KR100197695B1 - Refrigerant control device of multi airconditioner - Google Patents

Refrigerant control device of multi airconditioner Download PDF

Info

Publication number
KR100197695B1
KR100197695B1 KR1019960032198A KR19960032198A KR100197695B1 KR 100197695 B1 KR100197695 B1 KR 100197695B1 KR 1019960032198 A KR1019960032198 A KR 1019960032198A KR 19960032198 A KR19960032198 A KR 19960032198A KR 100197695 B1 KR100197695 B1 KR 100197695B1
Authority
KR
South Korea
Prior art keywords
side heat
refrigerant
heat exchanger
indoor
valve
Prior art date
Application number
KR1019960032198A
Other languages
Korean (ko)
Other versions
KR19980013636A (en
Inventor
강성훈
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019960032198A priority Critical patent/KR100197695B1/en
Publication of KR19980013636A publication Critical patent/KR19980013636A/en
Application granted granted Critical
Publication of KR100197695B1 publication Critical patent/KR100197695B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 멀티에어컨의 냉매제어장치에 관한 것으로, 상기 실내측열교환기(15a, 15b, 15c)의 수와 같게 실외측열교환기(1a, 1b, 1c)를 설치함과 더불어 모세관(17a, 17b, 17c)과 전자식팽창밸브(2a, 2b, 2c)를 설치하여 냉매를 제어함으로써, 1실 운전시와 다실 운전시 및 연결배관길이의 편차에 의한 실내기들간의 냉각능력차이를 최소화하여 최적의 냉동싸이클을 이룰 수 있음은 물론, 저온 즉 1실만 운전시에도 실내측열교환기(15a, 15b, 15c)중 사용하고 있는 실내측열교환기가 동결되는 일이 없도록 된 것이다.The present invention relates to a refrigerant control device for a multi-air conditioner. The outdoor side heat exchangers 1a, 1b, and 1c are installed in the same number as the indoor side heat exchangers 15a, 15b, and 15c, and the capillary tubes 17a and 17b are provided. , 17c) and electronic expansion valves (2a, 2b, 2c) to control the refrigerant, thereby minimizing the difference in cooling capacity between indoor units due to variations in the length of the single room operation, the multi-room operation and the connection piping length The cycle can be achieved as well as the indoor heat exchanger used in the indoor heat exchanger (15a, 15b, 15c) is not frozen even when only one room is operated at low temperature.

Description

멀티에어컨의 냉매제어장치Refrigerant Control Device of Multi Air Conditioner

제1도는 종래기술에 따른 냉매제어장치를 설명하는 냉매제어 구성도.1 is a refrigerant control block diagram illustrating a refrigerant control apparatus according to the prior art.

제2도는 본 발명에 따른 냉매제어장치를 설명하는 냉매제어 구성도이다.2 is a refrigerant control configuration diagram illustrating a refrigerant control apparatus according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1a, 1b, 1c : 실외측열교환기 2a, 2b, 2c : 전자식 팽창밸브1a, 1b, 1c: Outdoor side heat exchanger 2a, 2b, 2c: Electronic expansion valve

11 : 압축기 15a, 15b, 15c : 실내측열교환기11: compressor 15a, 15b, 15c: indoor heat exchanger

16a, 16b, 16c : 솔레노이드밸브 17a, 17b, 17c : 모세관16a, 16b, 16c: solenoid valve 17a, 17b, 17c: capillary tube

18a, 18b, 18c : 2방향밸브 19a, 19b, 19c : 2방향밸브18a, 18b, 18c: 2-way valve 19a, 19b, 19c: 2-way valve

본 발명은 하나의 실외기를 이용하여 여러방을 동시냉방 또는 선택냉방할 수 있도록 된 멀티에어컨에 관한 것으로, 특히 1실 운전시와 다실 운전시 및 연결배관길이의 편차에서 발생하는 실내기들간의 냉각능력차리를 최소화하여 최적의 냉동싸이클을 이룰 수 있도록 한 멀티에어컨의 냉매제어장치에 관한 것이다.The present invention relates to a multi-air conditioner capable of simultaneously cooling or selectively cooling several rooms using a single outdoor unit, and in particular, the cooling capacity between indoor units occurring in a single room operation, a multi-room operation, and a deviation in connecting pipe length. The present invention relates to a refrigerant control device for a multi-air conditioner to minimize an error and achieve an optimal refrigeration cycle.

일반적으로 실외기는, 압축기와 실외측열교환기 및 냉매관에 연결되는 밸브등으로 이루어지고, 실내기는 실내측열교환기와 모세관 또는 팽창밸브 및 밸브등으로 이루어져 있는 바, 에어컨은 압축기에 의해 고온고압의 기체상태로 압축된 냉매가 실외측열교환기로 토출되면 실외측열교환기에서는 고온고압으로 압축된 기체냉매를 냉각팬에 의해 송풍되는 공기로 열교환하여 냉매를 강제냉각시켜 액화한다.In general, the outdoor unit consists of a valve connected to a compressor, an outdoor side heat exchanger, and a refrigerant pipe, and the indoor unit consists of an indoor side heat exchanger, a capillary tube, an expansion valve, and a valve. When the refrigerant compressed in the state is discharged to the outdoor side heat exchanger, the outdoor side heat exchanger exchanges the gas refrigerant compressed to high temperature and high pressure with air blown by a cooling fan to forcibly cool the refrigerant to liquefy.

이어서 상가 실외측열교환기에서 약 35℃~40℃로 온도가 저하된 고압의 액상냉매는 증발압력까지 팽창시키는 모세관을 통과하면서 저온저압의 기체와 액체로 공존하는 냉매로 되어 실내측열교환기에 유입된다.Subsequently, the high-pressure liquid refrigerant whose temperature is lowered from about 35 ° C. to 40 ° C. in the outdoor outdoor heat exchanger passes through a capillary tube that expands to the evaporation pressure and flows into the indoor heat exchanger as the refrigerant coexists with the low-temperature gas at low temperature. .

한편 상기 실내측열교환기로 유입된 냉매는 실내측열교환기를 통과하면서 기화할 때 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨 다음, 그 냉각된 공기(냉풍)를 실내로 토출해서 냉방을 행하고, 상기 실내측열교환기에서 상변화된 저온저압의 기체냉매는 다시 압축기에 의해 흡입되어 반복순환하는 냉동싸이클을 형성한다.Meanwhile, the refrigerant introduced into the indoor heat exchanger takes heat from the air blown by the indoor fan when evaporated while passing through the indoor heat exchanger, cools the indoor air, and then discharges the cooled air (cold air) into the room to cool it. The low temperature and low pressure gas refrigerant, which is changed in phase in the indoor side heat exchanger, is again sucked by the compressor to form a recirculating refrigeration cycle.

그런데 이와같은 냉동싸이클에 의해 냉방을 수행하는 공기조화기는 하나의 실외측열교환기로 하나의 실내측열교환기를 제어하여 개별냉방을 수행하기 때문에 여러방을 동시에 냉방시킬 수 없는 결점이 있음은 물론, 여러방을 냉방할 경우에는 다수개의 실외측열교환기를 설치해야 하므로 설치공간을 확보하기가 곤란하고 미관도 좋지 않은 결점이 있었다.By the way, the air conditioner that performs cooling by the refrigeration cycle performs the individual cooling by controlling one indoor side heat exchanger with one outdoor side heat exchanger. In the case of cooling, it is difficult to secure an installation space because of the need to install a plurality of outdoor side heat exchangers, and the aesthetics were also poor.

이러한 제반결점을 해소하기 위하여 종래에도 제1도에 도시된 것과 같은 냉매순환을 하도록 된 멀티에어콘이 제안되어 있는 바, 고온고압의 기체상태로 압축된 기체냉매를 냉각팬에 의해 송풍되는 공기로 냉매를 냉각시켜 액화시킬 수 있도록 압축기(11)에 실외측열교환기(12)가 연결되고, 이 실외측열교환기(12)에 다수개의 솔레노이드밸브(13)와 모세관(14)이 병렬연결되며, 이 솔레노이드밸브(13)와 모세관(14)에 후술하는 실내측열교환기(15a, 15b, 15c)와 같은 갯수로 분기시킬 수 있도록 솔레노이드밸브(16a, 16b, 16c)가 병렬연결됨과 더불어, 이 솔레노이드밸브(16a, 16b, 16c)에 각각의 모세관(17a, 17b, 17c)이 직렬연결되고, 이 모세관(17a, 17b, 17c)에 각각의 2방향 밸브(18a, 18b, 18c)및 실내측열교환기(15a, 15b, 15c)가 직렬연결됨가 더불어, 이 실내측열교환기(15a, 15b, 15c)에는 냉각된 저온저압의 기체냉매를 1개의 압축기(11)로 보낼 수 있도록 2방향밸브(19a, 19b, 19c)가 각각 직렬로 설치되는 한편, 상기 압축기(11)의 입구측에서 실외측열교환기(12)의 입구측으로 연결되어 압축기(11)와는 병렬로되도록 모세관(20)과 솔레노이드밸브(21)가 직렬연결된 구조로 되어 있다.In order to solve the above-mentioned drawbacks, a conventional multi-air cone is proposed to circulate a refrigerant as shown in FIG. 1, and the gas refrigerant compressed to a gaseous state of high temperature and high pressure is cooled by air blown by a cooling fan. An outdoor side heat exchanger (12) is connected to the compressor (11) to cool the liquid and liquefy. A plurality of solenoid valves (13) and a capillary tube (14) are connected in parallel to the outdoor side heat exchanger (12). The solenoid valves 16a, 16b, and 16c are connected in parallel so that the solenoid valves 13 and the capillary tube 14 can be branched to the same number as the indoor side heat exchangers 15a, 15b, and 15c described later. Each capillary tube 17a, 17b, 17c is connected in series to 16a, 16b, 16c, and each two-way valve 18a, 18b, 18c and an indoor side heat exchanger are connected to the capillary tube 17a, 17b, 17c. In addition to the (15a, 15b, 15c) being connected in series, this indoor side heat exchanger (15a, 15b, 15c) The two-way valves (19a, 19b, 19c) are installed in series so as to send the cooled low-temperature gas refrigerant to one compressor (11), while the outdoor side heat exchanger at the inlet side of the compressor (11) The capillary tube 20 and the solenoid valve 21 are connected in series so as to be connected to the inlet side of the 12 and in parallel with the compressor 11.

따라서 상기 압축기(11)에 의해 고온고압의 기체상태로 압축된 냉매가 1개의 실외측열교환기(12)에 유입되면 상기 실외측열교환기(12)에서는 고온고압으로 압축된 기체냉매를 냉각팬에 의해 송풍되는 공기로 냉매를 냉각시켜 액화시키면 실내측열교환기(15a, 15b, 15c)의 운전대수에 따라 상기 솔레노이드밸브(13, 16a, 16b, 16c, 21)가 연동되어 온(on)/오프(off)작동되면서 실내측열교환기(15a, 15b, 15c)에서 팽창 증발된 냉매가스가 압축기(11)로 재순환된다.Therefore, when the refrigerant compressed in the gas state of high temperature and high pressure by the compressor 11 flows into one outdoor side heat exchanger 12, the outdoor side heat exchanger 12 converts the gas refrigerant compressed to high temperature and high pressure into a cooling fan. When the refrigerant is cooled and liquefied by the air blown by the air, the solenoid valves 13, 16a, 16b, 16c, and 21 are interlocked on and off depending on the number of operation units of the indoor side heat exchangers 15a, 15b, and 15c. During operation (off), the refrigerant gas expanded and evaporated in the indoor side heat exchangers 15a, 15b, and 15c is recycled to the compressor 11.

여기서 상기 솔레노이드밸브(13, 16a, 16b, 16c, 21)중 16a, 16b, 16c의 솔레노이드밸브는 3실운전시 모두 on되고 2실운전시 2개만 on되며 1실운전시 1개만 on되는 한편, 13개와 21의 솔레노이드밸브는 3실운전시 및 2실운전시 모두 off되고 1실운전시에만 on된다.Here, the solenoid valves of 16a, 16b, and 16c of the solenoid valves 13, 16a, 16b, 16c, and 21c are all turned on in three-room operation, only two are turned on in two-room operation, and only one is turned on in one-room operation. The 13 and 21 solenoid valves are off in both 3 and 2 operation and are only on in 1 operation.

그러나 이러한 냉동제어장치는 냉매싸이클을 구성하는데 다수의 솔레노이드밸브(13, 16a, 16b, 16c, 21)와 모세관(14, 17a, 17b, 17c, 20)을 사용하게 되기 때문에 그 구성이 복잡하고, 상기 실내측열교환기(15a, 15b, 15c)중 1실운전시와 다실운전시의 냉력차이가 큰 문제점이 있었다.However, such a refrigeration control device uses a plurality of solenoid valves (13, 16a, 16b, 16c, 21) and capillary tubes (14, 17a, 17b, 17c, 20) to form a refrigerant cycle, and the configuration thereof is complicated. Among the indoor heat exchangers 15a, 15b, and 15c, there is a big problem in the difference in cold power between one room operation and a multi-room operation.

이에 본 발명은 상기와 같은 결점을 해결하기 위하여 안출된 것으로, 솔레노이드밸브와 모세관을 크게 줄인 구성으로 되어, 1실운전시와 다실 운전시 및 연결배관길이의 편차에서 발생하는 실내기들간의 냉각능력차이를 최소화하여 최적의 냉동싸이클을 이룰 수 있도록 한 멀티에어컨의 냉매제어장치를 제공함에 그 목적이 있다.Accordingly, the present invention has been made in order to solve the above-mentioned drawbacks, the configuration of the solenoid valve and the capillary tube is greatly reduced, the difference in the cooling capacity between the indoor units generated in the deviation of the connection pipe length during the single room operation and multi-room operation. It is an object of the present invention to provide a refrigerant control device of a multi-air conditioner to achieve an optimal refrigeration cycle by minimizing.

상기와 같은 목적을 달성하기 위한 본 발명은, 고온고압의 기체상태로 압축된 기체냉매를 이송시키는 압축기에 실내측열교환기와 같은 수로 분기되도록 솔레노이드밸브가 연결되고, 이 솔레노이드밸브에 냉각팬으로 송풍되는 공기에 의해 냉매를 냉각시켜 액화시킬 수 있도록 각각 직렬로 실외측열교환기가 연결되며, 이 실외측열교환기에 각각 직렬로 모세관과 2방향밸브가 연결됨과 더불어, 이 2방향밸브를 통해 공급된 냉매에 의해 실내측열교환기의 입.출구측 온도 차이를 마이컴에 수식으로 입력하여 마이컴의 신호에 의하여 밸브의 모타를 회전시켜 밸브스핀들을 제어함으로써 유량을 제어하는 전자식 팽창밸브가 연결되고, 이 전자식 팽창밸브와 각각 직렬로 3개의 실내측열교환기가 연결되며, 이 실내측 열교환기에 각각 직렬로 연결되어 냉각된 저온저압의 기체냉매를 1개의 압축기로 보낼 수 있도록 2방향밸브가 설치된 구조로 되어 있다.The present invention for achieving the above object, the solenoid valve is connected to the compressor for transferring the gas refrigerant compressed in the gas state of high temperature and high pressure to the same number as the indoor side heat exchanger, the solenoid valve is blown with a cooling fan The outdoor side heat exchangers are connected in series to cool and liquefy the refrigerant by air. Capillary tubes and two-way valves are connected in series to the outdoor side heat exchangers, and the refrigerant is supplied through the two-way valves. An electronic expansion valve that controls the flow rate by controlling the valve spins by inputting the difference between the inlet and outlet side temperature of the indoor side heat exchanger into the microcomputer by rotating the motor of the valve according to the signal of the microcomputer is connected. Three indoor heat exchangers are connected in series, and each indoor heat exchanger is connected in series. The gas refrigerant of low temperature and low pressure is in two-way valve structure is installed, to be sent in a single compressor.

따라서 상기 모세관은 실내측열교환기의 능력편차를 없애기 위한 1차 감압장치고, 실내측열교환기의 전자식팽창밸브는 실내.외측 열교환기를 연결시키는 연결배관의 길이편차에서 발생하는 실내측열교환기의 능력편차를 없애주는 2차 감압장치로서, 실내측열교환기의 입.출구 온도차에 의한 수식값을 실내측열교환기의 마이컴에 입력하여 전자식 팽창밸브를 제어함으로써 냉매량을 조절하게 된다.Therefore, the capillary tube is a primary pressure reducing device for eliminating the capacity deviation of the indoor side heat exchanger, and the electronic expansion valve of the indoor side heat exchanger is the capacity of the indoor side heat exchanger generated in the length deviation of the connection pipe connecting the indoor and external heat exchangers. As a secondary pressure reducing device to eliminate the deviation, the amount of refrigerant is controlled by inputting a numerical value of the indoor heat exchanger into the microcomputer of the indoor heat exchanger by controlling the electronic expansion valve.

이하 본 발명의 실시예에 관하여 첨부된 예시도면에 의거 상세히 설명한다.Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings.

제2도는 본 발명에 따른 냉매제어장치를 설명하는 냉매제어 구성도로서, 종래기술을 설명하는 제1도와 동일한 부위에는 동일한 참조부호를 붙이면서 그 설명은 생략한다.2 is a refrigerant control block diagram illustrating a refrigerant control apparatus according to the present invention, and the same reference numerals are attached to the same portions as those in FIG.

본 발명에 따른 냉매제어장치는, 고온 고압의 기체상태로 압축된 기체냉매를 이송시키는 압축기(11)에 실내측열교환기(15a, 15b, 15c)와 같은 수로 분기되도록 솔레노이드밸브(16a, 16b, 16c)가 연결되고, 이 솔레노이드밸브(16a, 16b, 16c)에 냉각팬으로 송풍되는 공기에 의해 냉매를 냉각시켜 액화시킬 수 있도록 각각 직렬로 실외측열교환기(1a, 1b, 1c)가 연결되며, 이 실외측열교환기(1a, 1b, 1c)에 각각 직렬로 모세관(17a, 17b, 17c)과 2방향밸브(18a, 18b, 18c)가 연결됨과 더불어, 이 2방향밸브(18a, 18b, 18c)을 통해 공급된 냉매에 의해 실내측열교환기(15a, 15b, 15c)의 입.출구측 온도차이를 마이컴에 수식으로 입력하여 마이컴의 신호에 의하여 밸브의 모타를 회전시켜 밸브스핀들을 제어함으로써 유량을 제어하는 전자식 팽창밸브(2a, 2b, 2c)가 연결되고, 이 전자식팽창밸브(2a, 2b, 2c)와 각각 직렬로 3개의 실내측열교환기(15a, 15b, 15c)가 연결되며, 이 실내측 열교환기(15a, 15b, 15c)에 각각 직렬로 연결되어 냉각된 저온저압의 기체냉매를 1개의 압축기(11)로 보낼 수 있도록 2방향밸브(19a, 19b, 19c)가 설치된 구조로 되어 있다.Refrigerant control device according to the present invention, the solenoid valve 16a, 16b, branched to the same number as the indoor side heat exchanger (15a, 15b, 15c) to the compressor (11) for transferring the compressed gas refrigerant in a gas state of high temperature and high pressure, 16c) are connected, and the outdoor side heat exchangers 1a, 1b, 1c are connected to the solenoid valves 16a, 16b, and 16c in series so as to cool and liquefy the refrigerant by air blown by a cooling fan. Capillary tubes 17a, 17b, 17c and two-way valves 18a, 18b, 18c are connected in series to the outdoor side heat exchangers 1a, 1b, and 1c, respectively, and these two-way valves 18a, 18b, By inputting the temperature difference between the inlet and outlet side of the indoor side heat exchanger (15a, 15b, 15c) into the microcomputer by the refrigerant supplied through 18c), the motor of the valve is rotated according to the signal of the microcomputer to control the valve spins. Electronic expansion valves 2a, 2b and 2c for controlling the flow rate are connected, and the electromagnetic expansion valves 2a and 2b are connected. , 2c) and three indoor side heat exchangers 15a, 15b, and 15c are connected in series, respectively, and the low temperature and low pressure gas refrigerant cooled in series is connected to the indoor side heat exchangers 15a, 15b, and 15c, respectively. The two-way valves 19a, 19b, and 19c are provided so that they can be sent to one compressor 11.

이와 같이 구성된 본 발명의 실시예에 의한 냉매흐름과 그에 따른 효과를 다음에 설명한다.The refrigerant flow and its effects according to the embodiment of the present invention configured as described above will be described next.

상기 압축기(11)에 의해 고온고압으로 된 냉매를 실내측열교환기(15a, 15b, 15c)의 갯수와 같은 수로 설치된 솔레노이드밸브(14a, 14b, 14c)를 통해 공급된 냉매가 직렬로 연결된 실외측열교환기(1a, 1b, 1c)에 유입되면 고온 고압으로 압축된 기체냉매를 냉각팬에 의해 송풍되는 공기로 냉매를 냉각시켜 액화된 저온고압의 액상냉매가 실내측열교환기(15a, 15b, 15c)와 같은 갯수의 모세관(17a, 17b, 17c)과 2방향밸브(18a, 18b, 18c) 및 전폐/전개가 가능한 전자식팽창밸브(2a, 2b, 2c)를 통과하면서 저온저압의 냉매로 감압되어 3개의 실내측열교환기(15a, 15b, 15c)에 동시에 유입된다.The outdoor side in which the refrigerant supplied by the compressor 11 through the solenoid valves 14a, 14b, and 14c installed in the same number as the number of the indoor side heat exchangers 15a, 15b, and 15c are connected in series. When introduced into the heat exchangers 1a, 1b, and 1c, the gas refrigerant compressed to high temperature and high pressure is cooled by air blown by a cooling fan to liquefy low temperature and high pressure liquid refrigerant to the indoor side heat exchanger (15a, 15b, 15c). Through the same number of capillaries (17a, 17b, 17c) and two-way valves (18a, 18b, 18c) and an electronic expansion valve (2a, 2b, 2c) that can be fully closed and expanded, It flows into three indoor side heat exchangers 15a, 15b, and 15c simultaneously.

또한 상기 실내측열교환기(15a, 15b, 15c)에서는 전자식팽창밸브(2a, 2b, 2c)에서 감압된 저온저압의 무상냉매가 여러개의 파이프를 통과하면서 증발하여 기화할 때, 실내팬에 의해 송풍되는 공기에서 열을 빼앗아 실내공기를 냉각시킨다.In addition, in the indoor side heat exchanger (15a, 15b, 15c) when the low-temperature low-pressure free refrigerant reduced in pressure by the electronic expansion valve (2a, 2b, 2c) evaporated and evaporated while passing through a plurality of pipes, it is blown by an indoor fan Cools indoor air by taking heat away from the air.

다음 그 냉각된 공기를 실내로 토출시켜 냉방을 행하고 상기 실내측열교환기(15a, 15b, 15c)에서 냉각된 저온저압의 기체냉매는 2방향밸브(19a, 19b, 19c)를 통해서 다시 압축기(11)로 흡입하도록 반복순환하게 된다.Then, the cooled air is discharged to the room to cool the gas, and the low-temperature low-pressure gas refrigerant cooled in the indoor side heat exchangers 15a, 15b, and 15c is again returned through the two-way valves 19a, 19b, and 19c. Inhalation cycle).

이때 상기 모세관(17a, 17b, 17c)은 실내측열교환기(15a, 15b, 15c)의 능력편차를 없애기 위한 1차 감압장치고, 실내측열교환기(15a, 15b, 15c)의 전자식 팽창밸브(2a, 2b, 2c)는 실내.외측 열교환기를 연결시키는 연결배관의 길이편차에서 발생하는 실내측열교환기(15a, 15b, 15c)의 능력편차를 없애주는 2차 감압장치로서, 실내측열교환기의 입.출구온도차에 의한 수식값을 실내측열교환기의 마이컴에 입력하여 전자식팽창밸브(2a, 2b, 2c)를 제어함으로써 냉매량을 조절하게 된다.At this time, the capillary tubes 17a, 17b, and 17c are primary pressure reducing devices for eliminating the capacity deviation of the indoor side heat exchangers 15a, 15b, and 15c, and the electronic expansion valves of the indoor side heat exchangers 15a, 15b, and 15c ( 2a, 2b, and 2c are secondary pressure reducing devices that eliminate the capacity deviation of the indoor side heat exchangers 15a, 15b, and 15c generated in the length deviation of the connection pipe connecting the indoor and external heat exchangers. The amount of refrigerant is regulated by controlling the electronic expansion valves 2a, 2b, and 2c by inputting a numerical value of the inlet / outlet temperature difference into the microcomputer of the indoor side heat exchanger.

즉, 상기 실내측열교환기(15a, 15b, 15c)의 운전수에 따라 실외측 열교환기(1a, 1b, 1c)쪽의 솔레노이드밸브(16a, 16b, 16c)와 전자식팽창밸브(1a, 2b, 2c)가 연동하여 동작하게 된다.That is, the solenoid valves 16a, 16b, and 16c and the electronic expansion valves 1a, 2b, and 2c of the outdoor side heat exchangers 1a, 1b, and 1c according to the number of operators of the indoor side heat exchangers 15a, 15b, and 15c. ) Will work in conjunction.

이상 설명한 바와 같이 본 발명에 의하면, 상기 실내측열교환기(15a, 15b, 15c)의 수와 같게 실외측열교환기(1a, 1b, 1c)를 설치하여 냉매를 제어함으로써, 1실 운전시와 다실 운전시 및 연결배관길이의 편차에 의한 실내기들간의 냉각능력차이를 최소화하여 최적의 냉동싸이클을 이룰 수 있음은 물론, 저온 즉 1실만 운전시에도 실내측열교환기(15a, 15b, 15c) 중 사용하고 있는 실내측열교환기가 동결되는 일이 없게 되는 효과가 있다.As described above, according to the present invention, by controlling the refrigerant by installing the outdoor side heat exchangers 1a, 1b, and 1c in the same manner as the number of the indoor side heat exchangers 15a, 15b, and 15c, the single room operation and the tea room It is possible to achieve an optimal refrigeration cycle by minimizing the difference in cooling capacity between indoor units due to deviations in the length of operation and connecting pipes, as well as use in indoor heat exchangers (15a, 15b, 15c) even at low temperatures. There is an effect that the indoor heat exchanger is not frozen.

Claims (1)

고온고압의 기체상태로 압축된 기체냉매를 이송시키는 압축기에 실내측열교환기와 같은 수로 분기되도록 솔레노이드밸브가 연결되고, 이 솔레노이드밸브에 냉각팬으로 송풍되는 공기에 의해 냉매를 냉각시켜 액화시킬 수 있도록 각각 직렬로 실외측열교환기가 연결되며, 이 실외측열교환기에 각각 직렬로 모세관과 2방향밸브가 연결됨과 더불어, 이 2방향밸브를 통해 공급된 냉매에 의해 실내측열교환기의 입.출구측 온도차이를 마이컴에 수식으로 입력하여 마이컴의 신호에 의하여 밸브의 모타를 회전시켜 밸브스핀들을 제어함으로써 유량을 제어하는 전자식 팽창밸브가 연결되고, 이 전자식팽창밸브와 각각 직렬로 3개의 실내측열교환기가 연결되며, 이 실내측열교환기에 각각 직렬로 연결되어 냉각된 저온저압의 기체냉매를 1개의 압축기로 보낼수 있도록 2방향밸브가 설치된 멀티에어컨의 냉매제어장치.A solenoid valve is connected to a compressor that transfers the compressed gas refrigerant in a gaseous state of high temperature and high pressure to the same number as an indoor side heat exchanger, and each of the solenoid valves is cooled to liquefy by cooling the refrigerant by air blown by a cooling fan. An outdoor side heat exchanger is connected in series, and a capillary tube and a two-way valve are connected to the outdoor side heat exchanger in series, and the temperature difference between the inlet and outlet sides of the indoor side heat exchanger is determined by the refrigerant supplied through the two-way valve. An electronic expansion valve for controlling the flow rate by controlling the valve spins by rotating the motor of the valve according to the signal of the microcomputer by inputting as a formula to the microcomputer is connected, and three indoor heat exchangers are connected in series with the electronic expansion valve. Each of these indoor heat exchangers is connected in series to send the cooled low-temperature gas refrigerant to one compressor. The refrigerant control apparatus of the air conditioner so that two-way valve is installed.
KR1019960032198A 1996-08-01 1996-08-01 Refrigerant control device of multi airconditioner KR100197695B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960032198A KR100197695B1 (en) 1996-08-01 1996-08-01 Refrigerant control device of multi airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960032198A KR100197695B1 (en) 1996-08-01 1996-08-01 Refrigerant control device of multi airconditioner

Publications (2)

Publication Number Publication Date
KR19980013636A KR19980013636A (en) 1998-05-15
KR100197695B1 true KR100197695B1 (en) 1999-06-15

Family

ID=19468577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960032198A KR100197695B1 (en) 1996-08-01 1996-08-01 Refrigerant control device of multi airconditioner

Country Status (1)

Country Link
KR (1) KR100197695B1 (en)

Also Published As

Publication number Publication date
KR19980013636A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
KR100437804B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
US7124595B2 (en) Multi-type air conditioner with plurality of distributor able to be shutoff
KR100463548B1 (en) Air conditioner
JP6479162B2 (en) Air conditioner
JP4331544B2 (en) Heating and cooling simultaneous multi air conditioner
US8001802B2 (en) Air conditioner
JP2004085193A (en) Multi air conditioner and its operation method
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
KR101624529B1 (en) Multi-air conditioner for heating and cooling operations at the same time
KR20060066840A (en) Structure and method for controlling indoor unit of multi-air conditioner
KR102337394B1 (en) Air Conditioner
KR20040020535A (en) Integration type refrigerating and cooling system
JPH0420764A (en) Air conditioner
KR100197695B1 (en) Refrigerant control device of multi airconditioner
KR100455186B1 (en) Multi airconditioner
KR100671301B1 (en) Air conditioner
KR100215038B1 (en) Indoor device connection structure of multi-airconditioner
KR100191529B1 (en) Coolant control device of multi-airconditioner
KR19980066167A (en) Refrigerant Distribution Structure of Multi-type Air Conditioner
KR20180117935A (en) Multi-type air conditioner
KR100612092B1 (en) Air-conditioner
WO2023223539A1 (en) Air conditioning device
KR100474326B1 (en) Multiple airconditioner
US20220090816A1 (en) Multi-air conditioner for heating, cooling, and ventilation
JPH0510618A (en) Multi-chamber air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080130

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee