KR100211587B1 - The method of non-electric cu coating for hydrogen storage ti-zr alloy powder - Google Patents
The method of non-electric cu coating for hydrogen storage ti-zr alloy powder Download PDFInfo
- Publication number
- KR100211587B1 KR100211587B1 KR1019960035594A KR19960035594A KR100211587B1 KR 100211587 B1 KR100211587 B1 KR 100211587B1 KR 1019960035594 A KR1019960035594 A KR 1019960035594A KR 19960035594 A KR19960035594 A KR 19960035594A KR 100211587 B1 KR100211587 B1 KR 100211587B1
- Authority
- KR
- South Korea
- Prior art keywords
- plating
- hydrogen storage
- alloy powder
- storage alloy
- solution
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Powder Metallurgy (AREA)
Abstract
가. 청구범위에 기재된 발명이 속한 기술분야end. The technical field to which the invention described in the claims belongs
티타늄계와 지르코늄계 수소저장합금분말의 무전해 구리도금법.Electroless Copper Plating of Titanium and Zirconium Hydrogen Storage Alloy Powders.
나. 그 발명이 해결하려고 하는 기술과제I. The technical problem that the invention is trying to solve
도금조건에 크게 영향을 받지 않으며, 도금속도가 매우 빠르며, 환경오염의 위험이 적은 H2SO4, HCl 또는 HNO3가 첨가된 도금액을 이용하는 산성 무전해 구리 도금법이 개발되긴 하였으나 위 도금액을 이용하여 티타늄계와 지르코늄계 수소저장합금분말의 도금방법은 현재까지 안출된 바 없음.The acidic electroless copper plating method was developed using a plating solution containing H 2 SO 4 , HCl or HNO 3 , which is not significantly affected by plating conditions, has a very high plating speed, and has a low risk of environmental pollution. Titanium and zirconium-based hydrogen storage alloy powder plating method has not been devised to date.
다. 그 발명의 해결방법의 요지All. Summary of the Solution of the Invention
Ti계와 Zr계 수소저장합금분말을 구리도금하기 위한 도금액 중에 주첨가제로 불산(HF)을 사용하고, 불산의 양을 조절하기 위한 보충첨가제로는 H2SO4, HCl, HNO3를 첨가하므로써 합금분말이 도금액 중에서 용해, 이온화(산화)되면서 도금액 중의 구리 이온(Cu2+)이 합금분말의 표면에 환원 석출되도록 하는 것임.Hydrofluoric acid (HF) is used as a main additive in the plating solution for copper plating Ti-based and Zr-based hydrogen storage alloy powders, and H 2 SO 4 , HCl and HNO 3 are added as supplementary additives to control the amount of hydrofluoric acid. As the alloy powder is dissolved and ionized (oxidized) in the plating liquid, copper ions (Cu 2+ ) in the plating liquid are reduced and precipitated on the surface of the alloy powder.
라. 발명의 중요한 용도la. Important uses of the invention
티타늄계와 지르코늄계 수소저장합금분말의 구리도금Copper Plating of Titanium and Zirconium Hydrogen Storage Alloy Powders
Description
본 발명은 티타늄계와 지르코늄계 수소저장합금분말의 무전해 구리도금법에 관한 것이다.The present invention relates to an electroless copper plating method of titanium-based and zirconium-based hydrogen storage alloy powders.
종래 수소저장합금은 충전식 전지의 음극재료나 금속수소화물 열펌프용으로 사용하기 위한 것이다. 이러한 수소저장합금 재료로써는 일반적으로 희토류-니켈계, 티타늄계(Ti계), 지르코늄계(Zr계), 마그네슘계 등을 들 수 있다. 또한 이러한 수소저장합금 분말들을 구리도금하여 금속수소화물 열펌프 등에 사용할 경우 열전달속도가 빠르고, 합금분말의 분산 및 역류등을 억제하는 효과가 있으며, 니켈-수소전지의 음극재료로 이용하는 경우 전극 수명을 향상시키며 열전도도 및 전기전도도의 향상으로 인한 합금의 이용효율이 증가하며, 자기 방전이 억제되는 등의 특성을 가지고 있다. 그러나 종래의 히토류-니켈계, 티타늄계 및 지르코늄계 수소저장합금분말의 무전해 구리도금 방법은 합금분말을 PdCl2+HCl 수용액과 SnCl2+HCl 수용액에서 전처리를 하고 난 후 CuSO4+CH2O+EDTA+NaOH의 알칼리 수용액 중에서 도금하는 방법 등이 있으나, 상기 방법은 도금시간이 오래 걸리며, 도금조건에 약간의 변화라도 있게 되면 도금상태가 좋지 않게 되며, 유독성화학약품(PdCl2, CH2O, NaOH)을 많이 사용하기 때문에 환경오염을 발생할 수도 있다. 따라서 희토류-니켈계 수소저장합금분말의 경우 H2SO4, HCl 또는 HNO3가 첨가된 도금액을 이용하므로 도금조건에 크게 영향을 받지 않으며, 도금속도가 매우 빠르며, 환경오염의 위험이 적은 산성무전해 구리 도금법이 개발되긴 하였으나 티타늄계와 지르코늄계의 수소저장합금분말의 경우 위 도금액을 이용한 도금 방법은 현재까지 안출된 바 없다.Conventional hydrogen storage alloys are intended for use as negative electrode materials or metal hydride heat pumps in rechargeable batteries. Examples of such hydrogen storage alloy materials include rare earth-nickel, titanium (Ti), zirconium (Zr), magnesium and the like. In addition, when the hydrogen storage alloy powders are plated with copper and used in a metal hydride heat pump, the heat transfer speed is high, and the dispersion and backflow of the alloy powder is suppressed. When used as a negative electrode material of a nickel-hydrogen battery, the electrode life is extended. It improves, and the use efficiency of the alloy is increased by the improvement of thermal conductivity and electrical conductivity, and self-discharge is suppressed. However, in the conventional electroless copper plating method of the hydrogen-nickel-based, titanium-based and zirconium-based hydrogen storage alloy powder, CuSO 4 + CH 2 after pretreating the alloy powder in PdCl 2 + HCl solution and SnCl 2 + HCl solution There is a method of plating in an aqueous alkaline solution of O + EDTA + NaOH, etc., but the method takes a long plating time, if a slight change in the plating conditions, the plating state is not good, toxic chemicals (PdCl 2 , CH 2 O, NaOH) is used a lot, it may cause environmental pollution. Therefore, in case of rare earth-nickel hydrogen storage alloy powder, H 2 SO 4 , HCl or HNO 3 is added, so it is not influenced by plating conditions, plating rate is very fast, and acidic radioactive has little risk of environmental pollution. Although the copper plating method was developed, the plating method using the plating solution has not been devised until now in the case of titanium-zirconium-based hydrogen storage alloy powder.
따라서 본 발명은 Ti계와 Zr계 수소저장합금분말의 종래 무전해 구리도금법이 가지는 폐단을 해결하기 위한 것으로 Ti계와 Zr계 수소저장합금분말을 구리도금하는데 있어서 주첨가제로 불산(HF)을 사용하고, 불산의 양을 조절하기 위한 보충첨가제를 첨가하므로써 합금분말이 도금액 중에서 용해, 이온화(산화)되면서 도금액 중의 구리 이온(Cu2+)이 합금분말의 표면에 환원 석출되도록 하므로써 희토류-니켈계 수소저장합금에서처럼 빠른 속도의 도금이 이루어지며, 환경오염의 문제가 적은 부전해 구리도금이 가능하도록 한 것이다.Accordingly, the present invention is to solve the closed end of the conventional electroless copper plating method of Ti-based and Zr-based hydrogen storage alloy powders, and uses hydrofluoric acid (HF) as a main additive in copper plating Ti-based and Zr-based hydrogen storage alloy powders. By adding a supplementary additive to control the amount of hydrofluoric acid, the rare earth-nickel-based hydrogen is dissolved by the alloy powder dissolving and ionizing (oxidizing) in the plating liquid, thereby reducing the precipitation of copper ions (Cu 2+ ) on the surface of the alloy powder. As with the storage alloys, the plating is done at a high speed, and the electroless copper plating is possible with less environmental pollution.
본 발명에 있어서 사용되는 도금액은 다음과 같이 선택하여 사용할 수 있다.The plating liquid used in this invention can be selected and used as follows.
(1) CuSO4+HF 수용액(0.1-20g CuSO4/ 100+0.1-5HF수용액)(1) CuSO 4+ HF aqueous solution (0.1-20g CuSO 4/100 + 0.1-5 HF aqueous solution)
(2) CuSO4+H2SO4+HF수용액(0.1-20g CuSO4/ 100+0.1-5(HF용액+H2SO4)) (2) CuSO 4 + H 2 SO 4 + HF aqueous solution (0.1-20g CuSO 4/100 + 0.1-5 (HF solution + H 2 SO 4 ))
이 때 H2SO4대신에 다른 종류의 산(HCl, HNO3)을 첨가할 수 있으며, 또한 이들의 혼합용액을 첨가할 수도 있다. (예 H2SO4+ HCl+ HNO3수용액).In this case, other types of acids (HCl, HNO 3 ) may be added instead of H 2 SO 4 , and a mixed solution thereof may also be added. (Eg H 2 SO 4 + HCl + HNO 3 aqueous solution).
또한 일반적으로 무전해 구리 도금에 이용되는 합금분말은 다음과 같이 분류할 수 있으며, 이 중에서 선택하여 사용하기로 한다.In addition, alloy powders generally used for electroless copper plating can be classified as follows, and will be selected from these.
(1) 표면 산화 정도가 약한 합금분말; 수소화 반응에 의해 분쇄한 분말, 수소화 반응+수소 또는 불활성 기체 분위기에서 기계적 분쇄한 분말, 수소 또는 불활성 기체 분위기에서 기계적 분쇄한 분말.(1) alloy powder with a weak surface oxidation degree; Powder pulverized by the hydrogenation reaction, powder pulverized mechanically in a hydrogenation reaction + hydrogen or an inert gas atmosphere, powder pulverized mechanically in a hydrogen or inert gas atmosphere.
(2) 표면 산화 정도가 큰 합금분말; 공기 중에서 기계적 분쇄한 분말, 수소화 반응에 의해 또는 불활성 기체 분위기에서 분쇄하였으나 공기와의 접촉으로 표면 산화가 심하게 일어난 분말.(2) alloy powder having a high degree of surface oxidation; Powders mechanically pulverized in air, powders that have been ground by hydrogenation or in an inert gas atmosphere but have undergone severe surface oxidation due to contact with air.
이처럼 전기한 다른 조건의 도금액과 합금분말을 선택하여 실시한 본 발명 무전해 구리 도금법을 설명하면 다음과 같다.The electroless copper plating method of the present invention performed by selecting the plating solution and the alloy powder under the other conditions described above is as follows.
[제1실시예][First Embodiment]
본 발명에 따른 실험조건Experimental conditions according to the present invention
본 발명에 따른 각 실시방법Each method according to the present invention
(a) 시료(1)+도금액(1)(a) Sample (1) + Plating Solution (1)
(b) 시료(2)+도금액(1)(b) Sample (2) + Plating Solution (1)
(c) 시료(1)+도금액(2)(c) Sample (1) + Plating Solution (2)
(d) 시료(2)+도금액(2)(d) Sample (2) + Plating Solution (2)
(e) 시료(1)+도금액(3)(e) Sample (1) + Plating Solution (3)
(f) 시료(2)+도금액(3)(f) Sample (2) + Plating Solution (3)
상기 실시방법(a),(b),(c) 및 (d)에서는 합금분말 시료(1)과 (2)를 도금액(1)과 (2)에 넣고 교반하더라도 도금은 일어나지 않는다.In the above-described methods (a), (b), (c) and (d), even if the alloy powder samples (1) and (2) were put into the plating solutions (1) and (2) and stirred, plating did not occur.
실시방법(e),(f)에서는 합금분말 시료(1)과 (2)를 도금액(3)에 넣고 교반을 해주면 교반해 준 도금액 중의 구리가 완전히 합금분말의 표면에 도금되면서 도금액의 색깔이 청색에서 녹색으로 변한다. 이 때 합금분말의 표면의 산화정도에 따라 도금액(3)의 양을 조절해 준다.In the methods (e) and (f), when the alloy powder samples (1) and (2) were put in the plating solution (3) and stirred, copper in the stirred plating solution was completely plated on the surface of the alloy powder, and the color of the plating solution was blue. Turns green. At this time, the amount of the plating solution 3 is adjusted according to the degree of oxidation of the surface of the alloy powder.
위 각 실시방법에 따른 합금분말의 양과 도금될 구리의 양의 비율은 도금액의 양 또는 도금액 중의 CuSO4양으로 조절할 수 있다.The ratio of the amount of the alloy powder and the amount of copper to be plated according to each of the above embodiments can be controlled by the amount of the plating solution or the amount of CuSO 4 in the plating solution.
각 실시방법 (a),(b),(c),(d),(e),(f)의 도금속도 측정실험Plating rate measurement experiment of each method (a), (b), (c), (d), (e), (f)
각 실시방법 (a),(b),(c),(d),(e),(f)의 도금원리로는 Ti계, Zr계 합금분말이 도금액 중에서 용해, 이온화(산화)되면서 도금액 중의 구리 이온(Cu2+)이 합금분말의 표면에 환원 석출되어 지는 것이다.Plating principles of each of the methods (a), (b), (c), (d), (e), and (f) were performed by dissolving and ionizing (oxidizing) Ti-based and Zr-based alloy powders in the plating solution. Copper ions (Cu 2+ ) are reduced and precipitated on the surface of the alloy powder.
따라서 불산(HF)을 첨가한 도금액은 Ti계, Zr계 수소저장합금분말의 두꺼운 산화피막을 벗겨내어 깨끗한 합금표면과 도금액이 접촉될 수 있게 하여 합금을 이온화시켜 도금을 가능케 하였다. 또한 수소화반응에 의해 분쇄된 깨끗한 표면을 가진 합금일지라도 Ti계와 Zr계의 산화특성상 빠른 시간내에 두꺼운 산화피막이 형성되므로 불산이 첨가되지 않은 도금액에서는 도금이 일어나지 않았다.Therefore, the plating solution added with hydrofluoric acid (HF) peeled off the thick oxide film of the Ti-based and Zr-based hydrogen storage alloy powders to allow the clean alloy surface to come into contact with the plating solution so as to ionize the alloy to allow plating. In addition, even if the alloy having a clean surface crushed by the hydrogenation reaction, due to the oxidation characteristics of the Ti-based and Zr-based thick oxide film is formed in a short time, plating did not occur in the plating solution without the addition of hydrofluoric acid.
본 발명에 의한 각 실시방법의 도금시간에 따른 도금량의 변화는 아래 표 1과 같다.The change in plating amount according to the plating time of each method according to the present invention is shown in Table 1 below.
이처럼 본 발명에 따른 도금속도를 측정한 결과 교반후 1분 내지 3분 사이에 구리이온이 합금분말의 표면에 90이상 환원 석출되었고, 4분 경과후에는 도금율이 거의 100까지 근접함을 측정할 수 있었다.Thus, as a result of measuring the plating rate according to the present invention, the copper ion is 90 to the surface of the alloy powder between 1 minute and 3 minutes after stirring. Abnormal reduction precipitated, plating rate was nearly 100 after 4 minutes Proximity could be measured until.
이처럼 본 발명은 니켈-금속수소화물 충전식 전지의 음극재료로 사용되는 Ti계와 Zr계 등의 수소저장합금분말의 구리도금에 응용할 수 있으며, 또 금속수소화물 열펌프용 Ti계와 Zr계 등의 수소저장합금분말의 구리도금에 사용할 수 있는 등 수소저장합금을 이용한 거의 모든 분야에 응용 가능한 것이다.As described above, the present invention can be applied to copper plating of hydrogen storage alloy powders such as Ti-based and Zr-based metals used as a cathode material of nickel-metal hydride rechargeable batteries, and Ti-based and Zr-based metal hydride heat pumps. It can be applied to almost all fields using hydrogen storage alloys, such as those used for copper plating of hydrogen storage alloy powders.
상기 실시예에서 전술한 바와 같이 본 발명의 효과는 다음과 같다.As described above in the above embodiment, the effects of the present invention are as follows.
1) 도금 공정이 간단하다.1) The plating process is simple.
2) 도금 비용이 적게 든다.2) Low plating cost.
3) 유독성 약품을 적게 사용한다.3) Use less toxic chemicals.
4) 도금 시간이 단축된다.4) The plating time is shortened.
또 본 발명을 니켈-금속수소화물 충전식 전지에 사용되는 Ti계와 Zr계 등의 수소저장합금분말의 구리도금에 응용할 경우 다음과 같은 잇점이 있다.In addition, the present invention has the following advantages when applied to copper plating of hydrogen storage alloy powders such as Ti-based and Zr-based batteries used in nickel-metal hydride rechargeable batteries.
* 전기 전도도, 열 전도도가 향상된다.* Electrical conductivity, thermal conductivity is improved.
* 충, 방전 싸이클 수명이 증가한다.* Increases the charge and discharge cycle life.
* 충, 방전 속도가 빠르고 에너지 효율이 증가한다.* Fast charging and discharging speed, increasing energy efficiency.
* 자율 방전율이 감속한다.* The autonomous discharge rate slows down.
* 전극 제조시 압착성과 성형성이 좋아진다.* Improved compressibility and formability in electrode production
또한 Ti계와 Zr계 등의 수소저장합금분말의 구리도금하여 금속수소화물 열펌프에 사용할 경우 열전달 속도가 매우 빠르고, 합금분말의 분산 및 역류를 억제하는 효과가 있다. 이와 같은 효과는 Ti계와 Zr계 등의 수소저장합금분말을 수소에너지 저장용, 수소가스 정화장치용 등 다른 분야에 이용할 경우에도 거의 동일한 효과를 얻을 수 있다.In addition, when the copper plating of hydrogen storage alloy powders such as Ti-based and Zr-based and used in the metal hydride heat pump, the heat transfer rate is very fast, it is effective to suppress the dispersion and backflow of the alloy powder. The same effect can be obtained even when the hydrogen storage alloy powders such as Ti and Zr are used in other fields such as hydrogen energy storage and hydrogen gas purifier.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960035594A KR100211587B1 (en) | 1996-08-24 | 1996-08-24 | The method of non-electric cu coating for hydrogen storage ti-zr alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960035594A KR100211587B1 (en) | 1996-08-24 | 1996-08-24 | The method of non-electric cu coating for hydrogen storage ti-zr alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980016078A KR19980016078A (en) | 1998-05-25 |
KR100211587B1 true KR100211587B1 (en) | 1999-08-02 |
Family
ID=19470843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960035594A KR100211587B1 (en) | 1996-08-24 | 1996-08-24 | The method of non-electric cu coating for hydrogen storage ti-zr alloy powder |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100211587B1 (en) |
-
1996
- 1996-08-24 KR KR1019960035594A patent/KR100211587B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980016078A (en) | 1998-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5707761A (en) | Nickel positive electrode and alkaline storage battery using the same | |
WO2009144873A1 (en) | Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery | |
CN104681817A (en) | Nickel-metal hydride secondary battery cathode material | |
CN101476127B (en) | Surface recombination processing method for rare earth-magnesium-nickel based AB3 type hydrogen storage alloy | |
EP0889535B1 (en) | Nickel hydroxide active material for use in alkaline storage cell and manufacturing method of the same | |
KR100211587B1 (en) | The method of non-electric cu coating for hydrogen storage ti-zr alloy powder | |
JP3410534B2 (en) | Metal-hydrogen secondary battery | |
EP0381157B1 (en) | Secondary battery | |
US5630933A (en) | Processes involving metal hydrides | |
JP3553750B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
CN103811725B (en) | The surface treatment method of hydrogen bearing alloy | |
KR930003821B1 (en) | Electroless method for coating the hydrogen storage alloy powder of rare earth-nickel metals with a copper | |
CN106654156A (en) | Preparation method of lithium ion cell negative electrode piece | |
CN100433419C (en) | Hydrogen absorbing alloy for alkaline storage battery, method for manufacturing the same and alkaline storage battery | |
JP3547920B2 (en) | Method for producing hydrogen storage alloy electrode | |
JP3530309B2 (en) | Method for producing hydrogen storage alloy electrode | |
JPH05195008A (en) | Surface treatment of hydrogen storage alloy for alkaline secondary battery and the same battery provided with the treated alloy as electrode | |
JPH08333603A (en) | Hydrogen storage alloy particle and its production | |
JP3261410B2 (en) | Method for producing hydrogen storage electrode | |
JPH1150263A (en) | Production of stabilized hydrogen storage alloy | |
JP3530327B2 (en) | Method for producing hydrogen storage alloy electrode | |
CN1067490C (en) | Surface treatment method for rare-earth-nickel-base hydrogen-storage alloy powder | |
JP3414172B2 (en) | Manufacturing method of hydrogen storage alloy for batteries | |
JP3136960B2 (en) | Method of treating hydrogen storage alloy for batteries | |
JP2001085004A (en) | Alkaline storage battery and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20030922 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |