KR0184254B1 - Gas phased cesium capturing material using waste fcc catalyst - Google Patents

Gas phased cesium capturing material using waste fcc catalyst Download PDF

Info

Publication number
KR0184254B1
KR0184254B1 KR1019960038821A KR19960038821A KR0184254B1 KR 0184254 B1 KR0184254 B1 KR 0184254B1 KR 1019960038821 A KR1019960038821 A KR 1019960038821A KR 19960038821 A KR19960038821 A KR 19960038821A KR 0184254 B1 KR0184254 B1 KR 0184254B1
Authority
KR
South Korea
Prior art keywords
cesium
catalyst
fcc catalyst
waste
fcc
Prior art date
Application number
KR1019960038821A
Other languages
Korean (ko)
Other versions
KR19980020360A (en
Inventor
반봉찬
안호근
정헌
Original Assignee
장경천
주식회사대원정밀
반봉찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장경천, 주식회사대원정밀, 반봉찬 filed Critical 장경천
Priority to KR1019960038821A priority Critical patent/KR0184254B1/en
Publication of KR19980020360A publication Critical patent/KR19980020360A/en
Application granted granted Critical
Publication of KR0184254B1 publication Critical patent/KR0184254B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708

Abstract

가. 청구범위에 기재된 발명이 속한 기술분야.end. The technical field to which the claimed invention relates.

폐 유동상촉매성분해(FCC)촉매를 이용한 기체상 세슘의 포집재Collection phase of gaseous cesium using waste fluidized bed catalyst component solution (FCC) catalyst

나. 그 발명이 해결하려고 하는 기술과제I. The technical problem that the invention tries to solve

종래 기체상 세슘의 포집재로는 알루미늄규산염(aluminosilicates)을 사용하여 왔음.Conventionally, aluminum aluminosilicates have been used as a capturing material for gaseous cesium.

다. 그 발명의 해결방법의 요지All. The point of the solution of the invention

본 발명은 정유회사의 중질유 분해과정에서 사용후 폐기되는 FCC촉매가 실리카 및 알루미나 성분이 다량으로 들어있어 알루미늄규산염을 대체할 수 있는 물질이므로 이를 기체상 세슘의 포집재로 사용하므로서 경제성, 생산성, 작업성을 향상시키고, 폐촉매의 재활용으로 자원의 부가가치를 높이며, 환경오염원 해소와 저렴한 원료의 안정공급까지 보장하는 기체상 세슘의 포집재를 제공하고자 하는 것임.The present invention relates to an FCC catalyst used in an oil refining company for decomposing heavy oil, which is a substance capable of replacing aluminum silicate by containing a large amount of silica and alumina components, and thus can be used as a capturing agent for gas phase cesium, And to provide a capture material for gaseous cesium which can enhance the added value of resources by recycling waste catalysts, relieve environmental pollution sources and ensure stable supply of cheap raw materials.

라. 발명의 중요한 용도la. Important Uses of the Invention

기체상 세슘의 포집재.Collecting material of gaseous cesium.

Description

폐 유동상촉매성분해(FCC) 촉매를 이용한 기체상 세슘의 포집재Collection phase of gaseous cesium using waste fluidized bed catalyst component solution (FCC) catalyst

본 발명은 석유화학공장의 중질유분해공정중에 발생하는 폐(廢) 유동상 촉매성분해(Fluid Catalytic Cracking, 이하 FCC라 한다) 촉매를 이용하여 기체상세슘(Cs)의 포집재로 사용하기 위한 것이다.The present invention is intended to be used as a capturing agent for gas precursors (Cs) using a fluid catalytic cracking (hereinafter referred to as FCC) catalyst generated during a cracking process of a heavy oil in a petrochemical plant .

즉 종래 기체상 세슘의 포집재로는 알루미늄규산염(aluminosilicates)이 사용되어 왔으나 폐FCC촉매로써 상기 알루미늄규산염을 대체하여 핵분열 생성물중 방사선적 위험도가 높고 처분시 타핵종에 비해 비교적 용출이 잘되는 세슘의 포집(고정화)재로 사용하고자 하는 것이다.Aluminosilicates have been used as a capturing agent for conventional gaseous cesium. However, aluminum silicate has been replaced by a waste FCC catalyst to capture cesium which has a high risk of radioactive fission products and has a relatively good dissolution rate (Immobilization) material.

현재 세슘의 고정화 재료로서 가장 주목받고 있는 알루미늄규산염(aluminosilicates)인데 세슘·알루미늄규산염(Cesium aluminosilicates)로는 CsAlSiO4, CsAlSi2O6, CsAlSi5O12등이 있다. 이들 세가지 화합물들 중에서도 폴루싸이트(pollucite, CsAlSi2O6)가 자장 열역학적으로 안정하며 처분시 침출저항이 크므로 가장 바람직한 세슘의 포집물질로 추천되고 있다.Aluminosilicates, which are currently attracting the most attention as cesium immobilization materials, include CsAlSiO 4 , CsAlSi 2 O 6 and CsAlSi 5 O 12 as cesium aluminosilicates. Among these three compounds, pollucite (CsAlSi 2 O 6 ) is recommended as a most preferable cesium capturing material due to its magnetic field thermodynamic stability and high leaching resistance at disposal.

또한 세슘·알루미늄규산염(Cesium aluminosilicates)의 합성에 관한 연구에서 알루미늄규산염(Cesium aluminosilicates)이 기체상의 세슘을 효과적으로 제거하기 위한 필터 원료물질로서의 가능성이 제시되고, 질산세슘(CsNO3)와 점토물질인 메타카올린(metakaolin), 벤토나이트(bentonite), 피로필라이트(pyrophylite)등과의, 반응특성을 열중량, 시차열, X선회절 등으로 분석한 결과 기체상 세슘의 포집물질로서 이들 점토광물의 이용가능성도 확인되었다.In addition, studies on the synthesis of cesium aluminosilicates have suggested the possibility of aluminum silicate as a filter raw material to effectively remove gaseous cesium, and cesium nitrate (CsNO 3 ) and clay The feasibility of using these clay minerals as gaseous cesium capture materials by analyzing the reaction characteristics with metakaolin, bentonite and pyrophylite by thermogravimetry, differential thermal analysis and X-ray diffraction .

기체상 세슘을 포집하기위한 세슘·알루미늄규산염(cesium aluminosilicates)상을 제조하기 위해서는 알루미늄규산염점토광물의 적절한 Si/Al 몰비와 주의 깊은 열처리가 필요하며, Si/Al 몰비가 1인 카올린(kaolin)의 경우는 CsAlSiO4가 형성되고, Si/Al 몰비가 2인 피로필라이트(pyrophillite)의 경우는 열역학적으로 가장 안정하며, 처분시 내침출성이 큰 폴루싸이트(pollucite)가 형성되는 것으로 보고되었다. Si/Al 몰비가 2보다 클 경우 Si/Al 몰비가 크면 클수록 고온에서 세슘의 휘발량이 증가함으로 이는 세슘화합물을 포집하는데 있어 알루미늄규산염점토광물의 Si/Al 몰비가 대단히 중요하다는 것을 말해 준다.In order to prepare cesium aluminosilicates for capturing gaseous cesium, a proper Si / Al molar ratio of the aluminum silicate clay minerals and a careful heat treatment are required, and kaolin having a Si / Al molar ratio of 1 (CsAlSiO 4 ) and pyrophillite (Si / Al molar ratio = 2) were found to be the most thermodynamically stable and highly pollutant pollucite formed at the disposal. When the Si / Al molar ratio is greater than 2, the larger the Si / Al molar ratio, the higher the volatilization amount of cesium at higher temperatures. This indicates that the Si / Al mole ratio of the aluminum silicate clay mineral is very important in collecting cesium compounds.

한편 정유회사의 중질유 분해과정에서 발생하는 폐FCC촉매는 기존의 석유화학 계통의 촉매와는 달리 담체중의 금속성분을 촉매로 하는 것이 아니고 제오라이트(zeolite)를 이용한 중질유 분해용이다. 즉, 중질유 분해공정 중에 바나듐, 니켈 등이 제오라이트의 표면에 축적·확산되어 촉매 기능이 저하되어 폐기되는 물질로써 현재 시멘트원료, 도자기 및 벽돌제조용으로 극히 제한적인 곳에만 사용되므로 본 발명자는 상기 폐 FCC촉매의 새로운 용도개발을 위한 여러가지 방법을 모색하던 중, 상기 폐FCC촉매의 성분이 주로 제오라이트이며, 또한 Si/Al=2.2인점과 기공도가 비교적 크므로 세슘·알루미늄규산염을 제조할 수 있는 알루미늄규산염을 대체할 수 있는 원료로 사용할 수 있다는 것에 착안하여 상기 FCC폐촉매를 이요하여 기체상 세슘의 포집재로 사용하므로써 자원재활용 및 고부가의 기능재로서 재활용할 수 있도록 하였다.Meanwhile, unlike conventional petrochemical catalysts, the waste FCC catalyst generated during the decomposition process of heavy oil from oil refineries is not a catalyst of metal in the carrier but is used for decomposing heavy oil using zeolite. That is, since vanadium, nickel, and the like accumulate and diffuse on the surface of the zeolite due to the decomposition of heavy oil during the heavy oil cracking process and the catalyst function is lowered, the material is discarded and is currently used only in a limited place for producing cement raw materials, ceramics and bricks. The inventors of the present invention have found that the above-mentioned waste FCC catalyst is mainly composed of zeolite, Si / Al = 2.2, and the porosity and porosity of the catalyst are relatively large, so that aluminum silicate capable of producing cesium- It is possible to recycle the FCC spent catalyst as a capturing material for gaseous cesium, thereby recycling it as a resource material recycle material and a high value-added functional material.

이처럼 본 발명의 목적은 정유회상의 중질유 분해과정에서 사용후 폐기되는 FCC촉매가 실리카 및 알루미나 성분이 다량으로 들어있어 알루미늄규산염을 대체할 수 있는 물질이므로 이를 기체상 세슘의 포집재로 사용하므로서 경제성, 생산성, 작업성을 향상시키고, 폐촉매의 재활용으로 자원의 부가가치를 높이며, 환경오염원 해소와 저렴한 원료의 안정공급까지 보장하는 기체상 세슘의 포집재를 제공하고자 하는 것이다.As such, the object of the present invention is to provide an FCC catalyst which can be substituted for aluminum silicate by containing a large amount of silica and alumina components and being used as a capturing agent for gaseous cesium, To improve the productivity and workability, to increase the added value of resources by recycling spent catalyst, and to ensure the stable supply of low-cost raw materials by eliminating environmental pollution sources.

본 발명을 실시예에 의해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

FCC 폐촉매의 성분은 표 1에서 나타난 바와 같이 화학적 성분으로 주성분이 중량퍼센트로 이산화규소(SiO2) 60∼70%, 산화알루미늄(Al2O3) 25∼32%, 철(Fe) 0.1∼0.5%, 니켈(Ni) 0.1∼0.4%, 바나듐(Fe) 0.1∼0.4%이며, 입자분포도에 있어서 10㎛이하는 31.6%, 60-80㎛이하는 66.3%, 80-95㎛이하는 83%, 95-110㎛이하는 95%, 110-130㎛이하는 100%이다. 또한 BET 표면적(㎡/g)이 138, ABD(g/ml)는 0.856을 나타내고 있다.As shown in Table 1, the components of the FCC spent catalyst are chemical components, which are composed of 60 to 70% of silicon dioxide (SiO 2 ), 25 to 32% of aluminum oxide (Al 2 O 3 ) , The proportion of particles of 10 탆 or less is 31.6%, that of 60-80 탆 or less is 66.3%, the proportion of particles of 80-95 탆 or less is 83% or less, the content of nickel is 0.1-0.4%, the content of nickel is 0.1-0.4% 95% or less for 95-110 μm or less, and 100% or less for 110-130 μm or less. Also, the BET surface area (m 2 / g) is 138 and the ABD (g / ml) is 0.856.

이와같이 폐FCC촉매가 실리카 및 알루미나 성분이 다량으로 들어있는 알루미늄 규산염원료물질이므로 화학적 성분이나 물리적 특성에 있어서 핵분열 생성물중 기체상세슘의 포집재로 적합한 성질을 지니고 있어 상기 폐FCC촉매를 분쇄하여 그대로 세슘의 포집재로써 사용하거나, 또는 분쇄한 분말을 500∼1000℃에서 금속성분만을 산화시킨 뒤 이를 세슘의 포집재로써 사용할 수 있다. 이를 실시예를 들어 상세히 설명하면 다음과 같다.Thus, since the pulsed FCC catalyst is an aluminum silicate raw material containing a large amount of silica and alumina components, the pulverized FCC catalyst is suitable as a trap material for the gas particulate in the fission products in terms of chemical composition and physical properties, Or the pulverized powder may be used as a cesium capturing material after the metallic powder is oxidized at 500 to 1000 占 폚. Hereinafter, the present invention will be described in detail with reference to examples.

[실시예 1][Example 1]

세슘·알루미늄규산염(cesium aluminosilicates) 중 가장 안정한 화합물로 알려진 폴루싸이트(pollucite)의 생성을 목적으로 기체상 세슘의 포집재료로서 폐FCC 촉매와 기체상 세슘의 공급원으로서 질산세슘(CsNO) 또는 요오드세슘(CsI)를 적정비율로 혼합하여 열중량분석(Thermo-Gravimetric Analysis, 이하 TGA라 칭함), 시차열분석(Differential Thermal Analysis, 이하 DTA라 칭함), X 선 회절분석(X-ray Diffractometry Analysis, 이하 XRD라 칭함)등으로 세슘포집반응 특성과 반응생성물의 분석에 의한 세슘포집재로서 활용가능성을 확인하였다.Cesium nitrate (CsNO) or cadmium iodide (CsNO) as a source of waste FCC catalyst and gaseous cesium as the capturing material of gaseous cesium for the purpose of producing pollucite, which is known as the most stable compound of cesium aluminosilicates (Hereinafter referred to as " TGA "), differential thermal analysis (hereinafter referred to as DTA) and X-ray diffractometry (XRD) ) And the possibility of its application as a cesium sorbent by analysis of reaction products.

석융 중질유 분해공정에서 발생한 폐FCC촉매는 분쇄한 상태와 분쇄하지 않는 상태로 요오드세슘(CsI)와 질산세슘(CsNO)와의 반응특성을 조사하였다.The reaction characteristics of cadmium iodide (CsI) with cesium nitrate (CsNO) were investigated in the pulverized and unfractured state of the pulsed FCC catalyst produced in the cracking process.

본 발명의 폐FCC촉매는 표 1에서 보는 바와 같이 알루미나와 실리카 성분을 중량퍼센트로 87g%이상 함유하고 있을 뿐만 아니라, Si/Al몰비가 약2.2이다.The spent FCC catalyst of the present invention contains not less than 87% by weight of alumina and silica components as shown in Table 1, and has a Si / Al molar ratio of about 2.2.

전기한 바 있는 알루미늄규산염점토광물의 Si/Al 몰비는 세슘·알루미늄규산염 중 가장 안정한 화합물로 알려진 pollucite(CsAlSiO) 형성에 매우 중요한데 FCC폐촉매의 Si/Al 몰비는 2.2로 이상적인 값 2.0에 매우 근접하고 있다.The Si / Al molar ratio of the aluminum silicate clay minerals reported is very important for the formation of pollucite (CsAlSiO), which is known as the most stable compound among the cesium-aluminum silicates. The Si / Al molar ratio of the FCC spent catalyst is very close to the ideal value 2.0 have.

실험에 사용된 석탄회의 X-선 회절분석 결과에 1000배로 확대하여 관찰한 주사전자현미경 사진을 보면, 폐FCC촉매는 제오라이트(zeolite)와 SiO(quartz)로 구성되어 있음을 X선 회절분석으로 확인할 수 있었다. 폐FCC촉매는 충분한 실리카와 알루미나를 포함한 전형적인 구형의 입자를 형성하고 있다.X-ray diffraction analysis of the coal fly ash used in the experiment showed that the closed FCC catalyst consists of zeolite and SiO (quartz). I could. Waste FCC catalysts form typical spherical particles with sufficient silica and alumina.

공기분위기에서 석탄회의 질산세슘(CsNO) 혼합물의 DTA와 TGA 분석결과을 시행한 결과, DTA 결과를 살펴보면 409℃에서 뾰족한 흡열피크가 613℃와 820℃ 사이에서는 넓게 퍼진 흡열피크가 나타났다. 409℃에서의 흡열피크는 질산세슘(CsNO)의 용융에 의한 것으로서 결과와도 잘 일치한다. 613℃와 820℃사이에서의 흡열피크는 질산세슘(CsNO)의 분해반응에 의한 것으로 해석된다. 온도를 820℃이상 상승시켜도 DTA곡선이나 TGA곡선 상에서 변화가 관찰되지 않은 것으로 보아 매우 안정한 화합물이 형성되었음을 알 수 있다.The results of DTA and TGA analysis of cesium nitrate (CsNO) mixture of fly ash in an air atmosphere show that the endothermic peak at 409 ℃ has a broad endothermic peak at 613 ℃ and 820 ℃. The endothermic peak at 409 ° C is due to the melting of cesium nitrate (CsNO) and is in good agreement with the results. The endothermic peak between 613 ° C and 820 ° C is interpreted to be due to the decomposition reaction of cesium nitrate (CsNO). When the temperature was raised above 820 ° C, no change was observed on the DTA curve or the TGA curve, indicating that a very stable compound was formed.

폐FCC촉매와 질산세슘(CsNO) 혼합물을 1000℃까지 가열시켜 만든 반응생성물의 X선 회절분석 결과, 석탄회의 구성물질인 제오라이트(zeolite)와 SiO(quartz)피크는 사라지고 폴루싸이트(pollucite)피크가 생성되었음을 알 수 있었다.X-ray diffraction analysis of the reaction products obtained by heating the mixture of waste FCC catalyst and cesium nitrate (CsNO) to 1000 ℃ showed that zeolite and SiO (quartz) peaks, which are the constituents of coal fly ash, disappear and pollucite peaks And it was confirmed that it was generated.

한편, 알루미늄규산염과 질산세슘(CsNO)의 폴리싸이트(pollucite)생성반응은 (1)2CsNO= CsO + NO과 (2)CsO + AlO·4SiO=CsO·AlO·4SiO로 표시할 수 있는데 폴루싸이트(pollucite) 생성반응이 일어났다고 하면, 시료의 총 무게감량 13.9%는 질산세슘(CsNO)의 분해반응시 발생되는 NO에 의한 무게감량 13.6%와 생선된 CaO중 반응에 참여하지 못하고 휘발한 CsO의 무게감량 0.3%의 합으로 해석된다. 따라서 질산세슘(CsNO)가 반응에 참여한 비율은 99.2%로 추정된다.On the other hand, the pollucite formation reaction of aluminum silicate and cesium nitrate (CsNO) can be expressed as (1) 2CsNO = CsO + NO and (2) CsO + AlO · 4SiO = CsO · AlO · 4SiO, the total weight loss of 13.9% of the sample was 13.6% by weight of NO generated by the decomposition of cesium nitrate (CsNO), and the weight of CsO volatilized And the weight loss is 0.3%. Therefore, the ratio of cesium nitrate (CsNO) to the reaction is estimated to be 99.2%.

주사전자현미경으로 500배 확대하여 관찰한 폐FCC촉매와 질산세슘(CsNO) 반응생성물인 폴루싸이트(pollucite)는 표면이 거칠며 부피가 큰 결정형태로서 구형의 폐FCC 촉매와는 매우 다른 형상을 보인다.Waste FCC catalyst and pollutant cucumber nitrate (CsNO) reaction product, observed 500 times magnification by scanning electron microscope, have a rough surface and a bulky crystal form and show a very different shape from spherical waste FCC catalyst.

[실시예 2][Example 2]

공기분위기에서 폐FCC촉매와 요오드세슘(CsI) 혼합물의 DTA와 TGA분석을 시행한 결과, DTA결과를 살펴보면 638℃에서는 폭이 좁은 흡열피크가 650℃에서 940℃ 사이에서는 폭이 넓은 흡열피크가 나타났다. 638℃에서의 흡열피크는 요오드세슘(CsI)의 용융점과 일치된다. 그리고 650℃에서 940℃사이에서 흡열피크는 요오드세슘(CsI)의 분해반응에 의한 것으로 해석된다. 온도를 940℃ 이상 상승시켜도 DTA곡선이나 TGA곡선 상에서 변화가 관찰되지 않은 것으로 보아 매우 안정한 화합물이 형성되었음을 알수 있다. 한편, 폐FCC 촉매와 요오드세슘(CsI)혼합물 1000℃까지 가열시켜 만든 반응생성물의 X선 회절분석 결과, 폐FCC촉매의 구성물질인 제오라이트와 SiO(quartz) 피크는 사라지고 폴루싸이트(pollucite) 피크가 생성되었음을 알 수 있다.DTA and TGA analysis of the mixture of waste FCC catalyst and cadmium iodide (CsI) in the air atmosphere revealed that the narrow endothermic peak at 638 ° C has a broader endothermic peak at 650 ° C to 940 ° C . The endothermic peak at 638 ° C corresponds to the melting point of cesium iodide (CsI). And the endothermic peak at 650 ℃ to 940 ℃ is interpreted as a result of the decomposition reaction of cesium iodide (CsI). It can be seen that even when the temperature is raised above 940 ° C, no change is observed on the DTA curve or the TGA curve, indicating that a very stable compound is formed. On the other hand, the X-ray diffraction analysis of the reaction product produced by heating the mixture of the waste FCC catalyst and the cesium iodide (CsI) to 1000 ° C. showed that the zeolite and SiO 2 (quartz) peaks constituting the pulsed FCC catalyst disappear and the pollucite peak It can be seen that it was created.

한편, 산화분위기에서 요오드세숨(CsI)은 CsO와 I로 분해되므로 고온의 공기 분위기에서 알루미늄규산염(aluminosilicate)와 요오드세슘(CsI)의 폴루싸이트(pollucite) 생성반응은 (3) 2CsI +½O= CsO + I과 (4) CsO + AlO+ 4SiO=CsO·AlO·4SiO로 표시할 수 있는데 폴루싸이트(pollucite)생성 반응이 일어났다고 하면, 실료의, 총 무게감량 39.3%는 요오드세슘(CsI)의 분해반응시 발생된는 I의 배출에 의한 무게감량 27.4%와 반응에 참여하지 못한 CsO의 휘발에 의한 무게감량 13.6%와 반응에 참여한 산소무게 증가분 1.7%의 합으로 해석된다. 따라서 CsI가 반응에 참여한 비율은 약 55.2%로 추정된다.On the other hand, since the iodine sate (CsI) is decomposed into CsO and I in an oxidizing atmosphere, the reaction of producing aluminum chloride (aluminosilicate) and cesium iodide (CsI) in a high temperature air atmosphere is 3CsI + ½O = CsO + I and (4) CsO + AlO + 4SiO = CsO · AlO · 4SiO. When the pollucite formation reaction occurs, the total weight loss of the material is 39.3%, which is the decomposition reaction of cesium iodide The difference in the weight loss due to the emission of I was 27.4% and the sum of the weight loss by volatilization of CsO not participating in the reaction and 13.6% Therefore, the proportion of CsI participating in the reaction is estimated to be about 55.2%.

주사전자현미경으로 500배 확대하여 관찰한 폐FCC 촉매와 요오드세슘(CsI) 반응생성물인 폴루싸이트(pollucite)는 표면이 거칠며 부피가 큰 결정형태로서 구형의 폐FCC촉매와는 매우 다른 형상을 보이며, 폐FCC촉매와 질산세슘(CsNO)의 혼합물로 부터 생성된 폴루싸이트(pollucite)와 비슷한 모양을 나타내고 있다.The polluted FCC catalyst and pollucite, which is a reaction product of cesium iodide (CsI) observed by scanning electron microscope 500 times magnification, are rough and bulky crystals which are very different from spherical pulsed FCC catalysts, It is similar to pollucite produced from a mixture of waste FCC catalyst and cesium nitrate (CsNO).

이상과 같이 석유화학 중질유 분해공정 폐기물인 폐FCC촉매를 이용하여 DTA와 TGA, XRD, SEM등으로 세슘의 포집반응특성을 분석한 결과, 폐FCC촉매와 질산세슘(CsNO)의 혼합물은 820℃ 이상에서, 그리고 폐FCC촉매와 요오드세슘(CsI)의 혼합물은 940℃ 이상에서 열적으로 안정하고 표면이 거칠며 부피가 큰 둥근 결정형태의 폴루싸이트(pollucite)가 형성됨을 확인하였다.As a result of the analysis of the cesium capture reaction characteristics by using DTA, TGA, XRD, SEM, etc. using waste FCC catalyst, which is a waste of decomposition process of petroleum chemical heavy oil, the mixture of waste FCC catalyst and cesium nitrate (CsNO) , And a mixture of waste FCC catalyst and cesium iodide (CsI) was found to be thermally stable at 940 ° C or above, forming a rough, bulky round crystalline form of pollucite.

따라서 실리카와 알루미나 성분이 87%이상을 함유하고 있으며, Si/Al 몰비가 약 2.2인 폐FCC촉매는 고온에서 기체상 세슘을 폴루싸이트(pollucite) 형태로 포집할 수 있는 적절한 물질임을 확인할 수 있었다.Therefore, it can be confirmed that the waste FCC catalyst having a silica / alumina content of 87% or more and a Si / Al molar ratio of about 2.2 is a suitable material capable of collecting gaseous cesium in the form of pollucite at a high temperature.

이상 살펴본 바와 같이 지금까지 저가의 시멘트용, 건축자재용으로 사용되거나 일부폐기되어 왔던 폐FCC 촉매를 재활용하여 세슘(Cs)의 포집재로 사용하는데 큰 의의가 있으며, 특히 산업 폐기물을 저가의 비용으로 처리하면서 최근 문제시되고 있는 공해방지에도 큰 역할을 행할 수 있고, 또한 세슘(Cs)의 포집재로 제오라이트(zeolite)등은 상당히 고가이지만 이를 저가의 폐FCC 촉매로 대용하므로서 세슘(Cs)포집재 제조비용도 크게 절감할 수 있으며, 종래의 세슘(Cs)포집재가 갖는 물리·화학적 성질등에 있어서도 결코 뒤지지 않는 매우 유용한 발명이다.As described above, it is very important to recycle the waste FCC catalyst, which has been used for low-cost cement, building materials, or partly discarded, as a capturing material for cesium (Cs) (Cs) as a capturing agent for cesium (Cs). However, since zeolite and the like are considerably expensive, it can be used as a low-cost waste FCC catalyst to produce cesium (Cs) The cost can be greatly reduced, and it is a very useful invention that never lags in the physical and chemical properties of conventional cesium (Cs) trap materials.

Claims (3)

석유 정제 공정의 중질유의 경질화 공정에서 발생하는 중량 퍼센트로 이산화규소(SiO2) 60∼70% 산화알루미늄(Al2O3) 25∼30%, 철(Fe) 0.1∼0.5%, 니켈(Ni) 0.1∼0.4%, 나트륨(Na) 0.1∼0.4%, 바나듐(V) 0.1∼0.4%의 조성으로 이루어지는 폐FCC촉매를 분쇄하여 세슘의 포집재로써 사용함을 특징으로 하는 폐유동상촉매성분해(FCC)촉매를 이용한 기체상 세슘의 포집재.(SiO 2 ) 60 to 70% aluminum oxide (Al 2 O 3 ) 25 to 30%, iron (Fe) 0.1 to 0.5%, nickel (Ni Wherein the waste FCC catalyst having a composition of 0.1 to 0.4% of Na, 0.1 to 0.4% of sodium and 0.1 to 0.4% of vanadium (V) is pulverized and used as a cesium capturing material. Catalytic Casing of Gas Phase Cesium. 제1항에 있어서 상기 폐FCC촉매를 분쇄하고, 상기 분말을 500∼1000℃에서 금속성분만을 산화시켜 세슘의 포집재로써 사용함을 특징으로 하는 폐 유동상촉매성분해(FCC)촉매를 이용한 기체상 세슘의 포집재.The method according to claim 1, wherein the waste FCC catalyst is pulverized, and the powder is used as a cesium capturing material by oxidizing metallic powder at 500 to 1000 占 폚. Collecting material of cesium. 제1항 또는 제2항에 있어서 세슘의 포집재로써 입도가 110㎛이고, 평균밀도 40∼80㎛인 폐FCC 촉매를 사용함을 특징으로 하는 폐 유동상촉매성분해(FCC)촉매를 이용한 기체상 세슘의 포집재.Use of a waste fluidized bed catalytic component solution (FCC) catalyst as claimed in any one of claims 1 to 3, characterized in that it comprises a waste FCC catalyst having a particle size of 110 mu m and an average density of 40 to 80 mu m, Collecting material of cesium.
KR1019960038821A 1996-09-04 1996-09-04 Gas phased cesium capturing material using waste fcc catalyst KR0184254B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960038821A KR0184254B1 (en) 1996-09-04 1996-09-04 Gas phased cesium capturing material using waste fcc catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960038821A KR0184254B1 (en) 1996-09-04 1996-09-04 Gas phased cesium capturing material using waste fcc catalyst

Publications (2)

Publication Number Publication Date
KR19980020360A KR19980020360A (en) 1998-06-25
KR0184254B1 true KR0184254B1 (en) 1999-04-15

Family

ID=19473071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960038821A KR0184254B1 (en) 1996-09-04 1996-09-04 Gas phased cesium capturing material using waste fcc catalyst

Country Status (1)

Country Link
KR (1) KR0184254B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298503B2 (en) 2009-09-02 2012-10-30 Korea Atomic Energy Research Institute Filter type trapping agent for volatile cesium compound and trapping method for volatile cesium compound thereof
KR20180037500A (en) * 2016-10-04 2018-04-12 에스케이이노베이션 주식회사 Dehydration Processing Method of Bio-sludge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473986B1 (en) * 2001-11-01 2005-03-07 서곤 Preparation of catalysts from used fcc catalysts for the liquid-phase degradation of waste polymer, and catalytic degradation process using the same
KR102121551B1 (en) * 2018-12-19 2020-06-10 우석대학교 산학협력단 Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8298503B2 (en) 2009-09-02 2012-10-30 Korea Atomic Energy Research Institute Filter type trapping agent for volatile cesium compound and trapping method for volatile cesium compound thereof
KR20180037500A (en) * 2016-10-04 2018-04-12 에스케이이노베이션 주식회사 Dehydration Processing Method of Bio-sludge

Also Published As

Publication number Publication date
KR19980020360A (en) 1998-06-25

Similar Documents

Publication Publication Date Title
Fotovat et al. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash
AU2008284107B2 (en) Porous bodies and methods
Terzano et al. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation
Bosio et al. A new method to inertize incinerator toxic fly ash with silica from rice husk ash
Iljina et al. The stability of formed CaF 2 and its influence on the thermal behavior of C–S–H in CaO–silica gel waste-H 2 O system
Zhang et al. The effect and mechanism of Si/Al ratio on microstructure of zeolite modified ceramsite derived from industrial wastes
KR0184254B1 (en) Gas phased cesium capturing material using waste fcc catalyst
JP5025773B2 (en) Filter-type collecting material for collecting volatile cesium compound and method for collecting volatile cesium compound using the same
Liu et al. Microstructures and thermal properties of municipal solid waste incineration fly ash
Alegbe et al. Chemical, mineralogical and morphological investigation of coal fly ash obtained from mpumalanga province, South Africa
Quyen et al. Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties
US20230106358A1 (en) Solid material having an open multiple porosity, comprising a geopolymer and solid particles, and method for the preparation thereof
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
Nag et al. Feasibility of natural zeolite for heavy metal stabilization in municipal solid waste incineration fly ash: A novel approach
Tian et al. Synthesis of cordierite using municipal solid waste incineration fly ash as one additive for enhanced catalytic oxidation of volatile organic compounds
Sun et al. Recovery and marine clay stabilization of heavy metals present in spent hydrotreating catalysts
Marhoon et al. Hydrothermal synthesis of high-purity zeolite X from coal fly ash for heavy metal removal: Kinetic and isotherm analysis
JP6187898B2 (en) Dioxin adsorbent, heavy metal adsorbent and method for producing the adsorbent
KR100192128B1 (en) Radioactive cesium filtering method with use of fly ash
JP5889554B2 (en) ORGANIC COMPOUND ADSORBENT HAVING HAZARDOUS METAL OR π BOND, ITS MANUFACTURING METHOD, AND ORGANIC COMPOUND ADSORBING METHOD HAVING HAZARDOUS METAL OR π BOND
JP6421402B2 (en) Benzene adsorbent, its production method and benzene treatment method
Gonzalez et al. Conversion of nonconventional aluminosiliceous sources into microporous adsorbents for water remediation
Chen et al. Cadmium Detoxification by Sintering with Ceramic Matrices
Lin et al. Evaluation of sintering characteristics of pavement tiles incorporating waste catalyst
Kasai et al. Synthesis and evaluation of zeolite surface-modified perlite

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20021029

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee