KR0171377B1 - Fabrication method of ultra thin device - Google Patents

Fabrication method of ultra thin device Download PDF

Info

Publication number
KR0171377B1
KR0171377B1 KR1019950052669A KR19950052669A KR0171377B1 KR 0171377 B1 KR0171377 B1 KR 0171377B1 KR 1019950052669 A KR1019950052669 A KR 1019950052669A KR 19950052669 A KR19950052669 A KR 19950052669A KR 0171377 B1 KR0171377 B1 KR 0171377B1
Authority
KR
South Korea
Prior art keywords
layer
gallium arsenide
buffer layer
heat
substrate
Prior art date
Application number
KR1019950052669A
Other languages
Korean (ko)
Other versions
KR970051983A (en
Inventor
이재진
이해권
남기수
Original Assignee
양승택
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 한국전자통신연구원 filed Critical 양승택
Priority to KR1019950052669A priority Critical patent/KR0171377B1/en
Publication of KR970051983A publication Critical patent/KR970051983A/en
Application granted granted Critical
Publication of KR0171377B1 publication Critical patent/KR0171377B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

본 발명은 극 박막소자 제조 방법에 관한 것으로서, 반절연성의 갈륨 비소 화합물 반도체 기판상에 상기 갈륨 비소와 식각 선택비가 큰 알루미늄 비소로 이루어진 희생층, 갈륨 비소 또는 갈륨 비소와 알루미늄 갈륨 비소의 초격자 구조로 이루어진 완충층, 실리콘이 도핑된 갈륨 비소층으로 이루어진 채널층으로 순착적으로 결정 성장하는 공정과, 상기 채널층의 소정부분을 상기 완충층이 노출되도록 제거하여 소자를 분리하는 공정과, 상기 완충층과 채널층의 상부에 감광막을 도포한 후 노광 및 현상하여 상기 완충층을 노출시키는 공정과, 상기 완충층을 상기 희생층이 노출되도록 식각하는 공정과, 상기 감광막의 상부에 여분의 웨이퍼를 부착하고 상기 희생층을 제거하여 소자를 기판으로 부터 분리하는 공정과, 상기 완충층의 노출면에 패키지 할 때 열 방출을 효율적으로 할 수 있는 열방출층을 형성하는 공정과, 상기 열방출층의 표면에 열전도성이 좋은 열전도기판을 부착하고 상기 감광막을 제거하는 공정을 구비한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polar thin film device, comprising: a superlattice structure of a sacrificial layer made of gallium arsenide and aluminum arsenide having a high etching selectivity on a semi-insulating gallium arsenide compound substrate, gallium arsenide, or gallium arsenide and aluminum gallium arsenide A process of crystally growing into a buffer layer consisting of a buffer layer made of silicon and a gallium arsenide layer doped with silicon, and removing a predetermined portion of the channel layer so that the buffer layer is exposed, and separating the device, the buffer layer and a channel Applying a photoresist film on top of the layer, exposing and developing the buffer layer to expose the buffer layer, etching the buffer layer to expose the sacrificial layer, attaching an extra wafer to the top of the photoresist film, and Removing the device from the substrate, and packaged on the exposed surface of the buffer layer. Forming a heat dissipation layer capable of efficiently dissipating heat at a time; and attaching a heat conductive substrate having good thermal conductivity to the surface of the heat dissipation layer and removing the photosensitive film.

따라서, 본 발명은 동시에 칩을 분리 할 수 있으며, 이렇게 분리된 칩은 두께가 수 마이크로 미터로 줄어들므로 열방출을 효율적으로 할 수 있어 전력소자의 성능을 향상시킬 수 있다.Therefore, the present invention can separate the chip at the same time, and the separated chip is reduced to a few micrometers thickness, so that the heat dissipation can be efficiently improved the performance of the power device.

Description

극 박막소자 제조 방법Pole thin film device manufacturing method

제1도는 본 발명에 따른 극 박막소자를 제조하기 위한 에피택셜층의 단면도.1 is a cross-sectional view of an epitaxial layer for manufacturing a polar thin film device according to the present invention.

제2도(a) 내지 (h)는 본 발명에 따른 극 박막소자의 제조 공정도.2 (a) to (h) is a manufacturing process diagram of the polar thin film device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체 기판 2 : 희생층1 semiconductor substrate 2 sacrificial layer

3 : 완충층 4 : 채널층3: buffer layer 4: channel layer

5 : 감광막 6 : 여분의 웨이퍼5: photosensitive film 6: extra wafer

7 : 열방출층 8 : 열전도기판7: heat dissipation layer 8: heat conducting substrate

본 발명은 극 박막소자의 제조방법에 관한 것으로서, 특히, 갈륨 비소 화합물 반도체로 제조한 전력 소자가 얇은 두께를 가져 열방출율을 효과적으로 제어하여 전력소자의 전력 효율을 높일 수 있는 극 박막소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polar thin film device. In particular, a power device manufactured from a gallium arsenide compound semiconductor has a thin thickness and effectively controls a heat emission rate, thereby improving the power efficiency of the power thin film device. It is about.

일반적으로 갈륨 비소 화합물 반도체 전력 소자는 기판에 이온 주입을 하거나 에피택시장치에 의하여 에피택셜 성장한 활성층을 이용하여 제작하고 있다.In general, gallium arsenide compound semiconductor power devices are fabricated using ion-implanted substrates or epitaxially grown active layers.

이온 주입 방법에 의해 형성된 전력 소자 두께는 대체로 사용한 기판의 두께와 같으며, 에피택셜 방법에 의한 전력 소자의 두께는 기판보다 성장한 층들의 두께 만큼 두꺼운 형태를 가지게 된다.The thickness of the power device formed by the ion implantation method is generally the same as the thickness of the substrate used, and the thickness of the power device by the epitaxial method is thicker than the thickness of the grown layers.

이러한 갈륨 비소 소자는 두꺼운 기판과 자체의 특성 때문에 소자 동작시 발생하는 열을 효과적으로 방출하지 못한다.Such gallium arsenide devices do not effectively dissipate heat generated during device operation due to their thick substrates and their characteristics.

특히 갈륨 비소 반도체는 열 방출 특성이 실리콘 보다 매우 낮은 특성을 가지므로 갈륨 비소 반도체로 소자를 제작하면 열방출 문제가 대두 된다.In particular, the gallium arsenide semiconductor has a much lower heat release characteristics than silicon, so if a device is manufactured from a gallium arsenide semiconductor, heat dissipation problems arise.

그러므로, 종래에는 제작된 기판의 하부면을 100~300㎛ 정도로 얇게 연마하여 소자 동작시 발생되는 열을 효과적으로 방출시켜 소자를 안정적으로 동작시켰다.Therefore, in the related art, the lower surface of the fabricated substrate is polished to about 100 to 300 µm, thereby effectively releasing heat generated during device operation, thereby stably operating the device.

그러나, 갈륨 비소 반도체로 제조된 소자를 열방출을 위하여 연마하여 기판의 두께를 얇게 만들면 부서지기 쉬운 문제점이 있었다.However, when a device made of gallium arsenide semiconductor is polished for heat dissipation to make the thickness of the substrate thin, there is a problem of brittleness.

따라서, 본 발명의 목적은 연마하지 않고 갈륨 비소 화합물 전력 소자 구조를 에피택셜 방법으로 제작할 수 있는 극 박막소자의 제조방법을 제공함에 있다.Accordingly, it is an object of the present invention to provide a method for manufacturing a polar thin film device which can produce a gallium arsenide compound power device structure by an epitaxial method without polishing.

상기 목적을 달성하기 위한 본 발명에 따른 극 박막소자의 제조방법은 반절연성의 갈륨 비소 화합물 반도체 기판 상에 상기 갈륨 비소와 식각 선택비가 큰 알루미늄 비소로 이루어진 희생층, 갈륨 비소 또는 갈륨 비소와 알루미늄 갈륨 비소의 초격자 구조로 이루어진 완충층, 실리콘이 도핑된 갈륨 비소층으로 이루어진 채널층을 순차적으로 결정 성장하는 공정과, 상기 채널층의 소정 부분을 상기 완충층이 노출되도록 제거하여 소자를 분리하는 공정과, 상기 완충층과 채널층의 상부에 감광막을 도포한 후 노광 및 현상하여 상기 완충층을 노출시키는 공정과, 상기 완충층을 상기 희생층이 노출되도록 식각하는 공정과, 상기 감광막의 상부에 여분의 웨이퍼를 부착하고 상기 희생층을 제거하여 소자를 기판으로 부터 분리하는 공정과, 상기 완충층의 노출면에 패키지 할 때 열 방출을 효율적으로 할 수 있는 열방출층을 형성하는 공정과, 상기 열방출층의 표면에 열 전도성이 좋은 열전도기판을 부착하고 상기 감광막을 제거하는 공정을 구비한다.According to an aspect of the present invention, there is provided a method of fabricating an ultra-thin device according to the present invention, wherein a sacrificial layer made of gallium arsenide and aluminum arsenide having a high etching selectivity on a semi-insulating gallium arsenide compound semiconductor substrate, gallium arsenide, or gallium arsenide and aluminum gallium Sequential crystal growth of a buffer layer consisting of a arsenic superlattice structure and a gallium arsenide layer doped with silicon, and separating a device by removing a predetermined portion of the channel layer so that the buffer layer is exposed; Exposing and buffering the photosensitive film on top of the buffer layer and the channel layer, exposing and developing the buffer layer, etching the buffer layer to expose the sacrificial layer, and attaching an extra wafer to the top of the photosensitive film. Removing the sacrificial layer to separate the device from the substrate, and When the package resin receiving surface comprises a step of attaching a heat conductive substrate is good thermal conductivity to the surface of the step and the heat-releasing layer to form the heat dissipating layer which can effectively dissipate heat and remove the photosensitive film.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1도는 극 박막소자를 제조하기 위한 에픽택셜 층의 구조로서, 참조 번호 1은 에피택셜 성장을 위한 반절연성 갈륨 비소 기판이며, 참조 번호 2는 습식 에칭의 상기 갈륨 비소 기판(1)과 식각 선택비가 큰 알루미늄 비소가 50~500Å 정도의 두께로 형성된 희생층이며, 참조 번호 3은 갈륨 비소 또는 갈륨 비소와 알루미늄 갈륨 비소의 초격자 구조로 이루어진 완충층이고, 참조 번호 4는 실리콘이 도핑된 갈륨 비소층으로 수십에서 수백 나노미터의 두께를 갖는 채널층이다.FIG. 1 is a structure of an epitaxial layer for fabricating a polar thin film device, in which reference numeral 1 is a semi-insulating gallium arsenide substrate for epitaxial growth, and reference numeral 2 is an etching selection with the gallium arsenide substrate 1 of wet etching. Aluminum arsenic having a large ratio is a sacrificial layer formed to a thickness of about 50 ~ 500Å, reference numeral 3 is a buffer layer consisting of a superlattice structure of gallium arsenide or gallium arsenide and aluminum gallium arsenide, reference numeral 4 is a gallium arsenide layer doped with silicon It is a channel layer with a thickness of tens to hundreds of nanometers.

상기에서 완충층(3)은 성장시 기판(1)의 결함을 상기 채널층(4)으로 확산되는 것을 차단하고 채널층(4)의 누설 전류를 감소시킨다.The buffer layer 3 blocks the diffusion of the defects of the substrate 1 into the channel layer 4 during growth and reduces the leakage current of the channel layer 4.

상술한 제1도와 같은 구조를 염산 용액에 넣으면 갈륨 비소로 이루어진 완충층(3)과 채널층(4)는 식각이 되지않고 알루미늄 비소로 이루어진 희생층(2)만 식각되어 완충층(3)과 채널층(4)을 기판(1)과 분리할 수 있어 완충층(3)과 채널층(4)으로만 이루어진 극 박막소자를 제조할 수 있다.When the above structure shown in FIG. 1 is placed in a hydrochloric acid solution, the buffer layer 3 and the channel layer 4 made of gallium arsenide are not etched, and only the sacrificial layer 2 made of aluminum arsenide is etched to prevent the buffer layer 3 and the channel layer. (4) can be separated from the substrate 1, so that a polar thin film element composed of only the buffer layer 3 and the channel layer 4 can be manufactured.

제2도(a) 내지 (h)는 본 발명에 따른 극 박막소자의 제조 공정도이다.2 (a) to (h) is a manufacturing process diagram of the polar thin film device according to the present invention.

제2도(a)를 참조하면, 반절연성의 갈륨 비소 기판(1)의 상부에 갈륨 비소와 식각 선택비가 큰 알루미늄 비소로 이루어진 희생층(2)을 50~500Å 정도의 두께로, 갈륨 비소 또는 갈륨 비소와 알루미늄 갈륨 비소의 초격자 구조로 이루어진 완충층(3) 및 실리콘이 도핑된 갈륨 비소층으로 수십에서 수백 나노미터의 두께를 갖는 채널층(4)을 MBE 또는 MOCVD 등의 결정 성장 방법으로 순차적으로 결정 성장하여 형성한다.Referring to FIG. 2 (a), a sacrificial layer 2 made of gallium arsenide and aluminum arsenide having a large etching selectivity is formed on the semi-insulating gallium arsenide substrate 1 to a thickness of about 50 to 500 μm, and the gallium arsenide or the like. A buffer layer (3) composed of gallium arsenide and aluminum gallium arsenide, and a gallium arsenide layer doped with silicon, and the channel layer (4) having a thickness of several tens to several hundred nanometers is sequentially formed by a crystal growth method such as MBE or MOCVD. Formed by crystal growth.

그리고, 통상의 포토리쏘그래피 방법에 의해 상기 채널층(4)의 소정 부분을 상기 완충층(3)이 노출되도록 제거하여 소자를 분리한다.The device is separated by removing a predetermined portion of the channel layer 4 so that the buffer layer 3 is exposed by a conventional photolithography method.

제2도(b)를 참조하면, 상기 완충층(3)과 채널층(3)의 상부에 감광막(5)을 도포한 후 제2도(c)와 같이 칩 분리 마스크를 이용하여 노광 및 현상하여 상기 완충층(3)을 노출시킨다.Referring to FIG. 2B, after the photosensitive film 5 is coated on the buffer layer 3 and the channel layer 3, the photosensitive film 5 is exposed and developed using a chip separation mask as shown in FIG. 2C. The buffer layer 3 is exposed.

이때, 노출된 완충층(3)을 식각 선택비가 큰 구연산 용액과 과산화 수소를 3 : 1의 비율로 섞은 식각 용액을 이용하면 제2도(d)와 같이 상기 희생막(2)이 노출되도록 완충층(3)까지 식각할 수 있다.In this case, when the exposed buffer layer 3 is mixed with a citric acid solution having a large etching selectivity and hydrogen peroxide in a ratio of 3: 1, the buffer layer 2 is exposed to expose the sacrificial layer 2 as shown in FIG. It can be etched up to 3).

그리고, 상기 감광막(5)의 상부에 여분의 웨이퍼(6)를 왁스 등으로 제2도(e)와 같이 부착한 후 염산 용액에 담그면 노출 되어 있는 희생층(3)이 제거되어 제2도(f)와 같이 소자를 기판(1)으로 부터 분리된다.Then, the excess wafer 6 is attached to the upper portion of the photoresist film 5 with wax or the like as shown in FIG. 2E, and then immersed in a hydrochloric acid solution to remove the exposed sacrificial layer 3 to remove the The device is separated from the substrate 1 as in f).

그 다음, 완충층(3)의 노출면에 제2도(g)와 같이 금 또는 알루미늄 등을 증착하여 패키지 할 때의 열 방출을 효율적으로 할 수 있는 열방출층(7)을 형성한다.Next, as shown in FIG. 2 (g), gold or aluminum is deposited on the exposed surface of the buffer layer 3 to form a heat dissipation layer 7 capable of efficiently dissipating heat during packaging.

그리고, 상기 열방출층(7)의 표면에 열 전도성이 좋은 열전도기판(8)을 부착하고 아세톤에 의해 상기 감광막(5)을 제거하면 제2도(h)와 같이 된다.Then, when the thermally conductive substrate 8 having good thermal conductivity is attached to the surface of the heat dissipating layer 7 and the photosensitive film 5 is removed by acetone, the result is as shown in FIG.

따라서, 본 발명은 동시에 칩을 분리 할 수 있으며, 이렇게 분리된 칩은 두께가 수 마이크로 미터로 줄어들므로 열방출을 효율적으로 할 수 있어 전력소자의 성능을 향상시킬 수 있는 잇점이 있다.Therefore, the present invention can separate the chip at the same time, the separated chip is reduced to a few micrometers thickness can be efficiently released heat has the advantage of improving the performance of the power device.

Claims (5)

반절연성의 갈륨비소 화합물 반도체 기판 상에 상기 갈륨 비소와 식각 선택비가 큰 알루미늄 비소로 이루어진 희생층, 갈륨 비소 또는 갈륨 비소와 알루미늄 갈륨 비소의 초격자 구조로 이루어진 완충층, 실리콘이 도핑된 갈륨 비소층으로 이루어진 채널층을 순차적으로 결정 성장하는 공정과, 상기 채널층의 소정 부분을 상기 완충층이 노출되도록 제거하여 소자를 분리하는 공정과, 상기 완충층과 채널층의 상부에 감광막을 도포한 후 노광 및 현상하여 상기 완충층을 노출시키는 공정과, 상기 완충층을 상기 희생층이 노출되도록 식각하는 공정과, 상기 감광막의 상부에 여분의 웨이퍼를 부착하고 상기 희생층을 제거하여 소자를 기판으로 부터 분리하는 공정과, 상기 완충층의 노출면에 패키지 할 때 열 방출을 효율적으로 할 수 있는 열방출층을 형성하는 공정과, 상기 열방출층의 표면에 열 전도성이 좋은 열전도기판을 부착하고 상기 감광막을 제거하는 공정을 구비하는 극 박막소자 제조 방법.On the semi-insulating gallium arsenide compound semiconductor substrate, a sacrificial layer made of gallium arsenide and aluminum arsenide having a high etching selectivity, a buffer layer made of gallium arsenide or a superlattice structure of gallium arsenide and aluminum gallium arsenide, and a gallium arsenide layer doped with silicon. Crystalline growth of the channel layer, and removing a predetermined portion of the channel layer so that the buffer layer is exposed, and separating the device; and exposing and developing a photoresist film on the buffer layer and the channel layer. Exposing the buffer layer, etching the buffer layer to expose the sacrificial layer, attaching an extra wafer to the upper portion of the photosensitive layer, and removing the sacrificial layer to separate the device from the substrate; When packaged on the exposed surface of the buffer layer, a heat-dissipating layer that can efficiently release heat is formed. Step, a method for attaching a good heat conductive substrate on the surface of the thermally conductive heat-emitting layer and manufacturing a thin film electrode for devices comprising a step of removing the photosensitive film to. 제1항에 있어서, 상기 희생층을 50~500Å 정도의 두께로 형성하는 극 박막소자 제조 방법.The method of claim 1, wherein the sacrificial layer is formed to a thickness of about 50 to 500 kV. 제1항에 있어서, 상기 층들을 MBE 또는 MOCVD 등의 방법으로 결정 성장하는 극 박막소자 제조 방법.The method of claim 1, wherein the layers are crystal-grown by MBE or MOCVD. 제1항에 있어서, 상기 완충층을 식각 선택비가 큰 구연산 용액과 과산화 수소를 3 : 1의 비율로 섞은 용액으로 식각하는 극 박막소자 제조방법.The method of claim 1, wherein the buffer layer is etched with a solution of citric acid solution having a high etching selectivity and hydrogen peroxide in a ratio of 3: 1. 제1항에 있어서, 상기 열방출층을 금 또는 알루미늄으로 형성하는 극 박막소자 제조 방법.The method of claim 1, wherein the heat release layer is formed of gold or aluminum.
KR1019950052669A 1995-12-20 1995-12-20 Fabrication method of ultra thin device KR0171377B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950052669A KR0171377B1 (en) 1995-12-20 1995-12-20 Fabrication method of ultra thin device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950052669A KR0171377B1 (en) 1995-12-20 1995-12-20 Fabrication method of ultra thin device

Publications (2)

Publication Number Publication Date
KR970051983A KR970051983A (en) 1997-07-29
KR0171377B1 true KR0171377B1 (en) 1999-03-30

Family

ID=19441847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950052669A KR0171377B1 (en) 1995-12-20 1995-12-20 Fabrication method of ultra thin device

Country Status (1)

Country Link
KR (1) KR0171377B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324566B1 (en) 2014-12-31 2016-04-26 International Business Machines Corporation Controlled spalling using a reactive material stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324566B1 (en) 2014-12-31 2016-04-26 International Business Machines Corporation Controlled spalling using a reactive material stack

Also Published As

Publication number Publication date
KR970051983A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
KR100442105B1 (en) Method of forming soi type substrate
US6242794B1 (en) Self-aligned symmetric intrinsic device
US5449930A (en) High power, compound semiconductor device and fabrication process
KR20170044638A (en) Systems and methods for preparing gan and related materials for micro assembly
EP0317124A2 (en) Silicon on insulator semiconductor components containing thin synthetic diamond films
US4467521A (en) Selective epitaxial growth of gallium arsenide with selective orientation
US20080164480A1 (en) Fabrication of Semiconductor Devices
US11152216B2 (en) Method for manufacturing semiconductor device
US5155561A (en) Permeable base transistor having an electrode configuration for heat dissipation
WO2017123245A1 (en) Multilayer device
US6461889B1 (en) Method of fabricating semiconductor device with diamond substrate
WO2005004212A1 (en) Growth method of nitride semiconductor epitaxial layers
US8330036B1 (en) Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
US5654214A (en) Method of manufacturing a semiconductor device having at least two field effect transistors with different pinch-off voltages
KR0171377B1 (en) Fabrication method of ultra thin device
KR101105918B1 (en) Method of manufacturing nitride compound semiconductor device
CN109791877B (en) Structures comprising single crystal semiconductor islands and methods of fabricating such structures
JPH03129818A (en) Manufacture of semiconductor device
EP0924757A2 (en) Fabrication of high power semiconductor device with a heat sink and integration with planar microstrip circuitry
EP2054926A1 (en) Method of manufacturing a semiconductor device and semiconductor device obtained with such a method
KR100249846B1 (en) Epitaxial layer structure of compound semiconductor for high heat dissipation
US20230170434A1 (en) Vertical light-emitting diode and method for fabricating the same
CN111446289B (en) Gallium nitride device structure based on graphene covering layer and preparation method thereof
KR100466224B1 (en) Fabrication method of base substrate for mounting semiconductor chip
KR940008320B1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070919

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee