KR100205533B1 - Manufacturing method of color glass - Google Patents

Manufacturing method of color glass Download PDF

Info

Publication number
KR100205533B1
KR100205533B1 KR1019950055021A KR19950055021A KR100205533B1 KR 100205533 B1 KR100205533 B1 KR 100205533B1 KR 1019950055021 A KR1019950055021 A KR 1019950055021A KR 19950055021 A KR19950055021 A KR 19950055021A KR 100205533 B1 KR100205533 B1 KR 100205533B1
Authority
KR
South Korea
Prior art keywords
substrate
film
glass
color
oxygen gas
Prior art date
Application number
KR1019950055021A
Other languages
Korean (ko)
Other versions
KR970042350A (en
Inventor
정재인
문종호
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950055021A priority Critical patent/KR100205533B1/en
Publication of KR970042350A publication Critical patent/KR970042350A/en
Application granted granted Critical
Publication of KR100205533B1 publication Critical patent/KR100205533B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/252Al
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 진공중에서 유리의 표면에 산화막과 반사막을 형성시켜 착색 유리를 제조하는 방법에 관한 것보다 상세하게는 진공중에서 산소가스의 분위기에서 금속인듐을 증발시켜 유리에 산화막을 형성시키는 것을 특징으로 하는 착색유리의 제조방법에 관한 것이다.The present invention relates to a method of producing colored glass by forming an oxide film and a reflective film on the surface of the glass in vacuum, and more particularly, to form an oxide film on the glass by evaporating metal indium in an atmosphere of oxygen gas in vacuum. It relates to a method for producing colored glass.

Description

착색 유리의 제조 방법Manufacturing method of colored glass

제1도는 본 발명을 설명하기 위한 장치의 개략도.1 is a schematic diagram of an apparatus for illustrating the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 진공실 2 : 증발원1: vacuum chamber 2: evaporation source

3 : 셔터 4 : 기판3: shutter 4: substrate

5 : 가열장치 5' : 기판 홀더5: heating apparatus 5 ': substrate holder

6 : 가스도입구6: gas inlet

본 발명은 진공중에서 유리의 표면에 산화막과 반사막을 형성시켜 착색 유리를 제조하는 방법에 관한 것으로, 보다 상세하게는 진공중에서 산소가스의 분위기에서 금속인듐을 증발시켜 유리에 산화막을 형성시켜 이루어지는 것을 특징으로 하는 착색유리의 제조방법에 관한 것이다.The present invention relates to a method for producing a colored glass by forming an oxide film and a reflective film on the surface of the glass in a vacuum, and more particularly, by forming an oxide film on the glass by evaporating the metal indium in the atmosphere of oxygen gas in a vacuum. It relates to a method for producing colored glass.

착색 유리는 각종 건축물의 창문 및 자동차용 유리 등에 적용하여 실용화되어 있다. 창문에 응용되는 경우에는 단순히 색상만을 내는 칼라유리외에도 에너지 절약을 위한 선택적 광투과막과 무반사 코팅 등이 있다.Colored glass is applied to the window of various buildings, the glass for automobiles, etc., and is utilized. When applied to windows, besides simply colored glass, there are selective light transmitting membranes and anti-reflective coatings for energy saving.

자동차용 유리에는 블루미러나 엘로미러 등의 칼라 유리가 강한 빛의 반사를 방지하기 위한 목적으로 사용되고 있다.In glass for automobiles, colored glass such as a blue mirror or an elomirror is used for the purpose of preventing strong light reflection.

산화막에 의해 유리가 특정 색깔을 나타내는 것은 빛이 투명한 박막의 앞면과 뒷면에서 각각 반사될 때 일으키는 간섭에 의한 것이다. 간섭의 본질을 결정하는 데는 두가지 인자가 작용을 하는데 하나는 광학적 경로차이고 또다른 하나는 위상변화이다. 이 두가지를 고려하면 박막에 의해 생겨나는 간섭의 강도가 극대가 되는 조건은 하기식(I)과 같다.The specific color of the glass by the oxide film is due to interference caused when light is reflected from the front and back sides of the transparent thin film, respectively. Two factors play a role in determining the nature of the interference, one for the optical path difference and the other for phase shift. Considering these two things, the condition under which the intensity of interference generated by the thin film is maximized is as shown in Equation (I) below.

이 때 n은 박막의 굴절률이고 d는 박막의 두께이며 λ는 빛의 파장이다. 따라서 박막의 굴절률과 두께를 적절히 조절하면 원하는 색상의 빛이 반사되게 할 수 있다.Where n is the refractive index of the thin film, d is the thickness of the thin film, and λ is the wavelength of light. Therefore, by properly adjusting the refractive index and thickness of the thin film it is possible to reflect the light of the desired color.

기존의 착색유리를 제조하는데는 습식방법과 스퍼터링 방법이 주종을 이루고 있다. 그러나 최근에는 습식방법이 공해문제 등의 영향으로 점차 사라지고 대부분이 스퍼터링 방법(일본국 특허 제 3287758 호)을 이용하고 있는 실정이다. 스퍼터링은 금속 산화물을 타겟 형상으로 제조한 후 진공실에서 알곤가스를 방전시켜 알곤 이온이 타겟에 강하게 부딪히도록 만들어 증발물질을 타겟으로부터 떼어내어 기판에 피복시키는 방법이다. 그러나 이 방법은 산화물을 미리 타겟 형상으로 만들어야 하므로 생산 원가가 증가한다는 단점을 가지고 있다.Wet and sputtering methods are mainly used to manufacture conventional colored glass. In recent years, however, wet methods have gradually disappeared due to pollution problems, and most of them use sputtering methods (Japanese Patent No. 3287758). Sputtering is a method of manufacturing a metal oxide into a target shape and then discharging argon gas in a vacuum chamber so that the argon ions strongly strike the target, thereby removing the evaporation material from the target and coating the substrate. However, this method has a disadvantage in that the production cost is increased because the oxide must be formed in advance.

본 발명의 목적은 위와 같은 문제점을 해결하기 위한 것으로 증발물질을 산화물이 아닌 금속을 이용하면서 산소가스를 이용하여 산화막을 제조하는 방법을 제공하는 것이다.An object of the present invention to solve the above problems is to provide a method for producing an oxide film using oxygen gas while using a metal other than the evaporation material oxide.

이하 본발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 통상의 진공증착 장치에서 이루어졌다. 제1도는 본 발명의 방법을 설명하기 위한 장치의 개략도이다. 장치를 보면 진공실(1)내에 증발원(2)과 기판홀더 및 가열장치(5), 셔터(3), 그리고 가스도입구(6)등으로 이루어져 있다. 증발원(2)은 통상의 저항가열 증발원이나 전자빔 증발원 등을 사용할 수 있다. 본 발명에서 사용한 금속들은 용융점이 낮고 반응성이 적기 때문에 저항가열 증발원을 사용하였다. 한편, 본 발명에 사용된 유리기판은 다른 물질이 첨가되지 않은 투명 유리 기판을 사용하였으며, 착색을 위해서는 반사층이 필요하므로 알루미늄이나 은과 같은 물질을 코팅하여 기판을 사용하였다.The present invention has been made in a conventional vacuum deposition apparatus. 1 is a schematic diagram of an apparatus for explaining the method of the present invention. The apparatus consists of an evaporation source 2, a substrate holder and heating device 5, a shutter 3, and a gas inlet 6 in the vacuum chamber 1. As the evaporation source 2, a conventional resistance heating evaporation source, an electron beam evaporation source, or the like can be used. Since the metals used in the present invention have a low melting point and low reactivity, a resistance heating evaporation source was used. Meanwhile, the glass substrate used in the present invention used a transparent glass substrate to which no other material was added. Since the reflective layer is required for coloring, the glass substrate was coated with a material such as aluminum or silver.

우선, 유리 기판을 대기중에서 충분히 전처리를 실시한다. 전처리는 주로 유기 용매를 이용한 초음파세척 방법을 이용하였다. 특히, 유리제품의 경우 전처리 후 얼룩이 많이 남게 되므로 주의를 요한다. 본 발명에서는 끊는 알콜을 이용하여 최종적으로 얼룩을 제거하는 방법을 이용하였다.First, the glass substrate is sufficiently pretreated in the air. Pretreatment was mainly performed using an ultrasonic cleaning method using an organic solvent. In particular, glass products require a lot of stains after pretreatment. In the present invention, a method of finally removing the stain using a breaking alcohol was used.

이렇게 전처리된 유리 기판(4)을 기판홀더(5')에 장착하고 진공펌프(도시하지 않음)를 이용하여 진공실(1)을 배기 시킨다. 진공실(1)의 진공도가 10-5토르 이하가 되면 기판(4)의 청정을 위해 아르곤 가스를 주입하고 기판(4)에 음의 전압을 인가하면 글로우방전이 발생되는데 이 글로우방전 영역에 존재하는 아르곤 이온이 기판으로 가속되어 기판(4)이 청정되는 것이다.The pre-treated glass substrate 4 is mounted on the substrate holder 5 'and the vacuum chamber 1 is evacuated using a vacuum pump (not shown). When the vacuum degree of the vacuum chamber 1 is 10 −5 Torr or less, when argon gas is injected to clean the substrate 4 and a negative voltage is applied to the substrate 4, a glow discharge is generated, which is present in the glow discharge region. Argon ions are accelerated to the substrate to clean the substrate 4.

기판(4)의 청정은 별도로 실시하지 않아도 되나 기판의 오염이 심한 경우에 한해 실시하는 것이 좋다.The substrate 4 may not be cleaned separately, but should be performed only when the contamination of the substrate is severe.

다음 단계는 기판을 가열하는 단계이다. 기판의 가열은 세 가지 목적에서 사용되었다. 하나는 기판에 남아있는 수화물이나 유기물과 같은 불순물을 제거하는 것이며, 두 번째는 기판을 활성화시켜 피막과 기판사이의 밀착성을 향상시키고자 하는 것이다. 마지막으로 본 발명의 중요한 부분중의 하나인 산화물의 형성에너지를 높여주고자 하는 것이다. 즉, 산화물의 결정화 및 화학양론을 조절하여 산화물의 전체적인 특성을 향상시키고자 하는 것이다. 본 발명에서 기판의 온도 조절은 할로겐램프가 장착된 기판가열장치(5)를 이용하였다. 기판의 온도는 200∼400℃가 적당한데 그 이유는 다음과 같다. 기판온도가 200℃이하가 되면 산화인듐의 결정화가 충분히 일어나지 않아 피막의 색상이 균일하지 못하고 400℃ 이상이 되면 산화인듐의 재증발에 의해 막형성 효율이 현저히 저하되기 때문이다. 기판온도가 올라가 원하는 온도로 안정화되면 가스도입구(6)를 통해 산소가스를 주입하면서 증발원에 전원을 공급하여 금속을 증발시킨다. 증발율이 일정한 상태에 이르면 셔터를 열어 원하는 두께의 산화막을 형성시킨다. 상기 산소가스의 압력은 1×10-4∼5×10-3토르로 제한하는 것이 바람직한데 그 이유는 다음과 같다. 산소가스의 압력이 1×10-4토르 이하가 되면 막중에 산소의 성분이 부족하여 색상이 고르지 못하기 때문이며, 5×10-3토르 이상이 되면 가스의 산란에 의해 증발율이 현저히 낮아지면서 막의 특성도 저하되기 때문이다. 상기 금속의 증발율은 초당 1∼5Å으로 제한하는 것이 바람직한데 그 이유는 다음과 같다. 금속의 증발율이 1Å이하가 되면 증발율이 낮아 막형성의 효율이 떨어지고, 5Å이상이 되면 막 중의 금속 성분이 과다하여 피막이 검게되는 현상이 나타나기 때문이다.The next step is to heat the substrate. Heating of the substrate was used for three purposes. One is to remove impurities such as hydrates and organic matter remaining on the substrate, and the second is to activate the substrate to improve the adhesion between the film and the substrate. Finally, it is intended to increase the formation energy of oxide, which is one of the important parts of the present invention. In other words, it is to improve the overall characteristics of the oxide by controlling the crystallization and stoichiometry of the oxide. In the present invention, the temperature control of the substrate used a substrate heating apparatus 5 equipped with a halogen lamp. The temperature of a board | substrate is suitable for 200-400 degreeC, for the following reason. This is because when the substrate temperature is 200 ° C. or less, crystallization of indium oxide does not sufficiently occur, and the color of the film is not uniform, and when the temperature becomes 400 ° C. or more, the film formation efficiency is remarkably decreased by redevaporation of indium oxide. When the substrate temperature rises and stabilizes to a desired temperature, the gas is injected through the gas introduction port 6 to supply power to the evaporation source to evaporate the metal. When the evaporation rate reaches a constant state, the shutter is opened to form an oxide film having a desired thickness. The pressure of the oxygen gas is preferably limited to 1 × 10 -4 to 5 × 10 -3 Torr, for the following reasons. If not due to the pressure of the oxygen gas is 1 × 10 -4 Torr or less to the film out of components of the oxygen uneven color, 5 × 10 -3 Torr or more when As is remarkably lowered by the evaporation rate of the gas scattering film characteristics It is because also falls. The evaporation rate of the metal is preferably limited to 1-5 kPa per second, for the following reason. This is because when the evaporation rate of the metal is 1 kPa or less, the evaporation rate is low and the efficiency of film formation is lowered. When the evaporation rate of the metal is 5 kPa or more, the metal component in the film is excessive and the film becomes black.

이하 본 발명을 실시예를 통해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1]Example 1

통상의 진공증착기의 진공실(1)에 증발원(2)을 설치하고 가스도입구(6)를 통해 산소가스를 주입하여 반사층으로 알루미늄이 코팅된 유리(코닝 #2947)상에 산화막을 제조하였다. 진공실(1)을 열어 초음파 세척 등을 통해 미리 전처리된 유리를 기판홀더(5)에 설치하고 증발물질을 인듐으로 선택하여 증발원에 넣은 다음, 유회전펌프와 부스터펌프를 사용하여 10-2토르까지 초기 배기를 하였다. 그 다음 유확산 펌프를 사용하여 10-5토르 이하로 배기하였다. 원하는 진공도를 얻은 후 기판에 존재하는 불순물을 제거하고 기판을 청정시키기 위하여 아르곤 가스 분위기에서 기판에 약 500V의 전압을 걸어 글로우방전 청정을 실시하였다. 기판청정이 끝나고 다시 진공도가 10-5토르 이하가 된 후 기판 가열장치(5)를 이용하여 기판의 온도를 300℃로 조절하였다. 기판(4)의 온도가 안정화된 후 가스도입구(6)를 통해 산소가스를 주입하여 진공실(1)의 산소압력을 3×10-4토르로 맞춘 다음 증발원(2)에 300Å의 전류를 흘려 증발율을 1Å으로 맞추고 셔터(3)를 열어 유리기판(4) 상에 산화막을 제조하였다. 본 실시예에서는 식(I)에 의해 산화막의 두께를 746Å로 제조하여 붉은 색의 착색유리를 만들었다. 산화막 형성 후 육안으로 피막의 색상을 관찰하고, 주사 전자현미경과 오젠 전자분광분석기를 통해 피막의 특성 및 상태를 측정하여 하기 표 1에 기재하였다.An evaporation source 2 was installed in a vacuum chamber 1 of a conventional vacuum evaporator, and oxygen gas was injected through a gas inlet 6 to prepare an oxide film on aluminum coated glass (Corning # 2947) as a reflective layer. By opening the vacuum chamber (1) installing the pre-pre-treated glass through the ultrasonic cleaning such as the substrate holder 5 and using the following into the evaporation source by selecting the evaporation material as indium, oil rotary pump and a booster pump to 10-2 Torr Initial exhaust was performed. A diffusion pump was then used to evacuate to less than 10 -5 Torr. After the desired vacuum degree was obtained, glow discharge cleaning was performed by applying a voltage of about 500 V to the substrate in an argon gas atmosphere to remove impurities present in the substrate and to clean the substrate. After the substrate was cleaned and the vacuum degree again became 10 −5 Torr or less, the temperature of the substrate was adjusted to 300 ° C. using the substrate heating apparatus 5. After the temperature of the substrate 4 is stabilized, oxygen gas is injected through the gas inlet 6 to adjust the oxygen pressure of the vacuum chamber 1 to 3 × 10 -4 Torr, and then flow a 300 mA current into the evaporation source 2. An oxide film was prepared on the glass substrate 4 by setting the evaporation rate to 1 Pa and opening the shutter 3. In the present Example, the thickness of the oxide film was manufactured at 746 kPa by Formula (I) to make red colored glass. After forming the oxide film, the color of the film was visually observed, and the characteristics and state of the film were measured using a scanning electron microscope and an OZ electron spectrometer, and the results are shown in Table 1 below.

[실시예2]Example 2

기판온도를 400℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Except that the substrate temperature was 400 ℃ was carried out in the same manner as in Example 1, and the characteristics of the color and film in the same manner as in Example 1 to observe the characteristics shown in Table 1 below.

[실시예3]Example 3

기판온도를 200℃로 하고 산화막의 두께를 670Å로 조절하여 노랑색으로 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.The substrate temperature was set to 200 ° C. and the thickness of the oxide film was adjusted to 670 kPa, except that it was manufactured in the same manner as in Example 1, and the characteristics of the color and film were observed in the same manner as in Example 1 It described in 1.

[실시예4]Example 4

산소가스 압력을 1×10-3토르로 하고 산화막의 두께를 552Å로 조절하여 파란색으로 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Oxygen gas pressure was adjusted to 1 × 10 -3 Torr and the thickness of the oxide film was adjusted to 552 kPa, which was carried out in the same manner as in Example 1, and the color and film characteristics were the same as in Example 1. It was observed and described in Table 1 below.

[실시예5]Example 5

증발물질로 주석을 사용하였으며, 증발율을 3Å/s로 하고 산소가스 압력을 5×10-4토르로 하고 산화막의 두께를 963Å로 조절하여 자주색을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Tin was used as the evaporation material, except that the evaporation rate was 3 kV / s, the oxygen gas pressure was 5 × 10 -4 Torr, and the thickness of the oxide film was adjusted to 963 kPa to produce purple color. In the same manner as in Example 1, the color and the properties of the coating were observed in Table 1 below.

[실시예6]Example 6

증발물질로 주석을 사용하고 산화막의 두께를 1176Å로 조절하여 초록색을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다. 경우이다.The same process as in Example 1 was carried out except that tin was used as the evaporation material and the thickness of the oxide film was adjusted to 1176 Å to produce green color. It described in 1. If it is.

[비교예1]Comparative Example 1

증발율을 0.5Å/s로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Except that the evaporation rate of 0.5 dl / s was carried out in the same manner as in Example 1, and the characteristics of the color and the film in the same manner as in Example 1 were described in Table 1 below.

[비교예2]Comparative Example 2

증발율을 10Å/s로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Except that the evaporation rate was 10 Å / s was carried out in the same manner as in Example 1, and the characteristics of the color and film in the same manner as in Example 1 to observe the characteristics shown in Table 1 below.

[비교예3]Comparative Example 3

기판온도를 100℃로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Except that the substrate temperature was set to 100 ℃ was carried out in the same manner as in Example 1, and the characteristics of the color and the film in the same manner as in Example 1 are shown in Table 1 below.

[비교예4]Comparative Example 4

산소가스 압력을 7×10-3토르로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Oxygen gas pressure was carried out in the same manner as in Example 1, except that the pressure was 7 × 10 -3 Torr, and the characteristics of color and film were observed in the same manner as in Example 1, and are shown in Table 1 below.

[비교예5]Comparative Example 5

산소가스 압력을 5×10-5토르로 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였고, 실시예 1과 동일한 방법으로 색상 및 피막의 특성을 관찰하여 하기 표 1에 기재하였다.Except that the oxygen gas pressure was 5 × 10 -5 Torr was carried out in the same manner as in Example 1, in the same manner as in Example 1 to observe the characteristics of the color and film are shown in Table 1 below.

상기 표 1의 결과로부터 금속의 증발율이 본 발명의 금속의 증발율 범위인 초당 1∼5Å이고 산소가스의 압력이 본 발명의 산소가스의 압력 범위인 1×10 ∼5×10 토르인 경우에는 균일한 색상을 가진 치밀한 피막이 형성되었으나 그 외의 경우에는 검은 빛의 피막이 형성되거나 색상이 고르지 못하게 되는 등의 문제점이 생겼다.From the results in Table 1, the evaporation rate of the metal is 1-5 kPa per second, which is the evaporation rate range of the metal of the present invention, and the pressure of oxygen gas is 1 × 10, which is the pressure range of the oxygen gas of the present invention. 5 x 10 In case of Thor, a dense film having a uniform color was formed, but in other cases, a black film or a color was uneven.

본 발명의 착색 유리의 제조방법에 의하면 금속산화물을 타겟형상으로 미리 제조할 필요가 없으므로 시간이 절약되고 공정이 간단하며 착색 특성이 우수한 피막을 제조하여 착색 유리에 쉽게 이용할 수 있고, 원가절감의 효과가 있다.According to the manufacturing method of the colored glass of the present invention, it is not necessary to prepare the metal oxide in the target shape in advance, which saves time, the process is simple, and can be easily used for the colored glass by producing a film having excellent coloring characteristics, and the effect of cost reduction There is.

Claims (2)

산화막의 특성 즉, 간섭색을 이용하여 색상을 내는 착색유리의 제조방법에 있어서, 유리기판을 가열시킨 후 진공중에서 금속을 증발시키면서 동시에 산소가스를 주입하여 산화막을 제조하는 것을 특징으로 하는 착색 유리의 제조방법.In the method of manufacturing colored glass that produces color using the characteristic of the oxide film, that is, the interference color, the colored film is manufactured by heating the glass substrate and injecting oxygen gas at the same time while evaporating the metal in a vacuum. Way. 제1항에 있어서, 상기 유리 기판의 가열온도는 200∼400℃이고, 상기 금속의 증발율은 초당 1∼5Å이며, 상기 산소가스의 압력은 1×10-4∼5×10-3토르인 것을 특징으로 하는 착색 유리의 제조방법.The method of claim 1, wherein the heating temperature of the glass substrate is 200 to 400 ℃, the evaporation rate of the metal is 1 to 5 kPa per second, the pressure of the oxygen gas is 1 × 10 -4 to 5 × 10 -3 Torr The manufacturing method of the colored glass characterized by the above-mentioned.
KR1019950055021A 1995-12-22 1995-12-22 Manufacturing method of color glass KR100205533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950055021A KR100205533B1 (en) 1995-12-22 1995-12-22 Manufacturing method of color glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950055021A KR100205533B1 (en) 1995-12-22 1995-12-22 Manufacturing method of color glass

Publications (2)

Publication Number Publication Date
KR970042350A KR970042350A (en) 1997-07-24
KR100205533B1 true KR100205533B1 (en) 1999-07-01

Family

ID=19443504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950055021A KR100205533B1 (en) 1995-12-22 1995-12-22 Manufacturing method of color glass

Country Status (1)

Country Link
KR (1) KR100205533B1 (en)

Also Published As

Publication number Publication date
KR970042350A (en) 1997-07-24

Similar Documents

Publication Publication Date Title
EP0636702A1 (en) Methods for producing functional films
US4201649A (en) Low resistance indium oxide coatings
JP3808917B2 (en) Thin film manufacturing method and thin film
US20090017314A1 (en) Method for deposition of an anti-scratch coating
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
JP3689524B2 (en) Aluminum oxide film and method for forming the same
JP2001192821A (en) Method for depositing film on substrate, and article obtained by the method
JPS5833101B2 (en) heat resistant reflector
US20090041982A1 (en) Opaque chrome coating suitable for etching
KR100205533B1 (en) Manufacturing method of color glass
Harding et al. DC magnetron reactively sputtered indium tin oxide films produced using argon oxygen hydrogen mixtures
JP2002339084A (en) Metal film and metal film coated member
WO2023005136A1 (en) Neutral density filter, and preparation method and preparation device therefor
US2918595A (en) Coating composition for electric lamps
CN108018532B (en) A kind of vanadium dioxide laminated film and preparation method thereof
Guenther et al. Corrosion-resistant front surface aluminum mirror coatings
EP1184481A2 (en) Method for obtaining transparent, electrically conducting oxides by means of sputtering
CN110408887B (en) Preparation method of ITO transparent conductive layer on surface of wafer-level silicon-based aluminum
CN101713062B (en) Shading element and film coating method thereof
Pulker Coatings on glass substrates
US6911125B2 (en) Thin film producing method and light bulb having such thin film
KR100250214B1 (en) The method for color stainless steel sheet
KR20140102345A (en) method and apparatus the same for forming aluminium-silicone nitride layer for enhancing the surface hardness and wear resistance of polycarbonate
KR100241607B1 (en) Manufacturing method of i.t.o. film
KR20080006812A (en) Bi-layer ito film deposition method and bi-layer ito film prepared by the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040331

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee