KR100215195B1 - Producing method of the gas filter - Google Patents

Producing method of the gas filter Download PDF

Info

Publication number
KR100215195B1
KR100215195B1 KR1019940022160A KR19940022160A KR100215195B1 KR 100215195 B1 KR100215195 B1 KR 100215195B1 KR 1019940022160 A KR1019940022160 A KR 1019940022160A KR 19940022160 A KR19940022160 A KR 19940022160A KR 100215195 B1 KR100215195 B1 KR 100215195B1
Authority
KR
South Korea
Prior art keywords
ceramic
particles
fiber
vacuum
gas filter
Prior art date
Application number
KR1019940022160A
Other languages
Korean (ko)
Other versions
KR960010048A (en
Inventor
이재춘
홍민선
Original Assignee
이재춘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재춘 filed Critical 이재춘
Priority to KR1019940022160A priority Critical patent/KR100215195B1/en
Publication of KR960010048A publication Critical patent/KR960010048A/en
Application granted granted Critical
Publication of KR100215195B1 publication Critical patent/KR100215195B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2086Other inorganic materials, e.g. ceramics the material being filamentary or fibrous sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2079Other inorganic materials, e.g. ceramics the material being particulate or granular otherwise bonded, e.g. by resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2089Other inorganic materials, e.g. ceramics the material being filamentary or fibrous otherwise bonded, e.g. by resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 고온배기가스 중의 분진을 제거하기 위하여 세라믹섬유와 입자 혼합물로 구성된 세라믹 고온가스필터 조성물과 진긍성형에 의한 원통형 필터 제조방법에 관한 것으로 지름이 2-15마이크론이며 길이가 0.1-10mm인 세라믹 섬유와 명균입자 크기가 세라믹섬유의 지름보다 15배 이하인 내화성 세라믹 입자를 0.2-9의 비율로 혼합한후 내화성 무기결합재와 유기결합재를 물과 혼합하여 진공성형으로 얻어진 섬유와 입자로 구성된 고온가스필터의 조성물을 구성하고,섬유슬러리의 흐름방향을 다공성몰드 재망(1)의 내측에서 의측으로 향하게 하여 원통형 다공성몰드 재망(1)의 내주면 표면에 고상물질의 섬유케이크(2)가 형성될수 있도록 진공성명하여서된 원통형고온가스필터의 제조방법이다.The present invention relates to a ceramic hot gas filter composition composed of ceramic fibers and particle mixtures and a cylindrical filter manufacturing method by true molding in order to remove dust in the hot exhaust gas, and a ceramic having a diameter of 2-15 microns and a length of 0.1-10 mm. A hot gas filter composed of fibers and particles obtained by vacuum molding by mixing refractory ceramic particles having a size of 15 times or less than the diameter of the ceramic fiber at a ratio of 0.2-9, followed by mixing a refractory inorganic binder and an organic binder with water. Vacuum composition so that the flow direction of the fiber slurry is directed from the inside of the porous mold network 1 to the right side so that the fiber cake 2 of solid material can be formed on the inner circumferential surface of the cylindrical porous mold network 1. It is a manufacturing method of the cylindrical high temperature gas filter.

Description

고온가스필터의 제조방법Manufacturing method of hot gas filter

제 1 도는 본 발명의 원통형 다공성몰드 종단면 구조도제 2 도는 본 발명의 가스필터의 섬유 분포도1 is a longitudinal cross-sectional structural diagram of the cylindrical porous mold of the present invention. FIG. 2 is a fiber distribution diagram of the gas filter of the present invention.

제 3 도는 기존 원통형 다공성몰드 종단면 구조도제 4 도는 기존 가스필터내의 섬유 분포도FIG. 3 is a structural cross-sectional view of a conventional cylindrical porous mold. FIG. 4 is a fiber distribution diagram of a conventional gas filter.

제 5 도는 입자함량에 따른 여과재의 기계적강도 변화를 나타내는 도표5 is a chart showing the change in mechanical strength of the filter medium according to the particle content

제 6∼7 도는 제 1∼2 도의 참고도제 8∼9 도는 제 3∼4 도의 참고도6 to 7 are reference drawings of FIGS. 1 to 2, and 8 to 9 are drawings of 3 to 4 drawings.

본 발명은 고온배기가스 중의 분진을 제거하기 위하여 세라믹 섬유와 세라믹입자 혼합물로 구성된 세라믹 고온가스필터와 진공성형에 의한 가스필터 제조 방법에 관한 것이다.The present invention relates to a ceramic hot gas filter composed of a mixture of ceramic fibers and ceramic particles and a gas filter manufacturing method by vacuum molding to remove dust in the hot exhaust gas.

기촌의 가스필터는 350t이상인 고온배기가스 중의 분진을 제거하기 위해서 평균입자 크기가 60∼250 마이크론인 내화성입자를 이용하여 제조된 다공질체의 기공률이 35∼45%인 입자형 세라믹필터 혹은 지름이 2∼15 마이크론의 세라믹 섬유를 진공성형하여 제조된 기공률 80% 이상의 섬유형 세라믹필터가 이용되어 왔다.The gas filter of Kichon is a particulate ceramic filter having a porosity of 35 to 45% of porous material manufactured using refractory particles having an average particle size of 60 to 250 microns to remove dust in hot exhaust gas of 350 t or more, or a diameter of 2 A fibrous ceramic filter having a porosity of 80% or more manufactured by vacuum forming a ˜15 micron ceramic fiber has been used.

세라믹섬유를 기지(matrix)로 하여 이루어진 고온가스여과재의 제작에 관한 기존 제조공정을 살펴보면 다음과 같다.Looking at the existing manufacturing process for the production of hot gas filter material made of a ceramic fiber matrix (matrix) as follows.

지름 크기가 1∼20倻이고 길이가 수 밀리미터인 세라믹 섬유 40∼96wt%와 미세한 크기의 점토질 고상 무기결합제 60∼4wt%를, 계면활성제와 유기결합제가 첨가된 물과 포함하여 얻어진 원료 슬러리를 다공성 채망을 이용한 진공성형방법으로 1mm 두께의 얇은 판상으로 성형한 후, 성형체를 1200도의 고온에서 소성시키므로써 점토질 무기결합제가 용융되어 세라믹 섬유를 결합시켜 얻어진 고은 배기가스용 필터 제조공법이 알려져 있다(일본특허 소58-223422,1983, 미국특허 4652286,1987).The raw material slurry obtained by containing 40 to 96 wt% of ceramic fibers having a diameter of 1 to 20 mm and several millimeters in length and 60 to 4 wt% of fine clay solid inorganic binder with water added with surfactant and organic binder is porous. After forming a 1 mm thick thin plate by vacuum forming method using a net, and then firing the molded body at a high temperature of 1200 degrees, a clay silver inorganic gas binder is melted to bond ceramic fibers. Patent No. 58-223422,1983, US Patent 4652286,1987).

이러한 방법으로 얻어진 필터는 원료섬유에 혼합되는 점토질 무기결합제가 고상분말 형태이므로 기지성분인 세라믹섬유와의 균질한 혼합을 이루기가 어렵고 따라서용융된 무기결합제가 불규칙적으로 세라믹섬유에 분포되어 균일한 기공크기분포를갖는 필터를 얻기 어려우며 또한 점토질 무기결합제를 용융시키기 위해서 일반적으로 1200도 이상의 고온소성을 거친 다음에야 내열성 필터로써 사용이 가능하다는점을 지적할 수 있다. 따라서 본 발명은 상기 기술된 필터제작시에 나타나는 문제점을 해결하므로써 가스필터로써의 기능이 우수하면서도 필터제작 공정의 단순화로 인해 필터제작비용이 감소되는 잇점이 있다.The filter obtained by this method is difficult to achieve homogeneous mixing with the ceramic fiber, which is known as the clay inorganic binder mixed in the raw fiber, in the form of a solid powder. Therefore, the molten inorganic binder is uniformly distributed in the ceramic fiber and has a uniform pore size. It can be pointed out that it is difficult to obtain a filter having a distribution and that it can be used as a heat resistant filter only after high temperature firing of 1200 ° C. or more in order to melt the clay inorganic binder. Therefore, the present invention has the advantage that the filter manufacturing cost is reduced due to the simplification of the filter manufacturing process while excellent in function as a gas filter by solving the problems appearing in the filter manufacturing described above.

한편, 섬유슬러리를 이용한 진공성형 방법으로 원통형 섬유 성형체의 제조는 일반적으로 제 3,4 도에서와 같이 진공 소스(source)에 연결된 원통형 다공성몰드채망(11)을 섬유슬러리 속에 넣어 다공성몰드 채망(11) 외부로부터 내부로 물이 흡입되어 고상입자가 다공성몰드 채망(11) 외부로부터 내부로 물리 흡입되어 고상입자가 다공성몰드 채망(11)의 외부면에 쌓이게 되며 원통형 성형몰드도 이와같은 성형방법에 적합하게 제작되어 있다.On the other hand, the production of the cylindrical fiber molded body by the vacuum molding method using the fiber slurry, as shown in Figure 3, 4 as shown in Figure 3, 4 the cylindrical porous mold mesh 11 connected to the vacuum source (fiber source) into the porous slurry sieve 11 Water is sucked from the outside to the inside of the porous mold sieve 11, and the solid particles are physically sucked from the outside to the inside of the porous mold sieve 11, and the cylindrical molding mold is suitable for such a molding method. It is made.

이런 경우 다공성몰드 채망(11)의 외주면 표면에 가까이 있는 섬유 케이크(12)층은 섬유의 층전밀도가 크나 원통형 채망표면에서 멀어질수록 원통형 특유의 기하학적인 형상과 진공에 의한 흡입력의 감소로 인하여 섬유의 층전밀도가 감소하며 따라서, 원통외주면 표면의 기계적강도는 낮아지게 된다.In this case, the fiber cake 12 layer close to the outer circumferential surface of the porous mold mesh 11 has a higher layer density of the fiber, but the farther it is from the cylindrical mesh surface, the smaller the geometric shape of the cylinder and the reduced suction force due to vacuum. The layer density of is decreased, and therefore, the mechanical strength of the cylindrical outer circumferential surface is lowered.

원통형필터를 이용하여 여과를 하는 경우에 포집되는 여과는 원통형필터와외주면 표면부위에서 실질적으로 일어나므로 기촌에 진공형상으로 제작된 원통형혹은 환상육후부를 갖는 유저통상체형 섬유필터는 상기와 같이 기술된 사유로 인하여 외주면 표면의 여과효율과 기계적강도가 낮은 문제점이 있었다.Since the filtration collected in the case of filtration using a cylindrical filter occurs substantially at the surface of the cylindrical filter and the outer circumferential surface, a user cylindrical fiber filter having a cylindrical or annular rear portion manufactured in vacuum in Kichon is described as described above. Due to the reason, there was a problem of low filtration efficiency and mechanical strength of the outer circumferential surface.

본 발명은 세라믹 섬유를 이용한 진공성형 방법에 의해 고온배기 가스용 여과재를 제작항에 있어서 상기 기술한 문제점을 해결하기 위해서 속이 빈 원통형 혹은 환상육후부를 갖는 유저 통상체형 가스필터를 진공성형 방법으로 제조하는 경우에 원통형 다공성몰드 채망 내주면에서 외부쪽으로 섬유슬러리가 흡입되어 섬유케이크층이 다공성몰드 채망 내주면 표면에 원통형몰드 중심방향으로 점층적으로 쌓이게 됨으로써 몰드부근의 섬유 충전밀도를 기존 진공성형 방법으로 제작된 성형체 외주면이 섬유 충전밀도보다 크게 함으로써 기계적 강도를 향상시킬수 있는 것이다.In order to solve the above-mentioned problems in manufacturing the filter medium for high-temperature exhaust gas by the vacuum molding method using ceramic fibers, a user conventional type gas filter having a hollow cylindrical or annular thick portion is manufactured by the vacuum molding method. In this case, the fiber slurry is sucked from the inner circumferential surface of the cylindrical porous mold net to the outside, so that the fiber cake layer is gradually stacked on the inner surface of the inner surface of the porous mold net, and the fiber filling density near the mold is produced by the conventional vacuum molding method. The mechanical strength can be improved by making the outer peripheral surface of the molded body larger than the fiber filling density.

이하 발명의 요지를 첨부된 도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

지름이 2∼15마이크론이며 길이가 0.1∼10mm인 세라믹 섬유와 평균입자 크기가 세라믹섬유의 지름보다 15배 이하인 세라믹 입자를 1∼9의 비율로 혼합한 후 유기결합제를 물과 혼합하여 진공성형으로 얻어진 섬유와 내열성 입자로 구성된 고온가스필터를 제조하되, 섬유슬러리의 흐름방향을 다공성몰드 채망(1)의 내측에서 외측으로 향하게 하면 원통형 다공성몰드 채망(1)의 내주면 표면에 고상물질의 섬유케이크(2)가 형성될 수 있도록 진공성형하여서 된 원통형 고온가스필터의 제조방법이다.A ceramic fiber of 2 to 15 microns in diameter and 0.1 to 10 mm in length and ceramic particles having an average particle size of 15 times or less than the diameter of the ceramic fiber are mixed in a ratio of 1 to 9, and then the organic binder is mixed with water for vacuum molding. A hot gas filter composed of the obtained fibers and heat resistant particles is prepared, and when the flow direction of the fiber slurry is directed from the inside of the porous mold sieve 1 to the outside, the fiber cake of the solid material is formed on the inner circumferential surface of the cylindrical porous mold sieve 1. 2) is a method of manufacturing a cylindrical hot gas filter formed by vacuum forming so that can be formed.

본 발명에서는 지름이 2∼15 마이크론이며 길이는 대략 0.1에서 100mm인 알루미나, 실리카 혹은 미량의 지르코니아가 함유된 알루미노실리케이트 산화물 혹은 탄화물, 붕화물 세라믹 섬유와 평군입자 크기가 44 마이크론 이하인 내화성 산화물입자로 알루미나 혹은 탄화물, 붕화물같은 세라믹입자 그리고 스타치와 같은 유기결합제를 물에서 균질히 혼합시켜 슬러리를 제조한다. 이때 세라믹섬유와 함게 혼합되는 내열성 세라믹입자는 첨가량에 비례하여 성형체의 밀도를 높이는 역활을 가지므로 해서 세라믹섬유 단독으로 성형된 성형체보다 신장된 기계적강도를 갖게 하기 위해 첨가된다. 또한 내열성 세라믹입자는 용융온도가 매우 높아 진공성형으로제작된 세라믹섬유필터를 건조한 후, 고은 세라믹필터 제작을 위해 본 발명에서 사용하는 죄대 소성온도로 가열하여도 용융되지 않는 특성을 가지고 있으며 따라서 세라믹입자의 용융에 기인한 세라믹섬유가 형성하는 기공막힘 현상이 없으므로 본 발명에서는 소성시 필터의 통기저항이 감소되는 현상이 나타나지 않는다.In the present invention, aluminosilicate oxide or carbide, boride ceramic fiber containing alumina, silica or trace amount of zirconia having a diameter of 2 to 15 microns and a length of approximately 0.1 to 100 mm and refractory oxide particles having a plain particle size of 44 microns or less A slurry is prepared by homogeneously mixing alumina or ceramic particles such as carbides and borides and organic binders such as starch in water. At this time, the heat-resistant ceramic particles mixed with the ceramic fiber are added to have an extended mechanical strength than the molded body molded by the ceramic fiber alone because it has a role of increasing the density of the molded body in proportion to the amount of the ceramic fiber. In addition, the heat-resistant ceramic particles have a very high melting temperature, and after drying the ceramic fiber filter manufactured by vacuum molding, the ceramic particles do not melt even when heated to the high firing temperature used in the present invention for the production of a high-silver ceramic filter. Since there is no pore blocking phenomenon formed by ceramic fibers due to melting of the present invention, there is no phenomenon in which the airflow resistance of the filter is reduced during firing.

이러한 특성을 갖는 원료 슬러리 조성물을 진공의 힘을 이용하여 원통형 다공성몰드 채망(1)을 통과시키므로써 고상케이크(2) 형태로 다공성몰드 채망(1) 내주면 표면에 일정한 두께로 쌓인 성형체를 제작한다. 그 다음 성형몰드내에 있는 젖은 상태의 성형체를 구성하는 세라믹 섬유와 입자가 형성하는 미세한 다공성 기공내로 일정한 농도로 유지된 액상 무기결합제인 콜로이달 알루미나 솔과 콜로이달실리카 솔을 순차적으로 각각 함침시킨 후 이들 액상 무기결합제를 진공의 힘으로 성형체로부터 배출시킨다. 이렇게하면, 세라믹 섬유와 세라믹 입자가 형성하는 미세한 기공내에서 콜로이달 알루미나 솔과 콜로이달 실리카 솔이 혼합되어 무기질겔 상태로 세라믹 섬유와 입자 표면에 부착 침적되므로써 세라믹섬유 또는 세라믹입자를 결합시킨다. 이러한 성형체를 몰드채망에서 분리한 후 건조하면 알루미나와 실리카 혼합 겔이 유기결합제와 함께 내열성 세라믹 섬유와 입자를 단단히 결합시키면서 세라믹섬유간의 균질한 기공크기분포를 유지할 수 있게된다. 본 발명에서는 이들 액상콜로이달 무기결합제의 농도의 농도에 따라, 세라믹섬유 또는 입자에 부착되는 무기결합제의 양이 제어되며 따라서 입자와 섬유 혼합물로 구성된 여과재의 기공률과 기공크기를 제어하게 된다. 본 발명에서 사용하는 액상무기결합제는 5%에서 20% 중량농도인 것이 적당하다. 한편 함침 후 성형체로부터 배출된 콜로이달 알루미나와 콜로이달 실리카를 각각의 보관용기에 보관하여, 다음번 함침작업에 사용함으로써, 원료 섬유슬러리에 액상의 무기결합제를 혼합하며 진공성형하는 경우에 비해서 상대적으로 고가의 액상 무기결합제 손실을 방지할 수 있는 장점이 있다. 또한 성형체 건조후 재차 액상무기결합제를 함침하는 과정을 생략하므로써 본 발명의 펄터 제조속도가 빠르므로 해서 필터제작비용이 감소되는 장점이 있다. 다공성몰드 채망(1)으로부터 분리한 성형체는 건조후 1100∼1400C에서, 소성시킴으로써 입자와 섬유에 부착된 액상 알루미나와 실리카 솔로부터 얻어진 무기질겔을 내열성 유리질과 뮬라이트상으로 전환시키므로써 고온에서도 장시간 안정적으로 사용할 수 있는 고온가스필터를 제조하는 것이다.The raw material slurry composition having such characteristics is passed through the cylindrical porous mold sieve 1 using the force of vacuum to produce a molded article stacked on the inner circumferential surface of the porous mold sieve 1 in the form of a solid cake 2. Next, the colloidal alumina sol and the colloidal silica sol, which are liquid inorganic binders, maintained at a constant concentration, were sequentially impregnated into the ceramic fibers constituting the wet molded body and the fine porous pores formed in the particles. The liquid inorganic binder is discharged from the molded body by the force of vacuum. In this way, the colloidal alumina sol and the colloidal silica sol are mixed in the fine pores formed by the ceramic fiber and the ceramic particles to bond the ceramic fibers or ceramic particles by depositing and depositing the ceramic fibers and the particles on the surface of the inorganic gel. When the molded product is separated from the mold net and dried, the alumina and silica mixed gel can maintain the homogeneous pore size distribution between the ceramic fibers while firmly bonding the heat resistant ceramic fibers and the particles together with the organic binder. In the present invention, depending on the concentration of these liquid colloidal inorganic binder, the amount of the inorganic binder attached to the ceramic fibers or particles is controlled, thus controlling the porosity and pore size of the filter medium composed of the particles and the fiber mixture. The liquid inorganic binder used in the present invention is suitably in a concentration of 5% to 20% by weight. On the other hand, colloidal alumina and colloidal silica discharged from the molded body after impregnation are stored in each storage container and used for the next impregnation operation, which is relatively expensive compared with vacuum forming by mixing a liquid inorganic binder with raw fiber slurry. There is an advantage that can prevent the loss of the liquid inorganic binder. In addition, by eliminating the process of impregnating the liquid inorganic binder again after drying the molded body, there is an advantage that the manufacturing cost of the filter is reduced because the pulverizer manufacturing speed of the present invention is high. The molded product separated from the porous mold net 1 is dried at 1100 to 1400C after firing to convert the inorganic gel obtained from the liquid alumina and silica sol attached to the particles and fibers into heat-resistant glassy and mullite phases for a long time at high temperature. It is to manufacture a hot gas filter that can be used.

한편 진공성형에 의해 세라믹섬유 슬러리로만 제작된 세라믹 섬유필터는 기공율이 80%이상으로 매우 크고 또한 직경이 2∼15 마이크로인 미세한 섬유로만 구성되어 있어서 입자로만 된 세라믹 입자 필터보다 기계적강도가 낮은 문제점이 있다. 따라서 본 발명의 고온가스필터는 세라믹 섬유로만 이루어진 기존 섬유필터와 유사한 통기저항을 가지면서 기계적강도는 기존 세라믹 섬유로만 이루어진 섬유필터보다 증가될 수 있도록 세라믹 섬유와 섬유직경의 15배 이하인 산화물, 탄화물 혹은 붕화물 세라믹입자와 무게혼합 비율을 1에서 9를 가지게끔 제조될 수 있으나 혼합비율이 1에서 2사이가 적당하다. 혼합비율이 1보다 작으면 기계적강도의 강화효과가 낮으며 혼합비율이 2보다 더 크면 진공성형으로 두께가 두꺼운 성형체를 얻기가 어렵다.On the other hand, the ceramic fiber filter produced only by ceramic fiber slurry by vacuum molding has a very high porosity of 80% or more and consists only of fine fibers having a diameter of 2 to 15 microns, which causes a lower mechanical strength than ceramic particle filters made of particles. have. Therefore, the hot gas filter of the present invention has a similar ventilation resistance as that of the conventional fiber filter made of only ceramic fibers, but the mechanical strength is increased to 15 times or less than that of the ceramic fiber and the fiber diameter so as to increase the mechanical strength of the fiber filter made of the conventional ceramic fibers. The boride ceramic particles may be prepared to have a weight mixing ratio of 1 to 9, but a mixing ratio of 1 to 2 is suitable. If the mixing ratio is less than 1, the strengthening effect of the mechanical strength is low. If the mixing ratio is larger than 2, it is difficult to obtain a thick molded body by vacuum forming.

제 5도는 평군지름이 3마이크론인 알루미노실리카 세라믹 섬유와 입자크기가44 마이크론 이하인 알코아사의 T-64 태블리트 알루미나(Tablet Alumina) 입자를여러 비율로 혼합한 후 중량비로 0.5% 농도의 유기결합제를 첨가하고 10% 중턍농도인 액상 무기결합제를 함침시켜 진공성형으로 제조된 가스필터의 기계적강도 변화를 나타내는 측정자료로써 본 발명 가스필터의 기계적 강도는 세라믹 섬유로만 이루어진 가스필터보다 신장될수 있는 것을 나타내고 있다.5 is a mixture of aluminosilica ceramic fibers having a plain diameter of 3 microns and T-64 tablet alumina particles of Alcoa having a particle size of 44 microns or less in various ratios, followed by mixing an organic binder having a concentration of 0.5% by weight. It is a measurement data showing the change in mechanical strength of a gas filter manufactured by vacuum molding by impregnating a liquid inorganic binder having a medium concentration of 10% and it shows that the mechanical strength of the gas filter of the present invention can be extended than a gas filter made of ceramic fiber only. .

그러므로 본 발명의 세라믹 가스필터는 세라믹 섬유와 입자를 적절히 혼합하여 제조됨으로써 기계적강도를 세라믹 섬유로만 이루어진 가스필터보다 상대적으로 우수한 특징이 있다. 원통형 세라믹 필터를 진공성형에 의해 제조하는 경우에 본 발명의 다공성몰드 채망구조와 진공성형 방법은 다공성 성형몰드 채망을 이용한 기존 세라믹가스 필터 외주면 표면의 여과효율과 가스필터의 기계적강도를 크게 증가시킬 수 있는 효과가 있는 것이다. 또한 원료 슬러리로 부터 일단 성형체를 생성한다음에 곧바로 성형체 기공내로 두 종류의 액상 무기결합제를 순차적으로 진공 함침시킴으로써, 원료섬유 슬러리와 액상 무기결합제를 혼합하여 진공성형하고 이것을 건조한 다음 재차 액상 무기결합제를 투여하는 필터제조 방법과 비교하면 고가의 액상 무기결합제 손실율을 감소시킬 수 있을 뿐만 아니라, 필터 제조공정이 단순하여 필터제작비용을 감소할 수 있는 특징이 있다.Therefore, the ceramic gas filter of the present invention is manufactured by mixing the ceramic fiber and the particles properly, so that the mechanical strength of the ceramic gas filter is relatively superior to that of the gas filter made of only the ceramic fiber. In the case of manufacturing a cylindrical ceramic filter by vacuum molding, the porous mold screening structure and the vacuum molding method of the present invention can greatly increase the filtration efficiency and mechanical strength of the gas filter on the outer circumferential surface of a conventional ceramic gas filter using the porous molding mold screening. It is effective. In addition, once the molded product is formed from the raw material slurry, two types of liquid inorganic binder are sequentially vacuum-impregnated into the pores of the molded product, and the raw fiber slurry and the liquid inorganic binder are mixed and vacuum-molded, and the liquid inorganic binder is again administered. Compared with the filter manufacturing method, the loss rate of the expensive liquid inorganic binder can be reduced, and the filter manufacturing process can be simplified, thereby reducing the filter manufacturing cost.

Claims (1)

세라믹섬유와 내열성 세라믹입자, 유기결합제 그리고 액상무기결합제를 이용하여 속이 빈 튜브형 가스필터를 제조하는 방법에 있어서 지름이 2∼15 마이크론이며 길이가 0.1∼10mm인 세라믹 섬유와 평균 입자크기가 세라믹 섬유의 지름보다 15배 이하인 내열성 세라믹 입자를 1∼9의 비율로 혼합한 후, 유기결합제를 물과 혼합하여 얻어진 원료 슬러리를 다공성 몰드 채망의 내측에서 외측으로 향하게 하여 원통형의 다공성 몰드 채망의 내주면 표면에 고상물질의 케이크가 형성되게 진공성형한 다음, 성형틀내의 젖은 상태로 있는 성형체를 구성하는 세라믹섬유와 입자가 형성하는 미세한 다공성 기공내로 5% 에서 20% 중량농도의 액상 무기결합제인 콜로이달 알루미나와 콜로이달 실리카를 순차적으로 각각 진공함침시켜, 이들 액상 무기결합제가 무기질 겔 상태로 세라믹 섬유와 입자 표면에 침적되므로써 내열성 세라믹 섬유와 입자를 결합시키고 이들 진공 성형체 구성요소가 수에서 수십마이크론 크기의 미세한 기공을 형성하는 다공성 진공성형체를 제조하는 단계와 이를 다공성몰드에서 분리한 다음, 건조후,900∼1400C의 온도로 소성시켜 세라믹섬유와 입자를 결합시키는 무기질 겔을 내열성 유리상과 뮬라이트 상으로 전환시키므로써 진공성형체를 고은 가스 여과기능을갖는 내열성 구조물로 전환시키는 단계를 결합함을 특징으로 하는 고온가스필터 제조방법.A method for producing a hollow tubular gas filter using ceramic fibers, heat-resistant ceramic particles, organic binders and liquid inorganic binders, in which a ceramic fiber having a diameter of 2 to 15 microns and a length of 0.1 to 10 mm and an average particle size of the ceramic fiber After mixing heat-resistant ceramic particles 15 times or less in diameter at a ratio of 1 to 9, the raw material slurry obtained by mixing the organic binder with water is directed from the inside of the porous mold sieve to the outside to form a solid phase on the inner surface of the cylindrical porous mold sieve. After vacuum forming the cake of material, colloidal alumina and colo are liquid inorganic binders having a concentration of 5% to 20% by weight into the fine porous pores formed by the ceramic fibers and particles forming the molded body in the wet state. This month, silica was sequentially impregnated in vacuum so that these liquid inorganic binders were inorganic. Bonding porous heat-resistant ceramic fibers and particles by depositing them on the surface of the ceramic fibers and particles in a state, and preparing a porous vacuum molded body in which these vacuum molded components form micropores ranging in size from several tens of microns and then separated from the porous mold. And drying, converting the inorganic gel, which bonds the ceramic fibers and particles into a heat-resistant glass phase and a mullite phase by firing at a temperature of 900 to 1400 C, to convert the vacuum molding into a heat-resistant structure having a high gas filtration function. Hot gas filter manufacturing method characterized in that.
KR1019940022160A 1994-09-03 1994-09-03 Producing method of the gas filter KR100215195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940022160A KR100215195B1 (en) 1994-09-03 1994-09-03 Producing method of the gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940022160A KR100215195B1 (en) 1994-09-03 1994-09-03 Producing method of the gas filter

Publications (2)

Publication Number Publication Date
KR960010048A KR960010048A (en) 1996-04-20
KR100215195B1 true KR100215195B1 (en) 1999-08-16

Family

ID=19391951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940022160A KR100215195B1 (en) 1994-09-03 1994-09-03 Producing method of the gas filter

Country Status (1)

Country Link
KR (1) KR100215195B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576985B1 (en) * 1998-12-31 2006-07-19 주식회사 케이씨씨 Ceramic paper for the production of combustion exhaust gas purification catalyst carrier
KR200446239Y1 (en) * 2009-02-24 2009-10-09 (주)에스티에스테크놀로지 Filter of High-Purity Gas
CN109107251A (en) * 2018-08-29 2019-01-01 江苏赛图新材料科技有限公司 A kind of double medium filtration equipment and preparation method preparing fibre pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576985B1 (en) * 1998-12-31 2006-07-19 주식회사 케이씨씨 Ceramic paper for the production of combustion exhaust gas purification catalyst carrier
KR200446239Y1 (en) * 2009-02-24 2009-10-09 (주)에스티에스테크놀로지 Filter of High-Purity Gas
CN109107251A (en) * 2018-08-29 2019-01-01 江苏赛图新材料科技有限公司 A kind of double medium filtration equipment and preparation method preparing fibre pipe
CN109107251B (en) * 2018-08-29 2022-01-04 江苏赛图新材料科技有限公司 Double-layer filtering equipment for preparing fiber tube and preparation method

Also Published As

Publication number Publication date
KR960010048A (en) 1996-04-20

Similar Documents

Publication Publication Date Title
US6238618B1 (en) Production of porous mullite bodies
EP0761279B1 (en) Honeycomb structure
US6235665B1 (en) Porous ceramic articles
US20040029707A1 (en) Magnesium aluminum silicate structures for DPF applications
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
EP2069261A2 (en) Glass bonded ceramic structures
JP2001524453A (en) Ceramic network, manufacturing method thereof and use thereof
JP2013514966A (en) Fiber reinforced porous substrate
CN1662286B (en) Fiber reinforced filter for molten metal filtration and method for producing such filters
JPH0146474B2 (en)
JPH0573713B2 (en)
CA2025265C (en) Method for preparing a ceramic-forming prepreg tape
JP2012507464A (en) Fibrous aluminum titanate substrate and method for producing the same
JP2010527897A (en) Cordierite fiber substrate and method for forming the same
KR100215195B1 (en) Producing method of the gas filter
CN105948781A (en) Preparation method for preparing high-aperture-ratio and porous silicon carbide ceramic materials
JP3461615B2 (en) Honeycomb structure and manufacturing method thereof
JPS6061019A (en) Ceramic filter for dust collection
JPH04187578A (en) Production of sintered compact of porous silicon carbide
GB2097777A (en) Ceramic foam
EP0554820B1 (en) Process for forming ceramic sheets
EP0322932A2 (en) A fiber filled reticulated ceramic, used as a lining in a furnace
KR100419780B1 (en) Fabrication method of silicon carbide ceramics filter with coating layer
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
US5049324A (en) Method of making a furnace lining with a fiber filled reticulated ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 19980703

Effective date: 19990313

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030520

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee