KR100203462B1 - Castable - Google Patents
Castable Download PDFInfo
- Publication number
- KR100203462B1 KR100203462B1 KR1019960071585A KR19960071585A KR100203462B1 KR 100203462 B1 KR100203462 B1 KR 100203462B1 KR 1019960071585 A KR1019960071585 A KR 1019960071585A KR 19960071585 A KR19960071585 A KR 19960071585A KR 100203462 B1 KR100203462 B1 KR 100203462B1
- Authority
- KR
- South Korea
- Prior art keywords
- strength
- particle size
- castable
- clinker
- magnesia
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/03—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
- C04B35/04—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
- C04B35/043—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/101—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
- C04B35/6316—Binders based on silicon compounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
본 발명은 염기성 고강도 캐스터블에 관한 것으로, 입도 5-3mm 소결 마그네시아 클링커류 19-21wt%, 입도 1mm 이하 소결 마그네시아 클링커류 19-21wt%, 미립의 소결 마그네시아 클링커류 20-22wt%, 입도 3-1mm 마그네시아-리치 클링커류 24-26wt%, 평균입도 5μm인 알루미나 초미분말 7-9wt%, 산화규소계 복합바인더 3-5wt%, 순도 70% 알루미나 시멘트 1-3wt%, 아조디카본 아마이드(Azodicarbon Amaid) 0.01-1wt%로 이루어진 원.부원료 100wt%로 구성되어 알루미나 시멘트를 다량 사용하는 캐스터블로서, 알루미나 시멘트의 사용량을 감소시켜 800∼1000℃부근의 온도 영역에서 수화물의 분해로 인한 강도 저하와 내화도의 저하 등의 문제점을 개선하고, 초미분말을 사용하여 강도를 발현시키며, 중온 온도영역에서도 강도를 유지하며 내화도가 높은 저시멘트계 마그네시아질 캐스터블을 부분적으로 적용함으로써 강도특성과 내스폴링성 및 내식성면에서 우수한 효과가 있는 것이다.The present invention relates to a basic high-strength castable, particle size 5-3mm sintered magnesia clinker 19-21wt%, particle size 1mm or less sintered magnesia clinker 19-21wt%, fine sintered magnesia clinker 20-22wt%, particle size 3- 1mm magnesia-rich clinker 24-26wt%, ultrafine alumina powder with average particle size of 5μm 7-9wt%, silicon oxide composite binder 3-5wt%, purity 70% alumina cement 1-3wt%, azodicarbon amide ) Castable using a large amount of alumina cement, composed of 100wt% of raw and subsidiary materials composed of 0.01-1wt%, reducing the amount of alumina cement used and reducing the strength and fire resistance due to decomposition of hydrate in the temperature range around 800 ~ 1000 ℃. It improves the problems such as deterioration, develops strength by using ultra fine powder, maintains the strength even in the middle temperature range, and adds low cement magnesia castable with high fire resistance. Ever applied by it with a superior effect in terms of strength properties and Nass polling resistance and corrosion resistance.
Description
본 발명은 염기성 고강도 캐스터블에 관한 것으로, 보다 상세하게는 중온에서 강도 특성이 우수하며, 내스폴링성 및 내식면에서 우수한 염기성 고강도 캐스터블에 관한 것이다.The present invention relates to a basic high strength castable, and more particularly, to a basic high strength castable having excellent strength characteristics at medium temperature, and excellent spalling resistance and corrosion resistance.
일반적으로, 캐스터블(Castable)은 그 사용상의 간편함으로 인하여 사용범위가 점차 넓어지고 있다. 현행 생산되는 캐스터블은 마그네시아질에 용적 안정성을 부가하기 위하여 크롬광을 첨가하고, 다량의 알루미나 시멘트를 결합재로 사용하거나, 마그네시아질 결합재로 인산계 바인더를 사용하는 것으로 크게 분류할 수 있다. 그러나 이러한 캐스터블은 중온에서의 강도가 취약하고, 내화도가 낮아 그 사용 범위가 한정되어 있다. 따라서, 본 발명은 이러한 캐스터블의 취약점을 개선하기 위하여 마그네시아질 내화물의 자체 특장점인 높은 용융점, 높은 내화도, 염기성 슬래그나 알카리 물질에 대한 높은 화학적 안정성 및 높은 내식성 등을 부여하고 마그네시아질 내화물의 큰 단점인 낮은 내스폴링성, 건조중 수화로 인한 붕괴의 위험성, 높은 열팽창율, 낮은 용적안정성 등을 개선하여 징크 퓨머(Zinc Fumer)등, 기타 가혹한 작업조건에서도 요구수명동안 지탱될 수 있는 내화물이 요구되게 되었다.In general, the castable (Castable) has become wider range of use due to its ease of use. Currently produced castables can be broadly classified into adding chromium ore and adding a large amount of alumina cement as a binder or a phosphoric acid binder as a magnesia binder to add volume stability to the magnesia. However, such castables have a weak strength at low temperatures, low fire resistance, and their use range is limited. Therefore, in order to improve the weakness of these castables, the present invention imparts its own advantages of high melting point, high fire resistance, high chemical stability and high corrosion resistance to basic slag or alkali material and high disadvantage of magnesia refractory material. Improved low spalling resistance, risk of collapse due to hydration during drying, high thermal expansion rate and low volumetric stability, requiring refractory materials that can be supported for the required lifetime even under other harsh working conditions such as zinc fumer. It became.
이때, 징크 퓨머는 아연광의 1차 정련로에서 배출되는 수평 슬래그를 장입원료로 하여 슬래그 중에 포함되어 있는 약 15%의 징크를 정제하기 위하여 랜스(Lance)를 통하여 석탄원료와 산소 및 압축공기를 불어넣어 연소시킨다. 이때, 가동온도는 1600℃정도에서 승화되어 분리된 징크에 물을 비산시켜 냉각, 분리하는 공정으로서, 그 적용부위는 랜스가 통과하는 천정 부위에 연와를 설치하기 어려우므로 현재 고알루미나질 캐스터블을 사용하여 시공하고 있으나, 탈락이 심하여 최대한 연와를 랜스구 주변까지 설치한 후, 공극을 캐스터블로 시공하고 있는 실정이다. 이러한 탈락원인으로서 가동온도 1600℃에서 랜스 교체시 랜스구 주변에는 대기와의 접촉으로 약 700℃까지 냉소되며, 철피 사이로 냉각수가 흘러들어 내부와의 온도차로 인한 열팽창율의 차이에 기인하는 열적스플링성과, 로 가동시 비산되는 슬래그와 시공체가 접촉으로 인하여 과소결된 변질층과 원질층간의 물리적 성질의 차이에 기인하는 구조적 스폴링성과, 배면의 강도열화에 의한 캐스터블 자중으로 탈락되는 것으로 알려져 있다.At this time, the zinc fumer blows coal raw material, oxygen and compressed air through a lance to purify about 15% of zinc contained in the slag by using horizontal slag discharged from the primary refining furnace of zinc ore as a charging raw material. To burn. At this time, the operating temperature is a process of subliming at about 1600 ℃ by splashing water on the separated zinc, cooling and separating the application area, since it is difficult to install the duct in the ceiling area where the lance passes. Although it is used in construction, since the dropout is severe, it is installed as far as possible around the lance hole, and the air gap is cast as a cast. As a cause of the dropping, when the lance is replaced at the operating temperature of 1600 ℃, it is cooled to about 700 ℃ by contact with the atmosphere around the lance, and the thermal sprinkling due to the difference in thermal expansion rate due to the temperature difference between the inside of the cooling water flows between the shells. It is known that the slag scattered during the operation of the furnace and the construction body are dropped due to the structural spalling caused by the difference of physical properties between the desintered deteriorated layer and the raw layer due to contact, and the castable weight due to the deterioration of the strength of the back. .
이에 본 발명은 상기와 같은 제반 문제점을 해소하기 위해 안출된 것으로, 알루미나 시멘트를 다량 사용하는 캐스터블은 800∼1000℃부근의 중온 온도 영역에서 수화물의 분해로 인한 강도 저하와 내화도의 저하 등의 문제점이 있어 알루미나 시멘트의 사용량을 감소하고, 초미분말을 사용하여 강도를 발현시키며, 중온 온도영역에서도 강도를 유지하며 내화도가 높은 저시멘트계 캐스터블을 적용한 염기성 고강도 캐스터블을 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, the castable using a large amount of alumina cement is a problem such as a decrease in strength and fire resistance due to decomposition of the hydrate in the medium temperature region around 800 ~ 1000 ℃ Therefore, the purpose of the present invention is to reduce the amount of alumina cement used, to express strength by using ultra fine powder, to maintain the strength even in the middle temperature range, and to provide a basic high-strength castable with a low cement castable having high fire resistance.
상기와 같은 목적을 달성하기 위한 본 발명은 입도 5-3mm 소결 마그네시아 클링커류 19-21wt%, 입도 1mm 이하 소결 마그네시아 클링커류 19-21wt%, 미럽의 소결 마그네시아 클링커류 20-22wt%, 입도 3-1mm 마그네시아-리치 클링커류 24-26wt%, 평균입도 5μm인 알루미나 초미분말 7-9wt%, 산화규소계 복합바인더 3-5wt%, 순도 70% 알루미나 시멘트 1-3wt%, 아조디카본 아마이드(Azodicarbon Amaid) 0.01-1wt%로 이루어진 원, 부원료 100wt%로 구성되는 것을 특징으로 한다.The present invention for achieving the above object is particle size 5-3mm sintered magnesia clinker 19-21wt%, particle size 1mm or less sintered magnesia clinker 19-21wt%, sintered magnesia clinker 20-22wt% of particle, particle size 3- 1mm magnesia-rich clinker 24-26wt%, ultrafine alumina powder with average particle size of 5μm 7-9wt%, silicon oxide composite binder 3-5wt%, purity 70% alumina cement 1-3wt%, azodicarbon amide ), Consisting of 0.01-1wt% raw material, characterized in that consisting of 100wt%.
제1도는 첨가수량에 따른 유동도의 영향을 나타낸 비교도.1 is a comparative diagram showing the influence of the flow rate according to the amount of addition.
제2도는 일반 물성시험에서 미분함량에 따른 곡강도의 차이를 나타낸 비교도.2 is a comparison diagram showing the difference in bending strength according to the derivative content in the general physical property test.
제3도는 온도별 열간선변화율을 나타낸 비교도.3 is a comparison diagram showing the hot line change rate for each temperature.
이하 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.
먼저 배합에 첨가되는 부원료의 함량선정 시험에서 각 부원료의 유동도를 시험한 결과, 소듐포스패이드는 0.5%에서 가장 유동성이 양호하나 그 이상 첨가시 유동성이 저하되었고, 산화규소계 복합바인더의 경우에는 첨가량이 증가하면 유동도는 향상하는 경향을 나타내며, 1.5% 이상 첨가시에는 유동도 향상은 크지 않았고, 인산계 복합바인더의 경우에는 첨가량 증가에 따라 유동성은 증가하나, 양생후 강도 발현이 어려워 사용하기 어려우므로 본 배합에는 소듐포스패이트 및 산화규소계 복합바인더를 선정하였다.As a result of testing the flowability of each of the sub-materials in the content selection test of the additives added to the formulation, sodium phosphide had the best fluidity at 0.5%, but when it was added more, the fluidity decreased, and the silicon oxide-based composite binder In addition, when the added amount is increased, the fluidity tends to be improved, and when it is added more than 1.5%, the fluidity is not improved.In the case of phosphate-based binders, the fluidity increases with the added amount, but it is difficult to develop strength after curing. Sodium phosphate and silicon oxide-based composite binders were selected for this formulation because of difficulty in following.
또한, 유동성이 가장 양호하였던 상기 소듐포스패이트 0.5% 및 산화규소계 복합바인더 1.5%를 선정하여 미분 함량을 25∼40%로 변화시키면서 첨가 수량에 따른 유동도 변화를 측정한 결과, 전체적으로 소듐포스패이트를 사용한 경우보다 산화규소계 복합바인더를 사용했을 때가 저수량에서도 혼련이 가능하고, 유동성이 양호하였으며, 미분함량이 30%일 경우 넓은 첨가 수분폭을 나타내었다. 따라서 산화규소계 복합바인더를 선정하고, 미분함량은 30%로 하여 배합에 적용하였다.In addition, by selecting the sodium phosphate 0.5% and silicon oxide-based composite binder 1.5% that had the best fluidity and changing the fine powder content to 25 to 40% as a result of measuring the change in the flow rate according to the addition amount, When the silicon oxide-based composite binder was used, the kneading was possible even at low water content, the fluidity was good, and when the fine content was 30%, a wide added moisture width was shown. Therefore, a silicon oxide composite binder was selected and the fine powder content was 30% and applied to the blending.
또한, 기본 배합에 사용되는 부원료인 알루미나 초미분말, 알루미나 시멘트, 산화규소계 복합바인더의 종류 및 함량을 결정하기 위하여 배합시험을 한 결과, 평균입경이 작은 알루미나 초미분말을 사용했을 때가 저첨가수량에서 양호한 유동성을 얻을 수 있으며, 첨가량이 증가할수록 유동성은 증가하는 경향을 나타내었다. 그러나 알루미나 초미분말의 입도가 작을수록 유동성 및 강도의 측면에서는 우수하나 가격이 고가이며, 첨가량은 입도 5μm의 알루미나 초미분말에 비해 그다지 감소하지 않고, 고온에서 과소결의 문제가 있으므로 평균입도 5μm인 알루미나 초미분말을 8% 선정하여 배합에 적용하였다.In addition, as a result of the compounding test to determine the type and content of the alumina ultrafine powder, alumina cement, and silicon oxide compound binder, which are used in the basic compounding, the ultrafine powder having a small average particle diameter was used at low additive amount. Good fluidity can be obtained, and fluidity tends to increase as the amount added. However, the smaller the particle size of the alumina ultrafine powder is, the more excellent in terms of fluidity and strength, but the price is higher, and the amount of addition is not reduced much compared to the ultrafine alumina powder having a particle size of 5 μm, and there is a problem of over-sintering at high temperature, so the average particle size is 5 μm. A powder of 8% was selected and applied to the formulation.
또한, 알루미나 시멘트의 첨가량 선정에서 알루미나 시멘트 함량이 증가할수록 첨가 수분량이 많아져 유동성이 저하하는 경향을 나타내나 0∼5%범위에서는 유동성이 크게 변하지 않았고, 강도가 일정 수준에 도달하면서 알루미나 시멘트 함량이 가장 적은 2%의 알루미나 시멘트를 배합에 적용하였다.In addition, in the selection of the amount of alumina cement, as the alumina cement content is increased, the amount of added water tends to decrease and the fluidity tends to decrease, but the fluidity does not change significantly in the range of 0 to 5%. The smallest 2% alumina cement was applied to the formulation.
또한, 산화규소계 복합바인더의 경우에는 함량 증가에 따라 첨가 수량을 감소기켜도 유동도가 증가하고, 건조 및 중온강도가 급격히 증가하며, 이는 구상의 산화규소 입자에 의한 첨가 수량 감소 및 시공체 내에 존재하는 기공을 메꾸어 치밀질의 조직을 형성하기 때문이고, 고온 강도 또한 산화규소 성분의 증가에 따라 소결이 촉진되어 증가하였다. 따라서, 산화규소계 복합바인더 기타 부원료에 비하여 유동도 및 강도에 미치는 영향을 고려하여 산화규소계 복합바인더의 함량은 4%로 선정하여 배합에 적용하였다.In addition, in the case of the silicon oxide-based composite binder, the fluidity increases and the drying and mesophilic strength increase rapidly even if the amount of addition decreases as the content increases. This is because the pores existing are filled to form a dense structure, and the high temperature strength is also accelerated and increased with the increase of the silicon oxide component. Therefore, in consideration of the effect on the flow rate and strength compared to the silicon oxide-based composite binder and other subsidiary materials, the silicon oxide-based composite binder was selected as 4% and applied to the blending.
상기 배합선정 결과를 표1과 같이 정하여 특성향상 시험을 진행하였다.The compound selection result was determined as shown in Table 1, and the characteristics improvement test was conducted.
제1도는 첨가수량에 따른 유동도의 영향을 나타낸 것으로, 미분함량이 적을수록 첨가수량이 감소하나 유동성 및 강도를 고려할 때, 미분함량이 35%일 경우 양호한 유동성과 강도를 나타내었다.FIG. 1 shows the influence of the flow rate according to the amount of added water. As the fine content decreases, the amount of added water decreases, but considering the flowability and strength, the fineness content shows good fluidity and strength.
제2도는 일반 물성시험에서 미분함량에 따른 곡강도의 차이를 나타낸 것으로, 미분함량이 35%일때가 가장 곡강도가 크게 나타났으며, 마그네시아질 내화물 자체의 높은 열팽창으로 인하여 조업시 온도의 변화에 의한 스폴링 때문에 조직의 열화가 생기기 쉬운 단점을 개선하기 위하여 마그네시아-리치 클링커를 적용하여 자체의 열팽창계수와 주위의 매트릭스부의 열팽창계수의 차이에 의하여 응력이 발생하여 온도의 변화에 의하여 생성된 열응력을 다소간 완화시켜 내스폴링성을 향상시킬 수 있었으며, 마그네시아-리치 클링커의 입도별 사용결과 3-1mm를 적용한 것이 내스폴링성이 가장 우수한 것으로 나타났다.2 shows the difference in bending strength according to the differentiation content in the general physical property test, and the highest bending strength was shown when the derivative content was 35%, and due to the high thermal expansion of the magnesia refractory itself, Magnesia-rich clinker is applied to improve the weakness of tissue deterioration due to polling, and stress is generated by the difference between its coefficient of thermal expansion and the coefficient of thermal expansion of the surrounding matrix. It was able to improve the spalling resistance by mitigating. As a result of the application of magnesia-rich clinker by particle size, 3-1 mm was applied to show the best spalling resistance.
기타 내폭열성 향상 시험을 통해 유기발포제인 아조디카본 아마이드를 첨가하면, 마그네시아와 시공시에 가수분해가 일어나 질소와 이산화탄소 및 암모니아등과 같은 기체가 발생하여 통기율이 증가하며, 열간 곡강도저하도 크지 않은 범위내에서 아조디카본 아마이드 0.06%가 가장 우수한 통기율을 나타내었다.When the azodicarbon amide, an organic foaming agent, is added through other tests of explosion resistance, hydrolysis occurs during magnesia and construction, and gases such as nitrogen, carbon dioxide, and ammonia are generated, which increases the air permeability, and does not significantly reduce hot bending strength. Within the range of 0.06% of the azodicarbon amide showed the best ventilation rate.
제3도는 온도별 열간선변화율을 나타낸 것으로, 1000℃까지는 비교예와 유사한 열팽창율을 나타내나 그 이상의 온도에서는 매트릭스부의 스피넬 형성으로 인한 부피팽창으로 선변화율이 급격이 증가하며, 1300℃이상에서는 스피넬 형성에 의한 팽창보다는 소결에 의한 수축의 효과가 커서 전체적으로 수축이 진행되었다.3 shows the hot line change rate according to temperature, and shows a thermal expansion rate similar to that of the comparative example up to 1000 ° C., but at higher temperatures, the linear change rate rapidly increases due to volume expansion due to spinel formation of the matrix portion, and spinel above 1300 ° C. FIG. Shrinkage by sintering was greater than expansion due to formation, and shrinkage proceeded as a whole.
이하에서 본 발명의 보다 구체적인 실시예와 비교예를 설명한다.Hereinafter, more specific examples and comparative examples of the present invention will be described.
[실시예]EXAMPLE
입도 5-3mm 소결 마그네시아 클링커류 20wt%, 입도 1mm이하 소결 마그네시아 클링커류 20wt%, 미립의 소결 마그네시아 클링커류 21wt%, 입도 3-1mm 마그네시아-리치 클링커류 25wt%, 평균입도 5μm인 알루미나 초미분말 8wt%, 산화규소계 복합바인더 4wt%, 순도 70% 알루미나 시멘트 2wt%, 아조디카본아마이드(Azodicarbon Amaid)0.06wt%로 이루어진 원. 부원료 100wt%로 이루어진 것을 특징으로 하는 염기성 고강도 캐스터블.Sintered Magnesia Clinker 20wt% with particle size of 5-3mm, 20wt% of Sintered Magnesia Clinker with particle size below 1mm, 21wt% of Sintered Magnesia Clinker with fine grain, 25wt% of 3-1mm Magnesia-Rich Clinker with particle size, 8μm ultrafine powder %, Silicon oxide composite binder 4wt%, purity 70% alumina cement 2wt%, Azodicarbon Amaid (0.06wt%). Basic high strength castable, characterized in that it consists of 100 wt% of an auxiliary material.
상기한 특성향상 시험의 결과로서 하기 표 2와 같이 최종적으로 배합물 및 첨가량을 결정하고, 하기 표 3과 같이 화학성분 분석 및 표 4와 같이 일반 물성 측정 결과를 나타내어 비교 분석한 결과, 특성향상 시험결과와 동일하게 강도 특성과 내스폴링성 및 내식성면에서 우수한 결과를 나타내었다.As a result of the above characteristics improvement test, the compound and the amount of the compound were finally determined as shown in Table 2 below, and the results of comparative analysis were performed by showing the chemical composition analysis and the measurement results of the general physical properties as shown in Table 4 below. In the same manner, the results were excellent in terms of strength properties, spalling resistance and corrosion resistance.
이와 같이 본 발명에 따른 염기성 고강도 캐스터블은 표 3에서와 같이, 100℃이상에서 전반적인 강도특성이 우수하였으며, 1400℃에서의 내스폴링성 및 내식성 면에서도 현행품인 두 비교예에 비해 우수한 결과를 나타냄으로써 가혹한 작업조건에서 요구수명을 연장시킬 수 있도록 한 효과가 있는 것이다.As described above, the basic high strength castable according to the present invention had excellent overall strength characteristics at 100 ° C. or higher, and excellent results compared to the two comparative examples of current products in terms of spalling resistance and corrosion resistance at 1400 ° C. In other words, it has the effect of extending the required life under severe working conditions.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960071585A KR100203462B1 (en) | 1996-12-24 | 1996-12-24 | Castable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960071585A KR100203462B1 (en) | 1996-12-24 | 1996-12-24 | Castable |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980052570A KR19980052570A (en) | 1998-09-25 |
KR100203462B1 true KR100203462B1 (en) | 1999-06-15 |
Family
ID=19490751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960071585A KR100203462B1 (en) | 1996-12-24 | 1996-12-24 | Castable |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100203462B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100446873B1 (en) * | 2001-12-24 | 2004-09-07 | 주식회사 포스렉 | Basic castable refractory with high wear resistance |
CN115974565A (en) * | 2022-12-30 | 2023-04-18 | 马鞍山利尔开元新材料有限公司 | Carbon-free dry vibration material for continuous casting tundish and preparation method thereof |
-
1996
- 1996-12-24 KR KR1019960071585A patent/KR100203462B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980052570A (en) | 1998-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2262522A (en) | Refractory composition | |
CN105693259A (en) | Preparation technique of corundum spinel solid solution refractory material | |
US4849383A (en) | Basic refractory composition | |
KR890000485B1 (en) | Magnesia-carbon refractory | |
KR100203462B1 (en) | Castable | |
US4999325A (en) | Rebonded fused brick | |
KR100299460B1 (en) | Monolithic refractory contained carbon | |
JPH05105506A (en) | Slide valve plate brick | |
KR100428567B1 (en) | Basic castable refractory composition | |
JP2596700B2 (en) | Specific carbon-containing irregular refractories | |
US3625721A (en) | Permeable refractories | |
KR100194333B1 (en) | Magnesia-alumina-carbon basic bricks for ladle | |
JPH03295867A (en) | Castable refractory material for lining receiving port of torpedo ladle car | |
KR940006422B1 (en) | Magnesia-spinel-carbon of refractories | |
KR100264980B1 (en) | Castable refractory material | |
JP2014084269A (en) | Castable refractory for nonferrous metal refining vessel and precast block using the same | |
JPH09278540A (en) | Corrosion-and oxidation-resistant amorphous refractory material | |
JPS593068A (en) | Magnesia-carbon-silicon carbide refractories | |
JPH08175877A (en) | Castable refractory | |
KR930004554B1 (en) | Composition of raddle shaped refractories | |
KR960001008B1 (en) | Magnesia-carbon refractories | |
KR970008699B1 (en) | Refractories brick | |
KR100213319B1 (en) | Refractory composition | |
JPH06172044A (en) | Castable refractory of alumina spinel | |
RU2098385C1 (en) | Blend for manufacturing mass and parts for structurally stable linings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130107 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20140113 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20150106 Year of fee payment: 17 |
|
LAPS | Lapse due to unpaid annual fee |