KR100212456B1 - Method of manufacturing optical modulator - Google Patents

Method of manufacturing optical modulator Download PDF

Info

Publication number
KR100212456B1
KR100212456B1 KR1019960040113A KR19960040113A KR100212456B1 KR 100212456 B1 KR100212456 B1 KR 100212456B1 KR 1019960040113 A KR1019960040113 A KR 1019960040113A KR 19960040113 A KR19960040113 A KR 19960040113A KR 100212456 B1 KR100212456 B1 KR 100212456B1
Authority
KR
South Korea
Prior art keywords
layer
optical modulator
ingaasp
growing
inp
Prior art date
Application number
KR1019960040113A
Other languages
Korean (ko)
Other versions
KR19980021301A (en
Inventor
이승원
남은수
김홍만
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019960040113A priority Critical patent/KR100212456B1/en
Publication of KR19980021301A publication Critical patent/KR19980021301A/en
Application granted granted Critical
Publication of KR100212456B1 publication Critical patent/KR100212456B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32333Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm based on InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/3438Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on In(Al)P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명은 광변조기 집적소자 제조 방법에 관한 것으로, 특히 분포 피드백 레이저와 전계 흡수형(electro-absorption) 광변조기 사이에 결함없이 버트커플링(Butt-coupling)하기 위해 광변조기 성장층 전에 InP 버퍼층을 성장시켜 그 위에 성장되는 변형 보상(strain compensated) InGaAsP/lnGaAsP 다층 양자우물 구조층의 결정 결함을 제거 할 수 있도록 한 광변조기 집적소자 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for fabricating an optical modulator integrated device, in particular an InP buffer layer prior to the optical modulator growth layer for butt-coupling without defects between a distributed feedback laser and an electro-absorption optical modulator. The present invention relates to a method for fabricating an optical modulator integrated device capable of removing crystal defects of a strain compensated InGaAsP / lnGaAsP multilayer quantum well structure layer grown thereon.

Description

광변조기 직접소자 제조 방법Optical Modulator Direct Device Manufacturing Method

본 발명은 광변조기 집적소자 제조 방법에 관한 것으로, 특히 분포 피드백 레이저(이하, 반도체 레이저라 함)와 전계 흡수형(electro-absorption) 광변조기 사이에 결함없이 버트커플링(Butt-coupling)하기 위해 광변조기 성장층 전에 InP 버퍼층을 성장시켜 그 위에 성장되는 변형 보상(strain compensated) InGaAsP/InGaAsP 다층 양자우물 구조층의 결정 결함을 제거 할 수 있도록 한 광변조기 집적소자 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical modulator integrated device, and more particularly, to butt-coupling without defects between a distributed feedback laser (hereinafter referred to as a semiconductor laser) and an electro-absorption optical modulator. The present invention relates to a method for fabricating an optical modulator integrated device in which an InP buffer layer is grown before an optical modulator growth layer to remove crystal defects of a strain compensated InGaAsP / InGaAsP multilayer quantum well structure layer.

광통신 시스템의 전송 속도와 전송 거리가 증가함에 따라 광원은 변조 속도와 변조 광선폭 등에서 더욱 고성능이 요구된다. 장거리 국간 전송은 10Gps 이상의 비트율(bit rate)이 채용될 예정이다. 따라서, 반도체 레이저의 직접 변조 방식은 그 한계를 가지고 있는 것으로 판단된다. 이러한 문제점을 해결하기 위한 방법으로 변조하지 않는 협선폭의 반도체 레이저 광을 외부 광변조기를 사용하여 전송 신호로 변조하는 것이 있다. 이러한 방법은 직접 변조 반도체 레이저에 비하여 변조 광선폭을 크게 줄일 수 있는 장점이 있다. 특히 어븀이 도핑된 광섬유 증폭기(EDFA: Erbium Doped Fiber Amplifier) 기술의 발전에 따라 광통신의 전송 거리는 신호의 감쇄 보다는 분산에 의한 신호의 왜곡에 더 지배를 받고 있다. 광통신에의 무중계 전송 거리 증가를 위해서는 광원의 변조 광선폭 감소가 필수적이다. 그러나, 이러한 외부 광변조기의 사용을 위해서는 두 차례의 광섬유와 외부 광변조기 사이의 광결합 과정이 필요하게 되어 10dB 정도의 광결합 손실이 발생하게 된다. 또한, 외부 광변조기가 가지고 있는 편광 의존성 문제와 모듈(module)의 크기에 의해 시스템 제작시 불편한 단점이 있다. 이러한 문제점을 해결하기 위하여 세계적으로 반도체 레이저와 광변조기를 단일칩에 집적화하는 연구가 시도되고 있다. 이러한 반도체 레이저와 광변조기를 집적화 하는 방법으로는 크게 선택적 성장을 이용하여 평면상에서의 밴드 갭 변환 방법, 레이저 구조 밑에 광변조기 구조를 성장한 후 레이저 부분을 부분적으로 식각해 내는 테이퍼 커플링(taper coupling) 방법, 그리고 먼저 반도체 레이저를 성장한 후 광변조기 부분을 식각해 내고 다시 광변조기 부분을 선택적으로 재성장하는 버트 커플링(butt-coupling)방법 등이 있다.As the transmission speed and the transmission distance of the optical communication system are increased, the light source requires higher performance in terms of modulation speed and modulation beam width. Long-distance inter-station transmission will employ a bit rate of 10Gps or more. Therefore, it is judged that the direct modulation method of the semiconductor laser has its limitations. In order to solve this problem, a semiconductor laser light having a narrow line width that is not modulated is modulated into a transmission signal using an external optical modulator. This method has an advantage of significantly reducing the modulated light width compared to a direct modulated semiconductor laser. In particular, with the development of Erbium Doped Fiber Amplifier (EDFA) technology, the transmission distance of optical communication is more dominated by signal distortion due to dispersion rather than signal attenuation. In order to increase the relay transmission distance to the optical communication, it is necessary to reduce the modulated light width of the light source. However, in order to use such an external optical modulator, a photocoupling process between two optical fibers and an external optical modulator is required, resulting in an optical coupling loss of about 10 dB. In addition, the polarization dependency problem and the size of the module (module) having an external optical modulator has an uncomfortable disadvantage when manufacturing the system. In order to solve this problem, researches for integrating semiconductor lasers and optical modulators on a single chip have been attempted worldwide. As a method of integrating such a semiconductor laser and an optical modulator, a band gap conversion method in a planar manner using large selective growth, a taper coupling that partially etches the laser part after growing the optical modulator structure under the laser structure. And a butt-coupling method in which the semiconductor laser is first grown, the optical modulator is then etched, and the optical modulator is selectively regrown again.

이러한 광결합 방법 중 버트 커플링(butt-coupling) 방법은 반도체 레이저와 광변조기 부분을 독립적으로 최적화 설계 및 제작할 수 있고, 광결합 효율도 높으므로 10Gbps용 광변조기 집적소자의 제작에 적합하다. 10Gbps 광통신 시스템용 광변조기 집적소자에서는 광변조기 흡수층의 특성을 향상시키기 위해 전도띠 불연속성(conduction band discontinuity)의 증가가 필요하다. 또한, 1.5의 파장에서 최적의 우물층 폭과 장벽층의 높이를 얻기 위해서는 변형 보상(strain compensated)In GaAsP/In GaAsP 다층 양자우물 구조가 광변조기의 흡수층으로 사용되어야 한다.The butt-coupling method of the optical coupling method can independently design and manufacture the semiconductor laser and the optical modulator part independently, and the optical coupling efficiency is high, so it is suitable for fabricating the optical modulator integrated device for 10Gbps. In optical modulator integrated devices for 10 Gbps optical communication systems, an increase in conduction band discontinuity is required to improve the characteristics of the optical modulator absorbing layer. In addition, 1.5 In order to obtain the optimal well layer width and the height of the barrier layer at the wavelength of, the strain compensated In GaAsP / In GaAsP multilayer quantum well structure should be used as the absorber of the optical modulator.

그러나, 버트 커플링 성장에서는 평면에서의 성장과 달리 결정면의 특성과 원료의 확산 효과에 의하여 불균일한 조성과 두께를 갖게된다. 이러한 경우 종래의 InP 버퍼층에 의한 (011) 결정면과 (100) 결정면의 생성 없이 선택적 비평면 성장 방법으로 결정성이 불안정한 변형 보상 InGaAsP/InGaAsP 다층 양자우물 구조층를 성장할 경우, 제1도와 같이 반도체 레이저(19)와 광변조기(20)로 구성된 광변조기 직접소자의 흡수층이 버트 커플링(Butt-coupling)되는 부분에 결정 결함이 발생하게 된다.However, butt-coupling growth has a non-uniform composition and thickness due to the characteristics of the crystal plane and the diffusion effect of the raw material, unlike the growth in the plane. In this case, in the case of growing a strain compensation InGaAsP / InGaAsP multilayer quantum well structure layer in which crystallinity is unstable by the selective non-planar growth method without the formation of the (011) crystal plane and the (100) crystal plane by the conventional InP buffer layer, the semiconductor laser ( 19) and a crystal defect occurs in a portion where the absorbing layer of the optical modulator direct element including the optical modulator 20 is Butt-coupling.

상기 반도체 레이저(19)는 회절 격자층(2), 활성층(1), InGaAsP 광도파로층(3) 및 절연막(4)이 순차적으로 적층되고, 광변조기(20)는 InGaAsP 광도파로층(5), InGaAgP/InGaAsP 다층 양자우물 구조층(6), InGaAsP 광도파로층(7), InGaAsP/ InGaAsP 다층 양자우물 구조층(8) 및 InP 클래드층(9)이 순차적으로 적층된다. 이러한 결정 결함은 광결합 효율을 감소시키며, 소자의 신뢰성에 문제를 일으키는 원인이 된다.In the semiconductor laser 19, the diffraction grating layer 2, the active layer 1, the InGaAsP optical waveguide layer 3 and the insulating film 4 are sequentially stacked, and the optical modulator 20 is an InGaAsP optical waveguide layer 5 , InGaAgP / InGaAsP multilayer quantum well structure layer 6, InGaAsP optical waveguide layer 7, InGaAsP / InGaAsP multilayer quantum well structure layer 8 and InP clad layer 9 are sequentially stacked. Such crystal defects reduce the optical coupling efficiency and cause a problem in the reliability of the device.

따라서, 본 발명은 광변조기의 흡수층으로 사용될 변형 보상 InGaAsP/ InGaAsP 다층 양자우물 구조층의 성장 전에 InP 버퍼층을 성장하여 성장이 용이한 (011)결정면과 (100)결정면을 나타나게 한 후 InGaAsP/InGaAsP 다층 양자우물 구조층의 성장 결정 결함을 억제 하도록 한 광변조기 집접소자 제조 방법을 제공 하는데 그 목적이 있다.Therefore, in the present invention, the InP buffer layer is grown before the growth of the strain-compensated InGaAsP / InGaAsP multilayer quantum well structure layer to reveal an easy growth surface and a (100) crystal surface, followed by InGaAsP / InGaAsP multilayer. It is an object of the present invention to provide a method for fabricating an optical modulator integrated device to suppress growth crystal defects in a quantum well structure layer.

상술한 목적을 달성하기 위한 본 발명은 회절 격자층, 활성층, InGaAsP 광도파로층 및 절연막이 순차적으로 적층된 반도체 레이저를 성장한 후 반응 이온 식각하는 단계와, 상기 반응 이온 식각 후 InP 버퍼층을 성장하여 성장이 용이한 (011)결정면과 (100)결정면을 성장하는 단계와, 상기 InP 버퍼층을 성장한 후 InGaAsP/InGaAsP 다층 양자우물 구조층, InGaAsP 광도파로층 및 InP 클래드층이 순차적으로 적층된 광변조기를 형성하는 단계로 이루어진 것을 특징으로 한다.The present invention for achieving the above object is a step of growing a semiconductor laser in which a diffraction grating layer, an active layer, an InGaAsP optical waveguide layer and an insulating film are sequentially stacked, and then reacting ion etching, and growing the InP buffer layer after the reaction ion etching Growing an easy crystal surface and a (100) crystal surface, and growing the InP buffer layer to form an optical modulator in which an InGaAsP / InGaAsP multilayer quantum well structure layer, an InGaAsP optical waveguide layer, and an InP clad layer are sequentially stacked; Characterized in that consisting of steps.

또한, 반도체 레이저를 성장하는 단계와, 상기 반도체 레이저 성장 후 InP 버퍼층을 성장하는 단계와, 광변조기의 흡수층으로 사용될 변형 보상 InGaAsP/InGaAsP 다층 양자우물 구조층을 성장하는 단계와, 3차 반절연 InP 및 4차 p-InP 클래드층을 성장하여 매립형의 광도파로를 형성하는 단계와, 전극 형성을 위하여 p와 n 옴 전극을 형성하는 단계와, 광변조기 부분의 앞면에 무반사 박막 코팅을 형성하는 단계로 이루어진 것을 특징으로 한다.The method also includes growing a semiconductor laser, growing an InP buffer layer after the semiconductor laser growth, growing a strain compensation InGaAsP / InGaAsP multilayer quantum well structure layer to be used as an absorption layer of an optical modulator, and tertiary semi-insulating InP. And growing a quaternary p-InP cladding layer to form a buried optical waveguide, forming p and n ohmic electrodes to form an electrode, and forming an antireflective thin film coating on the front of the optical modulator. Characterized in that made.

제1도는 종래의 광변조기 직접소자의 단면도.1 is a cross-sectional view of a conventional optical modulator direct element.

선택적 재성장 방법으로 변형 보상(strain compensated) InGaAsP/InGaAsP 다층 양자우물 구조의 단면도.Cross-sectional view of strain compensated InGaAsP / InGaAsP multilayer quantum well structure with selective regrowth method.

제2도는 본 발명에 따른 광변조기 직접소자의 단면도.2 is a cross-sectional view of an optical modulator direct element according to the present invention.

제3도는 본 발명에 따른 광변조기 직접소자의 또 다른 실시예를 나타낸 단면도.3 is a cross-sectional view showing another embodiment of an optical modulator direct element according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 분포 피드백(distribute Feedback: DFB) 레이저(laser)의 활성층1: Active layer of distributed feedback (DFB) laser

2 : 분포 피드백(DFB) 레이저를 위한 회절격자층2: diffraction grating layer for distributed feedback (DFB) laser

3 : 분포 피드백(DFB) 레이저 부분의 InGaAsP 광도파로층3: InGaAsP optical waveguide layer in the distributed feedback (DFB) laser portion

4 : 선택적 성장을 위한 절연막 5 : 광변조기 부분의 InGaAsP 광도파로층4 insulating film for selective growth 5 InGaAsP optical waveguide layer in optical modulator

6 : 결정결함이 발생한 변형 보상 InGaAsP/InGaAsP 다층 양자우물 구조층6: Deformation Compensation InGaAsP / InGaAsP Multi-Layer Quantum Well Structure Layer

7 : 결정 결함이 발생한 광변조기 윗부분의 InGaAsP 광도파로층7: InGaAsP optical waveguide layer on top of optical modulator with crystal defect

8 : 결정 결함이 없는 버트 커플링에서 멀리 떨어진 부분의 변형 보상 InGaAs P/InGaAsP 다층 양자우물 구조층8: InGaAs P / InGaAsP multi-layer quantum well structure layer of strain compensation far away from butt coupling without crystal defect

9 : 광변조기 부분의 InP 클래드(clad)층 10 : InP의 (011)결정면9: InP clad layer of the optical modulator part 10: (011) Crystal plane of InP

11 : (011)과 (100)면의 형성을 위한 InP 버퍼(buffer)층11: InP buffer layer for formation of (011) and (100) planes

12 : InP의 (100)결정면12: (100) crystal plane of InP

13 : InP 버퍼층에 의하여 결정 결합 발생이 발생하지 않는 변형 보상 InGaAsP/InGaAsP 다층 양자우물 구조층13: Strain compensation InGaAsP / InGaAsP multilayer quantum well structure layer in which crystal bond does not occur by InP buffer layer

14 : 결정 결함이 없는 광변조기 부분의 InGaAsP 광도파로층14 InGaAsP optical waveguide layer in the optical modulator portion without crystal defect

15 : Cr/Au를 사용한 n형 옴 금속 16 : Ti/Pt/Au를 사용한 p형 옴 금속15: n-type ohmic metal using Cr / Au 16: p-type ohmic metal using Ti / Pt / Au

17 : Ti/Pt/Au를 사용한 p형 옴 금속17: p-type ohmic metal using Ti / Pt / Au

18 : 유전체 박막 무반사 코팅(coating)층 19 : 분포 피드백 레이저 영역18: dielectric thin film antireflective coating layer 19: distributed feedback laser region

20 : 광변조기 영역20: optical modulator area

본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.The present invention will be described in detail with reference to the accompanying drawings.

제2도는 본 발명에 따른 광변조기 직접소자의 단면도이다. 회절 격자층(2), 활성층(1), InGaAsP 광도파로층(3) 및 절연막(4)이 순차적으로 적층된 반도체 레이저(19)를 반응 이온 식각하게 된다. 상기 반도체 레이저(19)의 반응 이온 식각 후 InP 버퍼층(11)을 성장하게 된다. 이때, 상기 InP 버퍼층(11) 성장시 InP의 (011)결정면(10) 및 InP의 (100)결정면(12)이 생성된다. 상기 InP 버퍼층(11)을 성장하여 성장이 용이한 (011)결정면(10)과 (100)결정면(12)을 나타나게 한 후, 결정 결함 없이 InGaAsP/InGaAsP 다층 양자우물 구조층(13), InGaAsP 광도파로층(14) 및 InP 클래드층(9)이 순차척으로 적층된 광변조기를 성장하게 된다. 이러한 InP 버퍼층(11)성장에 의한 결정면 생성 방법은 성장 온도와 성장 압력이 중요한 변수가 된다. 본 발명에서는 성장 온도를 610내지 627, 성장 압력은 40 내지 100 토르(Torr)로 한다.2 is a cross-sectional view of an optical modulator direct element according to the present invention. Reactive ion etching is performed on the semiconductor laser 19 in which the diffraction grating layer 2, the active layer 1, the InGaAsP optical waveguide layer 3, and the insulating film 4 are sequentially stacked. After the reactive ion etching of the semiconductor laser 19, the InP buffer layer 11 is grown. At this time, when the InP buffer layer 11 is grown, an InP (011) crystal plane 10 and an InP (100) crystal plane 12 are generated. After the InP buffer layer 11 is grown to show the easy growth (011) crystal surface (10) and (100) crystal surface (12), the InGaAsP / InGaAsP multilayer quantum well structure layer (13), InGaAsP light without crystal defects The waveguide layer 14 and the InP cladding layer 9 are grown in order to grow a light modulator. In the InP buffer layer 11 growth method, the growth temperature and the growth pressure become important variables. In the present invention, the growth temperature is 610 To 627 The growth pressure is 40 to 100 Torr.

실험결과 위의 성장조건과 다른 경우에는 (011)결정면과 (100)결정면이 나타나지 않았다. 또한 InP 버퍼층의 두께는 0.5내지 0.8정도이며 이보다 얇은 경우는 (011)결정면과 (100)결정면이 제대로 나타나지 않고 이보다 두꺼우면 (311)면이 나타나기 시작하여 결정 결함이 다시 발생하며 반도체 레이저와 광변조기 사이의 InP층에 의한 반사로 광결합 효율이 감소하게 된다.Experimental results showed that (011) crystal plane and (100) crystal plane did not appear under the above growth conditions. InP buffer layer thickness is 0.5 To 0.8 If it is thinner than this, the (011) crystal plane and the (100) crystal plane do not appear properly. If it is thicker than this, the (311) plane starts to appear, and crystal defects occur again. Coupling efficiency is reduced.

제3도는 본 발명에 따른 광변조기 직접소자의 또 다른 실시예를 나타낸 단면도이다.3 is a cross-sectional view showing yet another embodiment of an optical modulator direct element according to the present invention.

반도체 레이저와 광변조기를 버트 커플링(Butt-coupling) 한 광변조기 집적소자의 단면도이다. 먼저 반도체 레이저(19)를 1차로 성장한 후 InP 버퍼층(11)을 성장하게 된다. 이후, 광변조기(20)의 흡수층으로 사용될 변형 보상(strain compensated) InGaAsP/InGaAsP 다층 양자우물 구조층(13)를 성장하고, 3차 반절연 InP와 4차 p-InP 클래디(clad)층을 성장하여 매립형의 광도파로를 형성한다. 그리고 전극 형성을 위하여 P와 n 옴 전극(15, 16 및 17)을 증착한 후 마지막으로 광변조기 부분의 앞면에 무반사 박막 코팅(coating)(18)을 한다.A cross-sectional view of an optical modulator integrated device butt-coupling a semiconductor laser and an optical modulator. First, the semiconductor laser 19 is grown first, and then the InP buffer layer 11 is grown. Thereafter, a strain compensated InGaAsP / InGaAsP multilayer quantum well structure layer 13 to be used as an absorbing layer of the optical modulator 20 is grown, and a third semi-insulating InP and a fourth p-InP clad layer are formed. Growing to form a buried optical waveguide. P and n ohmic electrodes 15, 16, and 17 are deposited to form an electrode, and then an antireflective thin film coating (coating) 18 is formed on the front surface of the optical modulator.

상술한 바와 같이 본 발명에 의하면 분포 피드백 레이저와 전계 흡수형 광변조기 사이에 결함없이 버트 커플링하기 위해 광변조기 성장층 전에 InP 버퍼층을 성장 시키므로써, InP 버퍼층 위에 성장되는 InGaAsP/InGaAsP 다층 양자우물 구조층의 결정 결함을 제거 할 수 있는 탁월한 효과가 있다.As described above, according to the present invention, an InGaAsP / InGaAsP multilayer quantum well structure is grown on an InP buffer layer by growing an InP buffer layer before the optical modulator growth layer for butt-free coupling between the distributed feedback laser and the field absorption type optical modulator. There is an excellent effect to eliminate the crystal defects of the layer.

Claims (4)

회절 격자층, 활성층, InGaAsP 광도파로층 및 절연막이 순차적으로 적층된 반도체 레이저를 성장한 후 반응 이온 식각하는 단계와, 상기 반응 이온 식각 후 InP 버퍼층을 성장하여 성장이 용이한 (011)결정면과 (100)결정면을 성장하는 단계와, 상기 InP 버퍼층을 성장한 후 InGaAsP/InGaAsP 다층 양자우물 구조층, InGaAsP 광도파로층 및 InP 클래드층이 순차적으로 적층된 광변조기를 형성하는 단계로 이루어진 것을 특징으로 하는 광변조기 직접소자 제조 방법.Growing a semiconductor laser in which a diffraction grating layer, an active layer, an InGaAsP optical waveguide layer, and an insulating film are sequentially stacked, and then reacting ion etching, and growing an InP buffer layer after the reaction ion etching and (100) Growing an InP buffer layer, and forming an optical modulator in which an InGaAsP / InGaAsP multilayer quantum well structure layer, an InGaAsP optical waveguide layer, and an InP clad layer are sequentially stacked. Direct element manufacturing method. 제1항에 있어서, 상기 InP 버퍼층 성장에 의한 결정면 생성 방법은 성장 온도를 610내지 627로 하여 성장하는 것을 특징으로 하는 광변조기 직접소자 제조 방법.The method of claim 1, wherein the crystal surface generation method by growing the InP buffer layer has a growth temperature of 610. To 627 Optical modulator direct element manufacturing method characterized in that the growth. 제1항에 있어서, 상기 InP 버퍼충 성장에 의한 결정면 생성 방법은 성장 압력을 40 내지 100 토르로 하여 성장 하는 것을 특징으로 하는 광변조기 직접소자 제조 방법.The method of claim 1, wherein the method for producing a crystal plane by InP buffer filling growth is grown to a growth pressure of 40 to 100 Torr. 반도체 레이저를 성장하는 단계와, 상기 반도체 레이저 성장 후 InP 버퍼층을 성장하는 단계와, 광변조기의 흡수층으로 사용될 InGaAsP/InGaAsP 다층 양자우물 구조층을 성장하는 단계와, 3차 반절연 InP 및 4차 p-InP 클래드층을 성장하여 매립형의 광도파로를 형성하는 단계와, 전극 형성을 위하여 p와 n 옴 전극을 형성하는 단계와, 광변조기 부분의 앞면에 무반사 박막 코팅을 형성하는 단계로 이루어진 것을 특징으로 하는 광변조기 직접소자 제조 방법.Growing a semiconductor laser, growing an InP buffer layer after the semiconductor laser growth, growing an InGaAsP / InGaAsP multilayer quantum well structure layer to be used as an absorption layer of an optical modulator, tertiary semi-insulating InP and quaternary p Growing an InP clad layer to form a buried optical waveguide, forming p and n ohmic electrodes to form an electrode, and forming an antireflective thin film coating on the front side of the optical modulator. Optical modulator direct element manufacturing method.
KR1019960040113A 1996-09-16 1996-09-16 Method of manufacturing optical modulator KR100212456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960040113A KR100212456B1 (en) 1996-09-16 1996-09-16 Method of manufacturing optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960040113A KR100212456B1 (en) 1996-09-16 1996-09-16 Method of manufacturing optical modulator

Publications (2)

Publication Number Publication Date
KR19980021301A KR19980021301A (en) 1998-06-25
KR100212456B1 true KR100212456B1 (en) 1999-08-02

Family

ID=19473877

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960040113A KR100212456B1 (en) 1996-09-16 1996-09-16 Method of manufacturing optical modulator

Country Status (1)

Country Link
KR (1) KR100212456B1 (en)

Also Published As

Publication number Publication date
KR19980021301A (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US5859866A (en) Photonic integration using a twin waveguide structure
JP2842292B2 (en) Semiconductor optical integrated device and manufacturing method
WO2011122058A1 (en) Optical semiconductor integrated element and method for producing same
KR100369329B1 (en) Fabrication method of defectless and anti-reflection spot size converted optical devices
JP3061169B2 (en) Semiconductor laser
KR100212456B1 (en) Method of manufacturing optical modulator
KR100249812B1 (en) A fabrication method and device of modulator integrated dfb laser using butt-coupling
US6363093B1 (en) Method and apparatus for a single-frequency laser
JP2907234B2 (en) Semiconductor wavelength tunable device
CN108808442B (en) Multi-wavelength distributed feedback semiconductor laser array and preparation method thereof
JPH09275240A (en) Waveguide optical device and forming method thereof
JPH08292336A (en) Production of optical semiconductor integrated circuit
JP3466826B2 (en) Semiconductor optical device with multiple types of active layers with different polarization modes with superior gain
JPH06268316A (en) Semiconductor optical element
KR100198424B1 (en) Optical modulator integrated device with vertical taper spot size converter and fabricating method for the same
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
KR100228396B1 (en) Method of manufacturing laser device
KR100204567B1 (en) Electro-absorption type optical alterator and production method thereof
JP2001148542A (en) Optical semiconductor device, manufacturing method therefor and optical communication apparatus
JP3387720B2 (en) Polarization modulation semiconductor laser and method of manufacturing the same
JP2000049102A (en) Semiconductor optical integrated element, optical communication module and optical communication system using the same, and manufacture of them
JP2917787B2 (en) Embedded semiconductor optical waveguide device and method of manufacturing the same
EP1431801A2 (en) Integrated optical apparatus
CN114512896A (en) Semiconductor light source and preparation method
JPH084178B2 (en) Method for manufacturing distributed Bragg reflection semiconductor laser

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080428

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee