analyzed and found to be mostly synthetic. In addition, the particle size of the catalyst was almost the same as that of the non-use when observed by a transmission electron microscope and analyzed by X-ray diffraction. Therefore, it was estimated that deposition of a polymer is a main inert cause.

[발명의 개시][Initiation of invention]

본 발명자들은 촉매의 급속한 불활성화를 억제하는 반응 방법에 관하여 예의 검토를 하였다. 그 결과, 환원촉매의 존재하에서 폴리클로로 메탄류를 액상 상태에서 수소로 환원하는 방법을 채용하므로써 촉매의 단기적 열화를 없애고, 또한 고수율로 함수로 클로로메탄류가 얻어진다는 것을 발견하였다. 본 발명은 상기 지견에 의거하여 완성된 것이며, 환원촉매의 존재하에, 액상으로 폴리클로로 메탄류를 수소에 의해 환원하는 것을 특징으로 하는 함수소 클로로 메탄류의 제조방법을 제공하는 것이다. 이하에서, 본 발명을 실시예와 함께 상세히 설명한다.The present inventors earnestly examined about the reaction method which suppresses rapid inactivation of a catalyst. As a result, it has been found that short-term deterioration of the catalyst is eliminated by adopting a method of reducing polychloromethanes to hydrogen in a liquid state in the presence of a reducing catalyst, and chloromethanes are obtained as a function with high yield. The present invention has been completed based on the above findings, and provides a method for producing hydrous chloromethane, wherein polychloromethane is reduced by hydrogen in the liquid phase in the presence of a reducing catalyst. Hereinafter, the present invention will be described in detail with examples.

폴리클로로메탄류란, 사염화탄소, 클로로포름, 염화메틸렌이다. 본 발명의 방법에 의하면, 사염화탄소의 환원에 의해 클로로포름, 염화메틸렌, 염화메틸이 얻어지고, 클로로포름의 환원에 의해 염화메틸렌, 염화메틸이 얻어지며, 환원에 의해 염화메틸이 얻어진다. 폴리클로로메탄류로서는 규제대상인 사염화탄소가 바람직하다.Polychloromethanes are carbon tetrachloride, chloroform and methylene chloride. According to the method of the present invention, chloroform, methylene chloride and methyl chloride are obtained by reduction of carbon tetrachloride, methylene chloride and methyl chloride are obtained by reduction of chloroform, and methyl chloride is obtained by reduction. As polychloromethane, carbon tetrachloride which is regulated is preferable.

사염화탄소는 탄소원자에 극성이 큰 염소원자가 4개 결합한 분자이며, 할로겐화메탄 중에서는 극히 큰 흡착 에너지를 갖고 있다. 따라서 촉매상에서의 체류시간은 길고, 촉매 작용을 받기쉬운 성질을 갖고 있다. 그 때문에 8족, 9족 및 10족으로 부터 선택되는 환원활성이 높은 원소로 이루어진 촉매를 사용한 경우, 올레핀의 생성, 중합물 생성이 현저하게 되기 때문에 극히 짧은 시간에 불활성화하는 경향을 나타낸다. 특히 기상반응법에 있어서는 기본적으로 반응온도가 높으므로 올레핀류의 생성중합이 일어나기 쉽고, 또 생성된 중합물은 일반적으로 비점이 높으므로 촉매 표면으로부터 제거하기 어렵다는 것이 고려된다. 이것이 급속한 불활성화의 원인이라고 생각된다.Carbon tetrachloride is a molecule in which four polar chlorine atoms are bonded to a carbon atom, and has very high adsorption energy in halogenated methane. Therefore, the residence time on the catalyst is long, and has the property of being prone to catalysis. Therefore, when a catalyst composed of elements having a high reducing activity selected from Groups 8, 9 and 10 is used, the formation of olefins and the formation of polymers are remarkable, and thus tends to be inactivated in a very short time. Especially in the gas phase reaction method, since the reaction temperature is basically high, olefins are produced. It is contemplated that polymerization is liable to occur and that the resulting polymer is generally high in boiling point and therefore difficult to remove from the catalyst surface. This is thought to be the cause of the rapid deactivation.

한편, 액상으로 반응을 실시하는 것은 반응 시스템이 복잡하게되기 쉬우나, 반응 용매의 사용등에 의해 사염화탄소의 흡착을 제어하기 쉽다는 것, 부생중합물에 관해서도 그다지 중합도가 크지 않으며 촉매표면으로부터 용해 제거하기 쉽고 따라서 활성점의 감소를 억제할 수 있는 등의 이점을 갖는다고 생각된다. 그래서 반응조건 및 촉매의 최적화에 관하여 검토를 진행시킨 결과, 촉매의 급소한 불활성화를 수반함이 없고, 고선택적으로 클로로포름, 염화메틸렌, 염화메틸 등의 함수소 클로로메탄류가 얻어지는 것을 발견한 것이다.On the other hand, the reaction in the liquid phase tends to complicate the reaction system, but it is easy to control the adsorption of carbon tetrachloride by the use of a reaction solvent, and the degree of polymerization is not so great in the by-product polymer and it is easy to dissolve and remove from the catalyst surface. It is thought to have the advantage of being able to suppress the reduction of the active point. Therefore, as a result of studying the optimization of the reaction conditions and the catalyst, it was found that water-containing chloromethanes such as chloroform, methylene chloride, methyl chloride and the like were obtained with high selectiveness without the sudden deactivation of the catalyst. .

환원 촉매로서는 철, 루테늄, 오스뮴의 8족 원소, 코발트, 로듐, 이리듐의 9족 원소 및 니켈, 팔라듐, 백금의 10족 원소로부터 선택되는 적어도 1종의 원소를 주성분으로 하는 촉매가 바람직하다. 이러한 8족, 9족, 10족 원소를 주성분으로 하는 촉매는 이것들의 원소만으로 이루어지는 촉매라도 좋고 이것들의 원소에 대하여 8~10족 원소 이외의 금속원소를 추가로 첨가하여 병용한 촉매라도 좋다.As the reduction catalyst, a catalyst having a main component of at least one element selected from Group 8 elements of iron, ruthenium and osmium, Group 9 elements of cobalt, rhodium and iridium, and Group 10 elements of nickel, palladium and platinum is preferable. The catalyst which has such a group 8, 9, and 10 element as a main component may be a catalyst which consists only of these elements, or the catalyst which added and used together metal elements other than group 8-10 elements with these elements may be used together.

주성분으로서의 8~10족 원소중에는 팔라듐, 루테늄, 백금, 로듐등의 백금족 원소가 고활성, 고내구성을 얻기 쉬워 특히 바람직하다. 또 첨가 성분으로서는 구리, 은, 금등의 11족원소가 예시될 수 있다. 주성분원소 및 첨가성분 원소 모두 1종만으로 사용하여도 좋고, 2종 이상을 병용하여도 좋다. 첨가성분을 병용하는 경우에는 그의 첨가량은 0.01 ~ 50 중량%, 바람직하게는 0.1 ~ 50중량%, 특히 1 ~ 50중량%가 바람직하다.Among the Group 8-10 elements as the main component, platinum group elements such as palladium, ruthenium, platinum, and rhodium are particularly preferable because of high activity and high durability. Moreover, group 11 elements, such as copper, silver, and gold, can be illustrated as an addition component. Both the main component element and the additive component element may be used in one kind, or two or more kinds may be used in combination. When using an additive component together, the addition amount thereof is 0.01-50 weight%, Preferably it is 0.1-50 weight%, Especially 1-50 weight% is preferable.

이것들의 촉매 금속은 그대로, 또는 담체에 담지시킨 것의 어느것이라도 사용가능하다. 담체로서는 활성탄, 알루미나, 지르코니아, 실리카등 통상 사용되는 것이 사용가능하다. 또한 담지량에 관해서는 0.01 ~ 20 중량 %정도, 바람직하게는 0.5 ~ 5 중량 %정도가 촉매의 담지효율, 반응활성, 촉매성분의 분산등의 관점에서 적합하다.These catalyst metals can be used as they are or supported on a carrier. As the carrier, those commonly used such as activated carbon, alumina, zirconia, silica and the like can be used. In terms of the supported amount, about 0.01 to 20% by weight, and preferably about 0.5 to 5% by weight, are suitable from the viewpoint of supporting efficiency of the catalyst, reaction activity, dispersion of catalyst components, and the like.

촉매성분의 담지방법등에 관해서도 통상 채용되는 범위에서 적당히 선정될 수 있다. 예컨대, 상기 원소의 단순염 또는 착염 등을 사용하여 함침법, 이온교환법 등에 의해 담지하는 방법이 적용가능하다. 또 촉매의 사용에 있어서는 반드시 촉매의 환원처리를 할 필요는 없으나 미리 수소환원을 시행하여두는 것이 안정된 특성을 얻는데 있어 바람직하다. 담지한 촉매성분의 환원법으로서는 수소, 히드라진, 포름알데히드, 수소화붕소나트륨등에 의해 액상으로 환원하는 방법, 수소에 의해 기상으로 환원하는 방법 등이 적용될 수 있다.The method of supporting the catalyst component can also be appropriately selected within a range generally employed. For example, the method of supporting by the impregnation method, the ion exchange method, etc. using the simple salt or complex salt of the said element is applicable. In the use of the catalyst, it is not necessary to necessarily reduce the catalyst, but it is preferable to carry out hydrogen reduction in advance to obtain stable characteristics. As a method of reducing the supported catalyst component, a method of reducing to a liquid phase by hydrogen, hydrazine, formaldehyde, sodium borohydride, or the like, a method of reducing to a gas phase by hydrogen, or the like may be applied.

액상 반응 프로세스로서는 고정상, 현탁상, 어느것이라도 채용가능하다. 반응용맹의 사용은 생성물비율의 제어, 반응활성의 안정화 등에 유효하며, 적당히 행할 수가 있다. 예컨대 메탄올, 에탄올 등의 알콜류, 트리에틸아민등의 아민류, 아세트산 등의 카르복실산류, 아세론 등의 케톤류를 반응용매로서 사용할 수 있다.As the liquid phase reaction process, any of a fixed phase and a suspended phase can be employed. The use of reaction solvent is effective for controlling the product ratio, stabilizing the reaction activity, and the like. For example, alcohols such as methanol and ethanol, amines such as triethylamine, carboxylic acids such as acetic acid and ketones such as aceron can be used as the reaction solvent.

본 발명에 있어서의 액상 환원 반응을 연속적으로 하는 경우에는 환원 촉매의 고정상에 원료액을 접촉시키는 액상 고정상 방식을 채용하는 것이 바람직하다. 특히 원료액을 다운 플로우로 공급하는 적하상 방식에 있어서는 수소의 액상 확산거리가 짧고, 촉매 표면에 있어서의 수소농도의 저하를 억제하기 쉽기 때문에 반응속도, 촉매 내구성을 향상시키는데 있어서 유리하다. 액상 고정상 방식에 있어서는 촉매금속을 담체에 담지시킨 촉매를 사용하는 것이 바람직하다. 담체로서는 액의 유통에 의해 분화되지 않을 정도의 강도를 갖는 것이 채용된다. 담체의 형상은 특히 원료액을 업플로우로 유통시키는 경우에는 마모 손실을 받기 어려운 펠릿상의 것이 적합하나, 적하상방식에서는 파쇄탄등도 사용가능하며, 반드시 한정하지 않는다. 촉매의 크기에 관해서도 특히 한정하지 않으나, 통상은 지름이 0.5 ~ 20mm 정도의 것이 적당하다.In the case of continuously performing the liquid phase reduction reaction in the present invention, it is preferable to employ a liquid phase stationary phase system in which the raw material liquid is brought into contact with the stationary phase of the reduction catalyst. Particularly, in the dropwise phase system in which the raw material liquid is supplied in the downflow, the liquid phase diffusion distance of hydrogen is short and it is easy to suppress the decrease in the hydrogen concentration on the surface of the catalyst, which is advantageous in improving the reaction rate and the catalyst durability. In the liquid stationary bed system, it is preferable to use a catalyst having a catalyst metal supported on a carrier. As the carrier, one having a strength that is not differentiated by the circulation of the liquid is employed. The shape of the carrier is particularly suitable for pellets, which are hard to suffer from abrasion loss when the raw material liquid is circulated in an upflow. However, in the dropwise loading method, crushed coal or the like can be used, but is not necessarily limited. The size of the catalyst is not particularly limited, but is usually about 0.5 to 20 mm in diameter.

액상 환원 반응의 온도는 0~ 200, 바람직하기는 50~ 150로 하는 것이 적당하다. 수소와 폴리클로로 메탄류의 반응 몰비는 특히 한정하지 않는다. 수소를 많이 사용하면 반응율이 상승하나, 보다 탈염소 수소화가 진행되는 것이 생성 비율이 많아진다. 폴리클로로메탄류 1몰에 대하여 수소를 대략 0.1 ~ 10몰정도로 사용하는 것이 바람직하다. 과잉의 수소에 관해서는 이것을 순환하므로써 수소의 이용효율을 높일 수 있다.The temperature of the liquid phase reduction reaction is 0 To 200 , Preferably 50 To 150 It is suitable to do. The reaction molar ratio of hydrogen and polychloromethanes is not particularly limited. When the hydrogen is used a lot, the reaction rate increases, but the dechlorination hydrogenation proceeds more and the production rate increases. It is preferable to use about 0.1-10 mol of hydrogen with respect to 1 mol of polychloromethanes. Excess hydrogen can be circulated to increase the utilization efficiency of hydrogen.

또 반응 압력은 상압 이상이 적당하고, 압력을 올릴수록 반응속도가 증가한다. 수 kg/cm2 G ~ 10kg/cm2 G 정도까지의 가압이 채용될 수 있다. 너무 고압에서는 반응속도가 증가하여도 장치비용의 상승을 수반하는 등의 난점이 인정된다.In addition, the reaction pressure is more than normal pressure, the reaction rate increases as the pressure increases. Can kg / cm 2 G ~ 10kg / cm 2 Pressurization up to about G may be employed. At too high a pressure, even if the reaction rate increases, difficulties such as an increase in the device cost are recognized.

[발명을 실시하기 위한 최적의 형태]Best Mode for Carrying Out the Invention

[실시예 1]Example 1

내용적 2의 오토클레이브에 1의 사염화탄소를 넣고 활성탄 담지금속촉매 (담지량 : 2 중량 %, 엔켐캐트사제조)를 10g 가하였다. 질소를 봉입하고 110까지 승온한후, 수소의 공급을 개시하였다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분, 어느 것이나 가스크로마토그래피를 사용하여 분석하였다. 사염화탄소 1몰에 대하여 수소를 3몰 연속적으로 공급하여 반응을 계속하였다. 반응개시후, 1,000시간에 있어서의 사염화탄소 반응율은 91%이며, 클로로포름 (선택율 : 70%), 퍼클로로에틸렌 (선택율 : 18%)등의 생성이 확인되었다.Inner capacity 2 In the autoclave of 1 Activated carbon supported metal catalyst with carbon tetrachloride (supporting amount: 2% by weight, yen this 10 g of Chemcat Co., Ltd. was added. Encapsulated Nitrogen 110 After the temperature was raised to, the hydrogen supply was started. Pressure is 5kg / cm 2 G. As for the product, all of the gaseous components and liquid components were analyzed using gas chromatography. The reaction was continued by supplying 3 mol of hydrogen continuously with respect to 1 mol of carbon tetrachloride. After the start of the reaction, the carbon tetrachloride reaction rate was 91% at 1,000 hours, and formation of chloroform (selectivity: 70%), perchloroethylene (selectivity: 18%) and the like were confirmed.

[실시예 2]Example 2

내용적 2의 오토클레이브에 1의 사염화탄소를 넣고 알루미나 담지 팔라듐 촉매 (담지량 : 2 중량 %, 엔켐캐트사제조)를 50g 가하였다. 질소를 봉입한후, 115까지 승온한다음 수소의 공급을 개시하였다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분, 어느 것이나 가스크로마토그래피를 사용하여 분석하였다. 사염화탄소 1몰에 대하여 수소를 4몰 연속적으로 공급하여 반응을 계속하였다. 반응개시후, 1000시간에 있어서의 사염화탄소 반응율은 92%이며, 클로로포름 (선택율 : 60%), 염화메틸렌 (선택율 : 9%), 퍼클로로에틸렌 (선택율 : 17%) 등의 생성이 확인되었다.Inner capacity 2 In the autoclave of 1 Palladium-supported palladium catalyst with carbon tetrachloride (supporting amount: 2% by weight, yen this 50 g of Chemcat Co., Ltd. was added. After filling with nitrogen, 115 The temperature was raised to and the hydrogen supply was started. Pressure is 5kg / cm 2 G. As for the product, all of the gaseous components and liquid components were analyzed using gas chromatography. The reaction was continued by supplying 4 mol of hydrogen continuously with respect to 1 mol of carbon tetrachloride. After the start of the reaction, the reaction rate of carbon tetrachloride in 1000 hours was 92%, and formation of chloroform (selectivity: 60%), methylene chloride (selectivity: 9%), perchloroethylene (selectivity: 17%) and the like were confirmed.

[실시예 3]Example 3

내용적 2의 오토클레이브에 1의 사염화탄소를 넣고 지르코니아 담지 로듐 촉매 (담지량 : 2 중량 %, 엔켐캐트사제조)를 50% 가하였다. 질소를 봉입한후, 110까지 승온한다음 수소의 공급을 개시하였다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분, 어느 것이나 가스크로마토그래피를 사용하여 분석하였다. 사염화탄소 1몰에 대하여 수소를 3몰 연속적으로 공급하여 반응을 계속하였다. 반응개시후, 1000시간에 있어서의 사염화탄소 반응율은 93%이며, 클로로포름 (선택율 : 58%), 염화메틸렌 (선택율 : 8%), 염화메틸 (선택율 : 7%), 퍼클로로에틸렌 (선택율 : 16%) 등의 생성이 확인되었다.Inner capacity 2 In the autoclave of 1 Zirconia-supported rhodium catalyst with carbon tetrachloride (supporting amount: 2% by weight, yen this Chemcat Co.) was added 50%. After filling with nitrogen, 110 The temperature was raised to and the hydrogen supply was started. Pressure is 5kg / cm 2 G. As for the product, all of the gaseous components and liquid components were analyzed using gas chromatography. The reaction was continued by supplying 3 mol of hydrogen continuously with respect to 1 mol of carbon tetrachloride. The reaction rate of carbon tetrachloride at 1000 hours after the start of the reaction was 93%, chloroform (selectivity: 58%), methylene chloride (selectivity: 8%), methyl chloride (selectivity: 7%), perchloroethylene (selectivity: 16% ) Was confirmed.

[실시예 4]Example 4

내용적 2의 오토클레이브에 1의 사염화탄소를 넣고 활성탄담지 루테늄촉매 (담지량 : 5 중량 %, 엔켐캐트사제조)를 50g 가하였다. 질소를 봉입한후, 120까지 승온한다음 수소의 공급을 개시하였다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분, 어느 것이나 가스크로마토그래피를 사용하여 분석하였다. 사염화탄소 1몰에 대하여 수소를 5몰 연속적으로 공급하여 반응을 계속하였다. 반응개시후, 1000시간에 있어서의 사염화탄소 반응율은 89%이며, 클로로포름 (선택율 : 58%), 염화메틸렌 (선택율 : 9%), 염화메틸 (선택율 : 14%), 퍼클로로에틸렌 (선택율 : 18%) 등의 생성이 확인되었다.Inner capacity 2 In the autoclave of 1 Of carbon tetrachloride and activated carbon supported ruthenium catalyst (supporting amount: 5% by weight, yen this 50 g of Chemcat Co., Ltd. was added. 120 after filling with nitrogen The temperature was raised to and the hydrogen supply was started. Pressure is 5kg / cm 2 G. As for the product, all of the gaseous components and liquid components were analyzed using gas chromatography. The reaction was continued by supplying 5 mol of hydrogen continuously with respect to 1 mol of carbon tetrachloride. The reaction rate of carbon tetrachloride at 1000 hours after the start of the reaction was 89%, chloroform (selectivity: 58%), methylene chloride (selectivity: 9%), methyl chloride (selectivity: 14%), perchloroethylene (selectivity: 18% ) Was confirmed.

[비교예 1]Comparative Example 1

활성탄담지 백금 촉매 (담지량 : 0.5 중량 %, 엔켐캐트사제조) 100g을 내경 0.5인치의 인코넬제 반응관에 넣고, 160로 설정한 열매체중에 침지하였다. 미리 질소로, 계속하여 수소로 처리한후, 사염화탄소 1몰에 대하여 수소를 2몰의 비율로 도입하여 기상으로 반응을 실시하였다. 접촉시간의 7초, 반응압력은 상압이였다. 반응개시후 2시간, 20시간에서의 사염화탄소의 반응율은 각각 약 90 %, 약 30 % 이며, 그 이후는 시간이 경과함에 따라 불활성화하였다. 생성물로서는 클로로포름, 염화메틸렌, 염화메틸, 메탄외에 퍼클로로에틸렌 등의 탄소수 2 ~ 5개의 염소화된 알칸류, 알켄류가 인정되었다.Activated carbon supported platinum catalyst (support amount: 0.5% by weight, yen this 100g of Chemcat Co., Ltd. was put in an Inconel reaction tube with an inner diameter of 0.5 inch, and 160 It was immersed in the heat medium set as. After treating with nitrogen in advance and hydrogen in advance, hydrogen was introduced at a rate of 2 mol to 1 mol of carbon tetrachloride, and the reaction was carried out in the gas phase. At 7 seconds of contact time, the reaction pressure was atmospheric pressure. The reaction rates of carbon tetrachloride at 2 hours and 20 hours after the start of the reaction were about 90% and about 30%, respectively. After that, the reaction rate was inactivated as time passed. As the product, chloroform, methylene chloride, methyl chloride, methane, and other chlorinated alkanes and alkenes having 2 to 5 carbon atoms such as perchloroethylene were recognized.

[실시예 5]Example 5

지름 3mm의 성형탄 담지 백금 촉매 (담지량 : 2 중량 %, 엔켐캐트사제조) 4를 내경 60mm 원통상 반응기에 충전하였다. 촉매층을 사염화탄소로 충전한후, 산소를 봉입하였다. 80까지 승온한후, 수소의 공급을 개시하였다. 사염화탄소 1몰에 대하여 수소를 3몰, 연속적으로 업플로우로 공급하여 반응을 계속하였다. 생성되는 클로로포름 등의 기체성분은 기액분리기에 의해 연속적으로 꺼내고, 미반응의 사염화탄소 등의 액체 성분은 반응기에 되돌려서 순환시켰다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분 모두 가스크로마토그래피를 사용하여 분석하였다. 반응개시후, 100시간에 있어서의 사염화탄소의 원패스에서의 반응율은 91%이며, 클로로포름 (선택율 : 90%), 퍼클로로에틸렌 (선택율 : 5%) 등의 생성이 확인되었다.Platinum catalyst supported on coal briquettes with a diameter of 3mm (supporting amount: 2% by weight, yen this Chemcat Co., Ltd.) 4 Was charged into a 60 mm cylindrical reactor. After the catalyst layer was filled with carbon tetrachloride, oxygen was enclosed. 80 After the temperature was raised to, the hydrogen supply was started. The reaction was continued by supplying 3 mol of hydrogen per continuously and upflow with respect to 1 mol of carbon tetrachloride. The generated gas components such as chloroform were continuously taken out by the gas-liquid separator, and the liquid components such as unreacted carbon tetrachloride were returned to the reactor and circulated. Pressure is 5kg / cm 2 G. As for the product, both gaseous and liquid components were analyzed using gas chromatography. After the start of the reaction, the reaction rate in one pass of carbon tetrachloride in 100 hours was 91%, and formation of chloroform (selectivity: 90%), perchloroethylene (selectivity: 5%) and the like were confirmed.

[실시예 6]Example 6

촉매로서 지름 5mm의 성형탄 담지 팔라듐 촉매 (담지량 : 2 중량 %, 엔켐캐트사제조)를 사용한 것 이외는 실시예 5와 동일하게하여 실험을하고, 생성물의 분석을 하였다. 반응개시후, 100시간에 있어서의 사염화탄소의 원패스에서의 반응율은 92%이며, 클로로포름 (선택율 : 85%), 퍼클로로에틸렌 (선택율 : 10%), 메탄 (5%) 등의 생성이 확인되었다.Palladium catalyst supported on coal briquettes having a diameter of 5 mm as a catalyst (supporting amount: 2% by weight, yen this The same procedure as in Example 5 was conducted except that Chemcat Co., Ltd. was used, and the product was analyzed. After the start of the reaction, the reaction rate in one pass of carbon tetrachloride in 100 hours was 92%, and formation of chloroform (selectivity: 85%), perchloroethylene (selectivity: 10%), methane (5%) and the like were confirmed. .

[실시예 7]Example 7

지름 1mm의 성형탄 담지 백금 촉매 (담지량 : 2 중량 %, 엔켐캐트사제조) 1를 내경 30mm 원통형 반응기에 충전하였다. 질소를 충전한후 80까지 승온하였다. 촉매를 수소로 충분히 환원한 후, 수소와 사염화탄소를 몰비 5 : 1로 다운플로우로 공급하였다. 생성물에 관해서는 기상성분, 액상성분 모두 가스크로마토그래피를 사용하여 분석하였다. 반응개시후, 100시간에 있어서의 사염화탄소의 반응율은 94%이며, 클로로포름 (선택율 : 90%), 퍼클로로에틸렌 (선택율 : 5%) 등의 생성이 확인되었다.Platinum catalyst supported by coal briquettes with a diameter of 1mm (supporting amount: 2% by weight, yen this Chemcat company) 1 Was charged into an internal diameter 30 mm cylindrical reactor. 80 after filling with nitrogen It heated up to. After the catalyst was sufficiently reduced with hydrogen, hydrogen and carbon tetrachloride were fed downflow at a molar ratio of 5: 1. As for the product, both gaseous and liquid components were analyzed using gas chromatography. After the start of the reaction, the reaction rate of carbon tetrachloride in 100 hours was 94%, and formation of chloroform (selectivity: 90%), perchloroethylene (selectivity: 5%) and the like were confirmed.

다음에 첨가 성분 원소를 병용한 환원 촉매의 조제예를 나타내고, 이것들의 환원촉매를 사용한 액상 환원 반응의 구체예를 나타냈다.Next, the preparation example of the reduction catalyst which used the addition component element was shown, and the specific example of the liquid-phase reduction reaction using these reduction catalysts was shown.

[조제예 1]Preparation Example 1

담체로서의 야자껍질 활성탄 분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화루테늄과 염화금산을 각각 금속성분의 중량비가 9 : 1의 비율로 담체중량의 5 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 히드라진의 수용액으로 환원시킨후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Coconut activated carbon powder as carrier (average particle size 10-20 100 g of ion-exchanged water 1 Was put in. Ruthenium chloride and gold acid were each dissolved in ion-exchanged water in an amount equivalent to 5% of the weight of the carrier at a weight ratio of 9: 1. Reduced with an aqueous solution of hydrazine, washed with ion-exchanged water and washed with 110 Dried over.

[조제예 2]Preparation Example 2

담체로서의 아세틸렌블랙 분말 (평균 입경 1)의 100g을 이온교환수 1에 투입하였다. 염화로듐과 염화금산을 각각 금속성분의 중량비가 95 : 5의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 수소화붕소나트륨의 수용액으로 환원시킨후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Acetylene black powder as carrier (average particle size 1 100 g of ion-exchanged water 1 Was put in. Rhodium chloride and gold acid were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 95: 5 by weight of the metal component. Reduced with an aqueous solution of sodium borohydride, washed with ion-exchanged water and washed with 110 Dried over.

[조제예 3]Preparation Example 3

담체로서의 피치계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화팔라듐과 염화금산을 각각 금속성분의 중량비가 8 : 2의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 히드라진의 수용액으로 환원시킨후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Pitch-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Palladium chloride and gold acid were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a weight ratio of 8: 2. Reduced with an aqueous solution of hydrazine, washed with ion-exchanged water and washed with 110 Dried over.

[조제예 4]Preparation Example 4

담체로서의 피치계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화니켈, 염화백금산 및 염화금산을 각각 금속성분의 중량비가 5:4:1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 수소화붕소나트륨의 수용액으로 환원시킨후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Pitch-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Nickel chloride, chloroplatinic acid and gold chloride were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 5: 4: 1 by weight of the metal component. Reduced with an aqueous solution of sodium borohydride, washed with ion-exchanged water and washed with 110 Dried over.

[조제예 5]Preparation Example 5

담체로서의 목질계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화백금산 및 염화금산을 각각 금속성분의 중량비가 9 : 1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 수소화붕소나트륨의 수용액으로 환원시킨후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Wood-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Platinum chloride and chlorochloric acid were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 9: 1 by weight of the metal component. Reduced with an aqueous solution of sodium borohydride, washed with ion-exchanged water and washed with 110 Dried over.

[조제예 6]Preparation Example 6

담체로서의 야자 껍질 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화루테늄과 디아민은의 질산염을 각각 금속성분의 중량비가 85 : 15 의 비율로 담체중량의 5 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한후, 수소화붕소나트륨의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Palm husk activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. The nitrates of ruthenium chloride and diamine were dissolved in ion-exchanged water in an amount equivalent to 5% of the weight of the carrier at a ratio of 85:15 by weight of the metal components, respectively. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of sodium borohydride. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 7]Preparation Example 7

담체로서의 야자 껍질 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화로듐과 디아민은의 질산염을 각각 금속성분의 중량비가 9 : 1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 히드라진의 수용액으로 환원시킨 후, 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Palm husk activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Nitrate salts of rhodium chloride and diamine were dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier, respectively, at a weight ratio of 9: 1 of the metal component. After reducing to an aqueous solution of hydrazine, washing with ion-exchanged water and washing with 110 Dried over.

[조제예 8]Preparation Example 8

담체로서의 피치계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화팔라듐과 디아민은 각각 금속성분의 중량비가 95 : 5 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로 한 후, 히드라진의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Pitch-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Palladium chloride and diamine were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 95: 5 by weight of the metal component. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of hydrazine. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 9]Preparation Example 9

담체로서의 야자껍질 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화백금산과 디아민은을 각각 금속성분의 중량비가 9 : 1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한 후, 히드라진의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Coconut activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Platinum chloride and diamine were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a weight ratio of 9: 1 of the metal component, respectively. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of hydrazine. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 10]Preparation Example 10

담체로서의 야자 껍질 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화루테늄과 염화구리를 각각 금속성분의 중량비가 95 : 5 의 비율로 담체중량의 5 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한 후, 수소화붕소나트륨의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Palm husk activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Ruthenium chloride and copper chloride were dissolved in ion-exchanged water in an amount equivalent to 5% of the weight of the carrier at a ratio of 95: 5 by weight of the metal component, respectively. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of sodium borohydride. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 11]Preparation Example 11

담체로서의 목질계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화로듐과 염화구리를 각각 금속성분의 중량비가 9 : 1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한 후, 히드라진의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Wood-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Rhodium chloride and copper chloride were dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 9: 1 by weight of the metal components, respectively. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of hydrazine. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 12]Preparation Example 12

담체로서의 피치계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화팔라듐과 염화구리를 각각 금속성분의 중량비가 95 : 5 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한 후, 히드라진의 수용액에 의해 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Pitch-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Palladium chloride and copper chloride were each dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 95: 5 by weight of the metal component. After adding ammonia water to make it alkaline, it was reduced by aqueous solution of hydrazine. Washed with ion-exchanged water and washed 110 Dried over.

[조제예 13]Preparation Example 13

담체로서의 야자계 활성탄분말 (평균 입경 10 ~ 20)의 100g을 이온교환수 1에 투입하였다. 염화백금산과 염화구리를 각각 금속성분의 중량비가 9 : 1 의 비율로 담체중량의 2 % 에 상당하는 양으로 이온 교환수에 용해시켰다. 암모니아수를 가하여 알칼리성으로한 후, 히드라진의 수용액으로 환원시켰다. 이온교환수를 사용하여 수세하고 110에서 건조시켰다.Palm-based activated carbon powder as carrier (average particle size 10 ~ 20 100 g of ion-exchanged water 1 Was put in. Platinum chloride and copper chloride were dissolved in ion-exchanged water in an amount equivalent to 2% of the weight of the carrier at a ratio of 9: 1 by weight of the metal components, respectively. After adding ammonia water to make it alkaline, it was reduced to an aqueous solution of hydrazine. Washed with ion-exchanged water and washed 110 Dried over.

[실시예 8]Example 8

내용적 2의 오토클레이브에 1l의 사염화탄소를 넣고, 조제예1에 의해 조제한 환원촉매 50g을 가하였다. 질소를 봉입하고, 80까지 승온시킨후, 수소의 공급을 개시하였다. 압력은 5kg/cm2 G였다. 생성물에 관해서는 기상성분, 액상성분, 어느 것이나 가스크로마토그래피를 사용하여 분석하였다. 사염화탄소 1몰에 대하여 수소를 3몰의 비율로 연속적으로 공급하여 반응을 계속시켰다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 86%이며, 클로로포름 (선택율 : 95%), 헥사클로로에탄 (선택율 : 5%) 등의 생성이 확인되었다.Inner capacity 2 1 liter of carbon tetrachloride was put into the autoclave, and 50 g of reduction catalysts prepared in Preparation Example 1 were added. Nitrogen sealed, 80 After the temperature was raised to, the hydrogen supply was started. Pressure is 5kg / cm 2 G. As for the product, all of the gaseous components and liquid components were analyzed using gas chromatography. The reaction was continued by continuously supplying hydrogen at a rate of 3 mol to 1 mol of carbon tetrachloride. After the start of the reaction, the carbon tetrachloride reaction rate at 100 hours was 86%, and formation of chloroform (selectivity: 95%), hexachloroethane (selectivity: 5%) and the like were confirmed.

[실시예 9]Example 9

조제예 2에 의한 환원촉매를 사용하여, 반응온도를 110로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 78%이며, 클로로포름 (선택율 : 85%), 헥사클로로에탄 (선택율 : 5%), 염화메틸렌 (선택율 : 8%)등의 생성이 확인되었다.The reaction temperature was 110 using the reduction catalyst according to Preparation Example 2. The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. The reaction rate of carbon tetrachloride in 100 hours after the start of the reaction was 78%, and formation of chloroform (selectivity: 85%), hexachloroethane (selectivity: 5%), methylene chloride (selectivity: 8%) and the like were confirmed.

[실시예 10]Example 10

조제예 3에 의한 환원촉매를 사용하여, 반응온도를 100로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 85%이며, 클로로포름 (선택율 : 90%), 헥사클로로에탄 (선택율 : 5%), 펜타클로로에탄 (선택율 : 2%), 테트라클로로에틸렌 (선택율 : 2%)등의 생성이 확인되었다.The reaction temperature was 100 by using the reduction catalyst according to Preparation Example 3. The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. The reaction rate of carbon tetrachloride at 100 hours after the start of the reaction was 85%, chloroform (selectivity: 90%), hexachloroethane (selectivity: 5%), pentachloroethane (selectivity: 2%), tetrachloroethylene (selectivity: 2%) was confirmed.

[실시예 11]Example 11

조제예 4에 의한 환원촉매를 사용한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 86%이며, 클로로포름 (선택율 : 92%), 헥사클로로에탄 (선택율 : 4%)등의 생성이 확인되었다.The reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 4 was used. After the start of the reaction, the reaction rate of carbon tetrachloride in 100 hours was 86%, and formation of chloroform (selectivity: 92%) and hexachloroethane (selectivity: 4%) was confirmed.

[실시예 12]Example 12

조제예 5에 의한 환원촉매를 사용하여 반응온도를 100로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 84%이며, 클로로포름 (선택율 : 89%), 헥사클로로에탄 (선택율 : 6%)등의 생성이 확인되었다.The reaction temperature was 100 by using the reduction catalyst according to Preparation Example 5. The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. After the start of the reaction, the carbon tetrachloride reaction rate at 100 hours was 84%, and formation of chloroform (selectivity: 89%), hexachloroethane (selectivity: 6%) and the like were confirmed.

[실시예 13]Example 13

조제예 6에 의한 환원촉매를 사용한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 90%이며, 클로로포름 (선택율 : 92%), 헥사클로로에탄 (선택율 : 3%)등의 생성이 확인되었다.The reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 6 was used. After the start of the reaction, the reaction rate of carbon tetrachloride in 100 hours was 90%, and formation of chloroform (selectivity: 92%), hexachloroethane (selectivity: 3%) and the like were confirmed.

[실시예 14]Example 14

조제예 7에 의한 환원촉매를 사용하고, 반응온도를 110로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 75%이며, 클로로포름 (선택율 : 85%), 헥사클로로에탄 (선택율 : 6%), 염화메틸렌 (선택율 : 7%)등의 생성이 확인되었다.Using a reduction catalyst according to Preparation Example 7, the reaction temperature was 110 The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. The reaction rate of carbon tetrachloride in 100 hours after the start of the reaction was 75%, and formation of chloroform (selectivity: 85%), hexachloroethane (selectivity: 6%), methylene chloride (selectivity: 7%) and the like were confirmed.

[실시예 15]Example 15

조제예 8에 의한 환원촉매를 사용하고, 반응온도를 100로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 71%이며, 클로로포름 (선택율 : 90%), 헥사클로로에탄 (선택율 : 4%), 펜타클로로에탄 (선택율 : 2%), 테트라클로로에틸렌 (선택율 : 2%)등의 생성이 확인되었다.Using a reduction catalyst according to Preparation Example 8, the reaction temperature was 100 The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. After the start of the reaction, the carbon tetrachloride reaction rate at 100 hours was 71%, chloroform (selectivity: 90%), hexachloroethane (selectivity: 4%), pentachloroethane (selectivity: 2%), tetrachloroethylene (selectivity: 2%) was confirmed.

[실시예 16]Example 16

조제예 9에 의한 환원촉매를 사용한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 84%이며, 클로로포름 (선택율 : 97%), 테트라클로로에틸렌 (선택율 : 3%)등의 생성이 확인되었다.The reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 9 was used. After the start of the reaction, the reaction rate of carbon tetrachloride in 100 hours was 84%, and formation of chloroform (selectivity: 97%), tetrachloroethylene (selectivity: 3%) and the like were confirmed.

[실시예 17]Example 17

조제예 10에 의한 환원촉매를 사용한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 83%이며, 클로로포름 (선택율 : 69%), 헥사클로로에탄 (선택율 : 28%), 염화메틸렌 (선택율 : 1%), 테트라클로로에틸렌 (선택율 : 2%)등의 생성이 확인되었다.The reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 10 was used. The reaction rate of carbon tetrachloride in 100 hours after the start of the reaction was 83%, chloroform (selectivity: 69%), hexachloroethane (selectivity: 28%), methylene chloride (selectivity: 1%), tetrachloroethylene (selectivity: 2 %) Was confirmed.

[실시예 18]Example 18

조제예 11에 의한 환원촉매를 사용하여, 반응온도를 120로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 84%이며, 클로로포름 (선택율 : 87%), 헥사클로로에탄 (선택율 : 6%), 염화메틸렌 (선택율 : 7%)등의 생성이 확인되었다.The reaction temperature was 120 using the reduction catalyst according to Preparation Example 11. The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. The reaction rate of carbon tetrachloride in 100 hours after the start of the reaction was 84%, and formation of chloroform (selectivity: 87%), hexachloroethane (selectivity: 6%), methylene chloride (selectivity: 7%) and the like were confirmed.

[실시예 19]Example 19

조제예 12에 의한 환원촉매를 사용하여, 반응온도를 90로 한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 74%이며, 클로로포름 (선택율 : 89%), 헥사클로로에탄 (선택율 : 5%), 펜타클로로에탄 (선택율 : 2%), 테트라클로로에틸렌 (선택율 : 3%)등의 생성이 확인되었다.Using a reduction catalyst according to Preparation 12, the reaction temperature was 90 The reaction was carried out in the same manner as in Example 8 except that the reaction was carried out. After the start of the reaction, the carbon tetrachloride reaction rate at 100 hours was 74%, chloroform (selectivity: 89%), hexachloroethane (selectivity: 5%), pentachloroethane (selectivity: 2%), tetrachloroethylene (selectivity: 3%) was confirmed.

[실시예 20]Example 20

조제예 13에 의한 환원촉매를 사용한 것외는 실시예 8과 동일하게 하여 반응을 실시하였다. 반응개시후, 100시간에 있어서의 사염화탄소 반응율은 87%이며, 클로로포름 (선택율 : 93%), 헥사클로로에탄 (선택율 : 5%)등의 생성이 확인되었다.The reaction was carried out in the same manner as in Example 8 except that the reduction catalyst according to Preparation Example 13 was used. After the start of the reaction, the reaction rate of carbon tetrachloride in 100 hours was 87%, and formation of chloroform (selectivity: 93%), hexachloroethane (selectivity: 5%) and the like were confirmed.

본 발명은 실시예에 표시한 바와 같이 폴리클로로메탄류, 특히 사염화탄소를 액상으로 수소를 사용하여 환원시킴으로써, 클로로포름등의 함수소 클로로메탄류를 고수율로 제조할 수 있다는 효과를 갖는다. 또 본 발명의 방법은 원료 폴리클로로메탄류의 반응율을 높이더라도 목적물인 클로로포름등의 함수소 클로로메탄류를 높은 선택률로 얻을 수가 있다는 효과를 갖는다. 또 본 발명의 방법에 있어서는 촉매 활성을 손상시키는 불순물을 생성하는 부반응을 효과적으로 억제할 수 있기 때문에 촉매수명의 관점에서도 극히 유리하다.The present invention has the effect of producing a high yield of hydrous chloromethanes such as chloroform by reducing polychloromethanes, especially carbon tetrachloride, using hydrogen in the liquid phase as indicated in the Examples. Moreover, the method of this invention has the effect that even if it raises the reaction rate of raw material polychloromethane, water-containing chloromethanes, such as chloroform as a target object, can be obtained with a high selectivity. Moreover, in the method of this invention, since the side reaction which produces the impurity which impairs a catalyst activity can be suppressed effectively, it is extremely advantageous also from a catalyst life viewpoint.

Claims (6)

루테늄, 로듐, 팔라듐 및 백금으로부터 선택되는 적어도 1종의 백금족 원소를 주성분원소로 하는 환원촉매의 존재하에 액상 고정상에서 폴리클로로메탄류를 수소에 의해 환원시키는 것을 특징으로 하는 함수소 클로로메탄류의 제조방법.Preparation of water-containing chloromethanes, characterized in that polychloromethanes are reduced by hydrogen in a liquid stationary phase in the presence of a reducing catalyst containing at least one platinum group element selected from ruthenium, rhodium, palladium and platinum as a main component. Way. 제1항에 있어서, 환원촉매가 루테늄, 로듐, 팔라듐 및 백금으로부터 선택되는 적어도 1종류의 백금족 원소를 주성분으로 함유하고 이것에 11족 원소로부터 선택되는 적어도 1종의 원소가 첨가되어 이루어지는 촉매인 제조방법.The preparation according to claim 1, wherein the reducing catalyst is a catalyst containing at least one platinum group element selected from ruthenium, rhodium, palladium and platinum as a main component and at least one element selected from group 11 elements added thereto. Way. 제2항에 있어서, 환원촉매중의 첨가성분원소가 구리, 은 및 금으로부터 선택되는 적어도 1종류의 11족 원소인 제법.The production method according to claim 2, wherein the additive component element in the reduction catalyst is at least one group 11 element selected from copper, silver, and gold. 제2항에 있어서, 환원촉매중의 첨가성분원소의 첨가량이 0.01 ~ 50 중량%인 제조방법.The production method according to claim 2, wherein the addition amount of the additive component element in the reduction catalyst is 0.01 to 50% by weight. 제1항에 있어서, 환원온도가 0~200인 제조방법.The method of claim 1, wherein the reduction temperature is 0 To 200 Phosphorus manufacturing method. 제1항에 있어서, 폴리클로로메탄류가 사염화탄소인 제조방법.The method according to claim 1, wherein the polychloromethanes are carbon tetrachloride.
KR1019920703206A 1991-04-23 1992-04-23 Process for producing hydrochloromethanes KR100222459B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3119457A JPH04327546A (en) 1991-04-23 1991-04-23 Production of hydrogen-containing chloromethanes
JP91-119457 1991-04-23
JP91-352257 1991-12-13
JP3352257A JP3004115B2 (en) 1991-12-13 1991-12-13 Production method of hydrogen-containing chloroalkanes
PCT/JP1992/000522 WO1992018447A1 (en) 1991-04-23 1992-04-23 Process for producing hydrochloromethanes

Publications (2)

Publication Number Publication Date
KR930701369A KR930701369A (en) 1993-06-11
KR100222459B1 true KR100222459B1 (en) 1999-10-01

Family

ID=26457193

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920703206A KR100222459B1 (en) 1991-04-23 1992-04-23 Process for producing hydrochloromethanes

Country Status (6)

Country Link
US (1) US5334782A (en)
EP (1) EP0536420B1 (en)
KR (1) KR100222459B1 (en)
CA (1) CA2086110C (en)
DE (1) DE69216977T2 (en)
WO (1) WO1992018447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484508B1 (en) * 2002-09-27 2005-04-20 학교법인 포항공과대학교 Method for disposing of carbontetrachloride

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621151A (en) * 1990-10-09 1997-04-15 E. I. Du Pont De Nemours And Company Halocarbon hydrogenolysis
GB9306334D0 (en) * 1993-03-26 1993-05-19 Univ Dundee Catalyst
US5817896A (en) * 1993-03-26 1998-10-06 The University Court Of The University Of Dundee Catalytic method of replacing halogen in halocarbons
JPH07285890A (en) * 1994-04-14 1995-10-31 Dow Chem Co:The Hydrodechlorination of chlorinated alkane
GB0020910D0 (en) * 2000-08-25 2000-10-11 Univ Birmingham Reduction method
IT1319258B1 (en) * 2000-10-31 2003-09-26 Sued Chemie Mt Srl CATALYST FOR THE HYDRODECLORURATION OF CARBON TETRACHLORIDE ACLOROFORM.
CN102690203A (en) * 2011-03-22 2012-09-26 中国科学院大连化学物理研究所 Method for preparing 1,3-cyclohexanebis(methylamine)
TWI537347B (en) 2015-04-02 2016-06-11 綠點高新科技股份有限公司 A sheath-core type catalyst for catalytic ink

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579596A (en) * 1968-03-29 1971-05-18 Dow Chemical Co Hydrogenolysis of carbon tetrachloride and chloroform
JPH021414A (en) * 1988-03-28 1990-01-05 Kanto Denka Kogyo Co Ltd Substitution of halogen in carbon halide or halogenated hydrocarbon by hydrogen
JP2737308B2 (en) * 1989-10-20 1998-04-08 旭硝子株式会社 Method for producing partially chlorinated methane
ES2018748A6 (en) * 1989-12-22 1991-05-01 Ercros Sa Method for producing chloroform.
FR2661671B1 (en) * 1990-05-03 1992-07-17 Atochem PROCESS FOR DECHLORINATION OF SUPERIOR CHLOROMETHANES.
JPH0426636A (en) * 1990-05-22 1992-01-29 Asahi Glass Co Ltd Reduction of halogenated carbon
US5105032A (en) * 1990-10-04 1992-04-14 The Dow Chemical Company Vapor phase hydrogenation of carbon tetrachloride
BE1004608A3 (en) * 1990-11-16 1992-12-22 Solvay Method for manufacturing of chloroform from carbon tetrachloride, catalyst composition and method for obtaining.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484508B1 (en) * 2002-09-27 2005-04-20 학교법인 포항공과대학교 Method for disposing of carbontetrachloride

Also Published As

Publication number Publication date
WO1992018447A1 (en) 1992-10-29
EP0536420A1 (en) 1993-04-14
CA2086110C (en) 1999-05-11
DE69216977T2 (en) 1997-05-15
EP0536420A4 (en) 1993-09-29
EP0536420B1 (en) 1997-01-22
CA2086110A1 (en) 1992-10-24
US5334782A (en) 1994-08-02
KR930701369A (en) 1993-06-11
DE69216977D1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
KR100390121B1 (en) Low pressure method for hydrogenation of dimethyl benzenedicarboxylate to the corresponding dimethyl cyclohexanedicarboxylate
EP2209759B1 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
US5136113A (en) Catalytic hydrogenolysis
KR0142192B1 (en) Process for preparation of allyl acetate
JPH0659405B2 (en) Reinforced nickel catalyst composition for amination
EP0640574A1 (en) Process for the convertion of a chlorinated alkane or alkene feedstock
US3925452A (en) Process for the production of allyl acetate
KR100222459B1 (en) Process for producing hydrochloromethanes
US5089454A (en) Catalytic composition for hydrogenation of chlorofluoroalkenes
CN102762523B (en) Method for producing 3,3,3-trifluoro propene
EP0662941B1 (en) Processes for converting chlorinated alkane byproducts or waste products to useful, less chlorinated alkenes
JPH04321634A (en) Method of manufacturing chlorofluoroethylene and trifluoroethylene by using 1,1,2-trichloro-1,2,2- trifluoroethane as starting material and catalyst composition used in said method
JP3031508B2 (en) Reduction method of polychlorinated alkanes
CA2251539C (en) Coproduction of 6-aminocapronitrile and hexamethylenediamine
US6291729B1 (en) Halofluorocarbon hydrogenolysis
EP0799172B1 (en) Catalytic hydrogenolysis
JP2000281631A (en) Method for catalytic hydrogenation of dinitrotoluene, and catalyst
EP0567478B1 (en) Catalytic hydrogenolysis
US6359179B1 (en) Direct carbonylation of paraffins using solid strong acid catalyst
US4422954A (en) Method to restore the metal content of a noble metal hydrogenation catalyst
US4939304A (en) Continuous and selective catalytic conversion of cyanohydrins to their corresponding aldehydes
US3923891A (en) Hydrogenation of benzonitrile to dibenzylamine
JP3004115B2 (en) Production method of hydrogen-containing chloroalkanes
EP0632001B1 (en) Method for producing a hydrofluorocarbon
US5602288A (en) Catalytic process for producing CF3 CH2 F

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110617

Year of fee payment: 13

EXPY Expiration of term