KR0161665B1 - High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteria - Google Patents
High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteriaInfo
- Publication number
- KR0161665B1 KR0161665B1 KR1019940034045A KR19940034045A KR0161665B1 KR 0161665 B1 KR0161665 B1 KR 0161665B1 KR 1019940034045 A KR1019940034045 A KR 1019940034045A KR 19940034045 A KR19940034045 A KR 19940034045A KR 0161665 B1 KR0161665 B1 KR 0161665B1
- Authority
- KR
- South Korea
- Prior art keywords
- wastewater
- photosynthetic bacteria
- biofilm
- reactor
- treatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
1. 청구범위에 기재된 발명이 속하는 기술분야1. TECHNICAL FIELD OF THE INVENTION
고농도폐수 처리방법High concentration wastewater treatment method
2. 발명이 해결하고자 하는 기술적 과제2. Technical problem to be solved by the invention
광합성 세균을 이용한 고농도폐수 처리방법의 개선Improvement of high concentration wastewater treatment using photosynthetic bacteria
3. 발명의 해결방법의 요지3. Summary of Solution to Invention
하기 특성을 갖는 다공성 세라믹 비드 또는 활성탄에 아티오로다세(Athiorghdaceae)과의 로도슈도모나스(Rhodopseudomonas)속 또는 로도스피릴룸(Rhodospirillum) 속의 균주가 고농도로 고정된 생물막 반응기에 폐수를 유입시킴을 특징으로 하는 고농도폐수의 생물학적 처리방법:High concentrations characterized by the introduction of wastewater into a biofilm reactor in which Rhodopseudomonas or Rhodospirillum with Athiorghdaceae in a porous ceramic bead or activated carbon having the following properties Biological treatment of wastewater:
4. 발명의 중요한 용도4. Important uses of the invention
폐수처리Wastewater treatment
Description
제1도는 광합성 세균의 고정상 생물막 반응기를 이용한 고농도폐수 처리에 대한 유기물부하의 영향을 나타낸 그래프이다.1 is a graph showing the effect of organic load on the high concentration wastewater treatment using a fixed bed biofilm reactor for photosynthetic bacteria.
제2도는 광합성 세균의 고정상 생물막 반응기를 이용한 고농도폐수 처리에 대한 체류시간의 영향을 나타낸 그래프이다.2 is a graph showing the effect of residence time on the treatment of high concentration wastewater using a fixed bed biofilm reactor for photosynthetic bacteria.
제3도는 담체종류에 따른 광합성 세균의 고정상 생물막 반응기의 고농도폐수 처리의 특성을 나타낸 그래프이다.3 is a graph showing the characteristics of the high concentration wastewater treatment of the fixed bed biofilm reactor for photosynthetic bacteria according to the carrier type.
본 발명은 광합성 세균(Photosynthetic bacteria)의 고정상 생물막 반응기(Fixed film reactor 또는 Packed-bed reactor)를 이용하여 고농도폐수를 처리하는 방법에 관한 것으로 좀 더 구체적으로는 홍색 비유황세균(Purple non-sulfur bacteria)인 아티오로다세(Athiorghdaceae)과의 로도슈도모나스(Rhodopseudomonas)속 또는 로도스피릴룸(Rhodospirillum) 속의 균주를 형태, 크기, 세공크기, 다공성 및 밀도에 있어서 특정한 특성을 갖는 활성탄 또는 다공성 세라믹 비드의 표면에 부착시켜 형성된 생물막(Biofilm)을 이용하여 안정적이면서 높은 처리효율로 고농도의 폐수를 처리하는 방법에 관한 것이다.The present invention relates to a method of treating high concentration wastewater using a fixed film biofilm reactor (Fixed film reactor or Packed-bed reactor) of photosynthetic bacteria, and more specifically, red non-sulfur bacteria Strains of the genus Rhodopseudomonas or Rhodospirillum with Athiorghdaceae on the surface of activated carbon or porous ceramic beads with specific properties in shape, size, pore size, porosity and density. The present invention relates to a method for treating high concentration of wastewater with stable and high treatment efficiency using a biofilm formed by adhesion.
광합성 세균은 폐수처리를 비롯하여 질소고정화, 양식 및 축산사료의 첨가제, 유기질 비료의 기능개선제 등에 광범위하게 이용되고 있는데, 광합성 세균을 이용하여 폐수처리하는 경우에 광합성 세균이 다른 미생물과는 달리 중식특성이 매우 다양하여 호기적 암조건(aerobic dark), 혐기적 명조건(anaerobic light), 미호기적 조건(micro-aerobic)등 여러 조건에서 다양한 유기물을 이용, 증식이 가능하기 때문에 고농도의 폐수 및 유해물질의 처리가 가능하고 운전관리가 용이하다는 장점을 갖고 있다.Photosynthetic bacteria are widely used in wastewater treatment, nitrogen fixation, additives in aquaculture and livestock feed, and functional fertilizers for organic fertilizers.In the case of wastewater treatment using photosynthetic bacteria, photosynthetic bacteria have different dietary characteristics. It is very diverse, so it is possible to multiply by using various organic materials such as aerobic dark, anaerobic light, micro-aerobic, etc. It has the advantage of being able to handle and easy operation management.
광합성 세균을 이용하여 폐수처리를 할 수 있는 방법은 크게 두가지로 나눌 수 있는데, 그 하나는 폐수에 함유되어 있는 유기물을 저분자 유기산으로 가용화시킨 다음 광합성 세균을 우점종으로 유지시켜 처리하는 방법이고, 다른 하나는 종래의 활성오니법을 변형한 것으로 폭기조에 존재하는 미생물과 광합성 세균과의 공생관계에 의한 폐수처리 방법이다. 전자의 방법은 광합성 세균중 홍색비유황세균이 아미노산, 당류 특히 지방산 가운데 초산, 프로피온산 등을 잘 사용한다는 증식 특성을 이용하여 유기물을 정화하는 방법이지만, 자연계의 개방상태에서 공합성 세균을 우점종으로 장기간, 인위적으로 유지하며 폐수를 처리하기는 어렵기 때문에 후자의 방법이 주로 사용되고 있다. 후자의 방법(일본특허공개 平4-268000, 일본특허공개 平1-11699, 일본특허공고 61-47600, 일본특허공개 60-18479등)은 시운전 초기에 외부에서 배양한 광합성 세균을 폭기조에 다량 투입하여 공생관계를 형성시킨 후에 정상적인 연속운전 기간중에도 순수배양한 광합성 세균을 종균배양조로부터 주기적으로 공급하여 폭기조내에서 광합성 세균의 활성 및 농도를 일정하게 유지시켜야 하기 때문에 이를 위해 폐수처리 시설과 함께 종균배양조가 필요하였다.There are two ways to treat wastewater using photosynthetic bacteria. One method is to solubilize organic matter contained in wastewater to low molecular weight organic acid, and then to maintain photosynthetic bacteria as dominant species. Is a modification of the conventional activated sludge method and is a wastewater treatment method by a symbiotic relationship between microorganisms existing in the aeration tank and photosynthetic bacteria. The former method is to purify organic matter by using the proliferative property that red non-Sulphur bacteria among photosynthetic bacteria use amino acids, sugars, especially acetic acid and propionic acid among fatty acids.However, in the open state of nature, combinatorial bacteria are predominant species. The latter method is mainly used because it is artificially maintained and difficult to treat the waste water. The latter method (Japanese Patent Publication 平 4-268000, Japanese Patent Publication 平 1-11699, Japanese Patent Publication 61-47600, Japanese Patent Publication 60-18479, etc.) introduces a large amount of photosynthetic bacteria cultured externally at the beginning of the test run. After forming a symbiotic relationship, purely cultured photosynthetic bacteria should be supplied periodically from the spawn culture tank during the normal continuous operation period to maintain constant the activity and concentration of photosynthetic bacteria in the aeration tank. A culture tank was needed.
그러므로, 광합성 세균을 별도의 배양조에서 연속적으로 공급하지 않고도 폐수처리 시설내에 고농도로 균체를 유지시켜 지속적으로 이용할 수 있다면, 광합성 세균의 활용률이 증가되므로, 배양에 필요한 시설 및 비용을 절감할 수 있음은 물론이고 운전시에 관리도 용이할 것이다.Therefore, if the photosynthetic bacteria can be continuously maintained at a high concentration in the wastewater treatment facility without being continuously supplied in a separate culture tank, the utilization rate of photosynthetic bacteria is increased, thereby reducing the facilities and costs required for the culture. Of course, it will be easy to manage when driving.
이러한 방안으로 미생물을 담체에 고정한 생물막 반응기를 폐수처리에 응용실시되었다. 생물막 반응기는 담체에 미생물이 부착되어 생물막을 형성시킨 상태에서 운전되는 반응기로서 담체특성에 따라 미생물의 부착성능과 반응기의 운전형태가 달라질 수 있으므로 담체의 선정은 생물막 반응기 운전에 매우 중요한 인자라 할 수 있다. 따라서, 오래전부터 담체의 크기, 모양, 밀도, 표면거칠기, 공극률 등의 물리적 성질에 대한 연구가 수행되어 왔다. Atkinson등(Biotechnology and Bioenginee-ring, vol. 21, 193∼200(1979))은 대규모의 생물반응기에 사용될 수 있는 입장의 크기, 모양 및 밀도의 영향에 관하여 고찰하여 최적의 담체는 미생물이 잘 부착될 수 있는 표면(거칠기)과 높은 공극률을 가져야 한다고 보고하였으며 생분해가 되지 않으면서 어느 정도의 강도나 내구성을 가지고 있어야 하므로 모래, 활성탄, 무연탄, 다공성 유리입자, 폴리우레탄등이 좋은 담체라고 하였다.In this way, a biofilm reactor in which microorganisms were fixed to a carrier was applied to wastewater treatment. The biofilm reactor is a reactor operated when microorganisms are attached to the carrier to form a biofilm. The adhesion of the microorganism and the operation mode of the reactor may vary depending on the characteristics of the carrier, so the selection of the carrier is a very important factor in the operation of the biofilm reactor. have. Therefore, researches on physical properties such as the size, shape, density, surface roughness, porosity, etc. of the carrier have been performed for a long time. Atkinson et al. (Biotechnology and Bioenginee-ring, vol. 21, 193-200 (1979)) consider the effects of position size, shape and density that can be used in large scale bioreactors. It has been reported that it should have a high surface porosity and high porosity, and that it should have a certain strength or durability without biodegradation, so sand, activated carbon, anthracite, porous glass particles, polyurethane, etc. are good carriers.
본 발명의 목적은 상기와 같은 요건을 만족시켜줄 수 있는, 광합성 세균과 담체를 개발하여 고농도의 폐수를 높은 효율로 안정적으로 처리하는 방법을 제공하는데 있다.It is an object of the present invention to provide a method for stably treating high concentration wastewater by developing photosynthetic bacteria and a carrier which can satisfy the above requirements.
본 발명은 하기 특성을 갖는 다공성 세라믹 비드 또는 활성탄에 아티오로다세(Athiorhodaceae)과의 로도슈도모나스(Rhodopseudomonas)속 또는 로도스피릴룸(Rhodospirillum) 속의 균주가 고농도로 고정된 생물막 반응기에 폐수를 유입시킴을 특징으로 하는 고농도 폐수의 생물학적 처리방법에 관한 것이다.The present invention is characterized by introducing wastewater into a biofilm reactor in which a strain of Rhodopseudomonas or Rhodospirillum with Athiorhodaceae in a porous ceramic bead or activated carbon having the following characteristics is fixed at a high concentration It relates to a biological treatment method of high concentration wastewater.
본 발명에서 미생물의 고정화에 사용된 담체로는 활성탄과 다공성 세라믹을 사용하여 회분식 또는 연속식으로 담체표면에 광합성 세균을 부착시켜 생물막을 형성하였다. 활성탄은 과립형(RB-4)과 무정형(PK3-5)인 것으로 Norit사 제품을 사용하였으며, 다공성 세라믹 비드는 바인더, 유리분말, 발포제를 혼합 및 혼련하여 성형한 후 소결, 용출시켜 제조한 것으로 각각의 특성에 대한 비교를 표 1에 나타내었다.In the present invention, as a carrier used for immobilization of microorganisms, a biofilm was formed by attaching photosynthetic bacteria to the surface of the carrier either batchwise or continuously using activated carbon and porous ceramics. Activated carbon is granule (RB-4) and amorphous (PK3-5), manufactured by Norit Co., and porous ceramic beads are manufactured by mixing, kneading, kneading and mixing binder, glass powder, and blowing agent, and then sintering and eluting them. A comparison of each property is shown in Table 1.
본 발명에서 사용한 광합성 세균은 본 발명자들이 토양으로부터 분리해낸 것이다. 배지 1ℓ에 황산암모늄 1.0g, MgSO·7HO 0.2g, CaCl·2HO 0.075g, 말산 4.0g, KHPO0.9g, KHPO0.6g, EDTA 20mg, FeSO·7HO 12mg, 티아민 1.0mg, 비오틴 15mg, 미량원소 1ml가 포함된 배지 25ml를 250ml 삼각플라스크에 넣고 토양에서 채취한 시료를 첨가한 후 플라스크에 질소가스를 1∼2분간 주입하고 마개를 막은 후 28∼32℃에서 평균 약 5,000Lux로 되는 텅스텐 램프하에서 3∼5일간 배양하였다(미량원소는 HBO700mg, MnSO·HO 398mg, NaMoO·2HO 50mg을 증류수 250ml에 녹인 것이다). 이 배양액으로부터 평판배지를 이용하여 단일 콜로니를 분리하여 광합성 세균을 얻었으며, 분리한 광합성 세균의 특성을 조사한 결과 폐수처리에 광범위하게 이용되는 아티오로다세과의 로도슈도모나스속 또는 로도스피릴룸속에 포함된 공지의 균주로 확인되었다.Photosynthetic bacteria used in the present invention have been isolated from the soil by the inventors. 1.0 g ammonium sulfate, 0.2 g MgSO 7HO, 0.075 g CaCl 2HO, malic acid 4.0 g, KHPO 0.9 g, KHPO 0.6 g, EDTA 20 mg, FeSO 7HO 12 mg, thiamine 1.0 mg, biotin 15 mg, trace elements 1 ml 25 ml of medium was added to a 250 ml Erlenmeyer flask, and samples from the soil were added, nitrogen gas was injected into the flask for 1 to 2 minutes, the stopper was closed, and an average of about 5,000 Lux was obtained at 28 to 32 ° C under a tungsten lamp. Culture was carried out for ˜5 days (the trace elements were dissolved in 250 ml of distilled water with 700 mg of HBO, 398 mg of MnSO · HO, and 50 mg of NaMoO · 2HO). From this culture, single colonies were isolated from the culture medium to obtain photosynthetic bacteria, and the characteristics of the isolated photosynthetic bacteria were investigated. As a result, they were included in the genus Rhodoschudomonas or Rhodospirillum of Athiorodaceae, which are widely used for wastewater treatment. It was identified as a known strain.
배양은 일반적인 보통의 방법으로 실시하였는데 앞에서 설명한 방법에 의해 분리한 광합성 세균을 다음의 탄소원, 질소원, 금속염, 인산염 등을 포함하는 배지를 사용하여 배양하였다. 초산나트륨 3g, 황산암모늄 0.3g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼륨 2수화물 50mg, 효모추출물 10mg을 물 1ℓ에 가하여 만든 배지를 배양액으로 하여 전체 부피의 5%가 되게 광합성 세균을 접종하고 빛을 쪼여주면서 균체가 충분히 증식하도록 3∼5일간 28∼32℃에서 배양을 계속하였다.Cultivation was carried out by a common method. Photosynthetic bacteria isolated by the method described above were cultured using a medium containing the following carbon source, nitrogen source, metal salt, phosphate, and the like. 3 g of sodium acetate, 0.3 g of ammonium sulfate, 0.5 g of potassium dihydrogen phosphate, 0.2 g of magnesium sulfate, 0.1 g of sodium chloride, 5 mg of iron chloride hexahydrate, 50 mg of potassium chloride dihydrate, and 10 mg of yeast extract were added to 1 L of water as a culture medium. Inoculation of photosynthetic bacteria to 5% of the total volume was continued while incubating at 28-32 ° C. for 3-5 days to allow the cells to grow sufficiently while being irradiated with light.
본 발명에 따라 광합성 세균의 고정상 생물막을 이용하여 고농도폐수를 처리할 경우 슬러지 일령(sludge age)이 길어지고 슬러지 발생량이 감소될뿐만 아니라, 온도 pH, 충격부하 및 난분해성 물질에도 비교적 안정하며 팽화현상(bulking)을 방지하는 등 운전관리가 용이하고 에너지 소비량이 감소되어 운전비를 절감할 수 있는 장점이 있다. 아울러 광합성 세균을 별도의 배양조에서 연속적으로 공급하지 않고 폐수처리 시설내에 고농도로 균체를 유지시켜 지속적으로 이용할 수 있기 때문에 광합성 세균의 활용률이 증가되고 배양에 필요한 시설 및 비용을 절감할 수 있음은 물론이고 운전시에 관리도 용이하게 될 것이다.According to the present invention, when treating the high concentration wastewater using the fixed-phase biofilm of photosynthetic bacteria, not only the sludge age is long and the sludge generation amount is reduced, but also the temperature is stable, the impact load, and the hardly decomposable substance are relatively stable and swelling phenomenon. Operation is easy such as preventing (bulking) and energy consumption is reduced, there is an advantage that can reduce the operating cost. In addition, since photosynthetic bacteria are not continuously supplied from a separate culture tank, the cells can be continuously used at high concentrations in waste water treatment facilities, thereby increasing the utilization rate of photosynthetic bacteria and reducing the facilities and costs required for culture. It will be easy to manage when driving.
생물학적인 폐수처리에 사용될 수 있는 생물막 반응기는 다양한 형태를 가지고 있으며 원활한 산소전달, 외부물질전달 및 반응기의 안정성 등을 갖추어야 한다. 고정상 생물막 반응기는 고정된 담체에 미생물이 부착된 생물막을 이용하여 생물학적인 폐수처리를 하거나 생화합물질을 생산하는 반응기로서 Rittmann(Biotechnology and Bioengineering, vol. 24, 341∼1370(1982))은 원통형의 고정상 생물막 반응기에서 생물막 소실속도에 대한 전단응력의 영향을 고찰하여 전단응력이 클수록 또 단위 표면적당 생물막 질량이 증가할수록 생물막 소실속도는 증가하는 것으로 보고하였으며 생물막 반응기에서 생물막의 형성과 형태에 관한 여러 가지 인자 즉 초기접종순환, 희석율, COD 부하 등에 관하여 조사하여 막형성 공정은 높은 희석율과 많은 접종량에 의해 증가할 수 있다고 발표하였다.Biofilm reactors that can be used for biological wastewater treatment have various forms and must have smooth oxygen transfer, foreign material transfer, and reactor stability. The fixed bed biofilm reactor is a reactor for biological wastewater treatment or biochemical production using a biofilm attached with a microorganism to a fixed carrier. Rittmann (Biotechnology and Bioengineering, vol. 24, 341-1370 (1982)) The effects of shear stress on the biofilm disappearance in a fixed bed biofilm reactor have been reported. As the shear stress increases and the biofilm mass per unit surface area increases, the biofilm loss rate increases. By investigating factors such as initial vaccination cycle, dilution rate, and COD loading, the membrane formation process can be increased by high dilution rate and high inoculation amount.
본 발명에 사용한 반응기는 고정된 담체에 미생물을 부착시켜 생물막을 형성할 수 있는 원통형의 고정 생물막 반응기로서 다공성 세라믹 비드 또는 과립형 활성탄을 충진시킨 충진형 반응기(packed-bed reactor, 60(ψ)×400(H)mm, vol=1130ml)이다. 이 반응기에 의해서 배양한 광합성 세균의 배양액과 합성폐수 Ⅱ(포도당 3g, 황산암모늄 1.5g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼슘3수화물 50mg, 효모추출물 10mg을 물 1ℓ에 가하여 만든 COD 농도 3,000mg/ℓ인 합성폐수)을 1:1로 혼합한 혼합액을 선속도(linear velocity) 0.15m/hr로 자체순환(9∼10회/일)시키면서 합성폐수 Ⅰ만을 유입시키면서 1차적으로 생물막을 형성시켰다. 같은 조건으로 만든 다음 10일간은 합성폐수 Ⅰ(포도당 20g, 황산암모늄 10g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼슘2수화물 50gm, 효모추출물 10mg을 물 1ℓ에 가하여 만든 COD 농도 20,000mg/ℓ인 합성폐수)를 유입시켜서 광합성 세균의 생물막을 형성시켰다. 그리고 현장폐수인 G폐수(표 2에 특성을 나타냈음)을 희석하여 동일한 조건으로 10∼20일간 유입시키며 생물막성장 및 폐수적응을 진행하였다.The reactor used in the present invention is a cylindrical fixed biofilm reactor capable of attaching microorganisms to a fixed carrier to form a biofilm, and is a packed-bed reactor (60 (ψ) ×) filled with porous ceramic beads or granular activated carbon. 400 (H) mm, vol = 1130 ml). Culture medium of photosynthetic bacteria cultured by this reactor and synthetic wastewater II (glucose 3g, ammonium sulfate 1.5g, potassium dihydrogen phosphate 0.5g, magnesium sulfate 0.2g, sodium chloride 0.1g, iron chloride hexahydrate 5mg, calcium chloride trihydrate 50mg, 10 mg of yeast extract was added to 1 liter of water, and the mixed solution of COD concentration of 3,000 mg / l) was mixed at a rate of 1: 1 with linear velocity of 0.15 m / hr (9 to 10 times / day). Biofilm was formed primarily while only synthetic wastewater I was introduced. For 10 days after the same conditions, Synthetic Wastewater I (20g glucose, 10g ammonium sulfate, 0.5g potassium dihydrogen phosphate, 0.2g magnesium sulfate, 0.1g sodium chloride, 5mg iron chloride hexahydrate, 50gm calcium chloride dihydrate, 10mg yeast extract Synthetic wastewater having a COD concentration of 20,000 mg / l prepared by adding 1 liter of water) was introduced to form a biofilm of photosynthetic bacteria. In addition, G wastewater (characterized in Table 2), which is a field wastewater, was diluted and flowed in for 10 to 20 days under the same conditions, and biofilm growth and wastewater adaptation were performed.
본 발명에서의 시료분석 방법으로, 화학적 산소요구량(chemical oxygen demand, COD)등은 표준방법(Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, Washington D. C., 17th Ed. (1989))을 기준으로 행하였고, 반응기내의 균체량(biomass)의 농도는 반응기 중간 지점에서 시료(폐수+부유균체+생물막 담체)를 채취하여 0.1% NaOH 용액을 일정량 서끈 후 교반기로 맹렬교반하여 담체와 균체를 완전분리시킨 다음 표준방법에 의해 측정하였다. 이때 측정된 값에 NaOH 희석비율을 곱하여 균체농도로 결정하였다., 측정후 담체는 105℃에서 건조시켜 무게를 측정하여 반응기 단위 부피당 입자의 양을 파악한 후 폐기시켰고 폐기시킨 담체량만큼 새로운 담체를 반응기에 충진시켜 반응기내의 담체량을 일정하게 유지시켰다.In the sample analysis method of the present invention, chemical oxygen demand (COD) and the like are standard methods (Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WPCF, Washington DC, 17th Ed. (1989)). The concentration of biomass in the reactor was sampled at the intermediate point of the reactor (wastewater + suspended cell + biofilm carrier), and 0.1% NaOH solution was turned off by a certain amount, followed by vigorous stirring with a stirrer to completely complete the carrier and the cells. After separation it was measured by standard methods. The cell concentration was determined by multiplying the measured value by the NaOH dilution ratio. After the measurement, the carrier was dried at 105 ° C. and weighed to determine the amount of particles per unit volume of the reactor, and then discarded. Charging to keep the amount of carrier in the reactor constant.
다음의 실시예 및 비교실시예는 본 발명인 광합성 세균의 고정상 생물막법에 의한 고농도폐수 처리방법을 좀 더 구체적으로 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다.The following examples and comparative examples more specifically describe the high concentration wastewater treatment method by the fixed-phase biofilm method of the photosynthetic bacteria of the present invention, but does not limit the scope of the present invention.
[실시예 1]Example 1
[광합성 세균의 배양][Cultivation of Photosynthetic Bacteria]
배지 1ℓ에 황산암모늄 1.0g, MgSO·7HO 0.2g, CaCl·2HO 0.075g, 말산 4.0g, KHPO0.6g, EDTA 20mg, FeSO·7HO 12mg, 티아민 1.0mg, 비오틴 15mg, 미량원소 1ml, 미량원소 1ml가 포함된 배지 25ml를 250ml 삼각플라스크에 넣고 토양에서 채취한 시료 2g을 첨가한 후 플라스크에 질소가스를 1∼2분간 주입하고 마개를 막은 후 28∼32℃에서 평균 약 5,000Lux되는 텅스텐 램프하에서 3∼5일간 배양하였다(미량원소는 HBO700mg, MnSO·HO 398mg, NaMoO·2HO 188mg, ZnSO·7HO 60mg, Cu(NO)·3HO 10mg, CoCl·6HO 50mg을 증류수 250ml에 녹인 것이다). 이 배양액으로부터 평판배지를 이용하여 단일 콜로니를 분리하여 광합성 세균을 얻었으며 초산나트륨 3g, 황산암모늄 0.3g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼슘2수화물 50gm, 효모추출물 10mg을 물 1ℓ에 가하여 만든 배지를 배양액으로 하여 전체 부피의 5%가 되게 광합성 세균을 접종하고 빛을 쪼여주면서 균체가 충분히 증식하도록 3∼5일간 28∼32℃에서 배양을 계속하였다.Ammonium sulfate 1.0g, MgSO7HO 0.2g, CaCl2HO 0.075g, malic acid 4.0g, KHPO0.6g, EDTA 20mg, FeSO7HO 12mg, thiamine 1.0mg, biotin 15mg, trace elements 1ml, trace elements 1ml 25 ml of medium was added to a 250 ml Erlenmeyer flask, and 2 g of the sample taken from the soil was added, nitrogen gas was injected into the flask for 1 to 2 minutes, the stopper was closed, and an average of about 5,000 Lux at 28 to 32 ° C was applied under a tungsten lamp. Culture was carried out for ˜5 days (the trace elements were dissolved in 250 ml of distilled water with 700 mg of HBO, 398 mg of MnSO · HO, 188 mg of NaMoO · 2HO, 60 mg of ZnSO · 7HO, 10 mg of Cu (NO) · 3HO, and 50 mg of CoCl · 6HO). Single colonies were isolated from the culture medium to obtain photosynthetic bacteria. Sodium acetate 3g, ammonium sulfate 0.3g, potassium dihydrogen phosphate 0.5g, magnesium sulfate 0.2g, sodium chloride 0.1g, iron chloride hexahydrate 5mg, calcium chloride 50gm of dihydrate and 10mg of yeast extract were added to 1L of water, inoculating photosynthetic bacteria to 5% of the total volume as a culture medium, and incubating at 28-32 ° C for 3 to 5 days to allow the cells to grow sufficiently while giving light. Continued.
[광합성 세균의 생물막 형성][Biofilm Formation of Photosynthetic Bacteria]
다공성 세라믹 비드를 충진시킨 충진형 반응기(60(ψ)×400(H)mm, vol.=1130ml)에 위의 배양액과 합성폐수 Ⅰ(포도당 3g, 황산암모늄 1.5g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼륨2수화물 50mg, 효모추출물 10mg을 물 1ℓ에 가하여 만든 COD 농도 3,000mg/ℓ인 합성폐수)을 1:1로 혼합한 혼합액을 선속도 0.15m/hr로 자체순환시키면서 상향류 식으로 체류시간 1일로 1일간 연속유입한 후, 다음 2∼3일간은 합성폐수 Ⅰ만을 유입시키면서 1차적으로 생물막을 형성시켰다. 같은 조건으로 다음 10일간은 합성폐수 Ⅱ(포도당 20g, 황산암모늄 10g, 인산제2수소칼륨 0.5g, 황산마그네슘 0.2g, 염화나트륨 0.1g, 염화철6수화물 5mg, 염화칼슘2수화물 50mg, 효모추출물 10mg을 물 1ℓ에 가하여 만든 COD 농도 20,000mg/ℓ인 합성폐수)을 유입시켜서 광합성 세균의 생물막을 형성시켰다. 그리고 현장폐수인 G폐수를 희석하여 동일한 조건으로 10∼20일간 유입시키며 생물막의 성장 및 폐수에의 적응을 진행하였다.In a packed reactor (60 (ψ) × 400 (H) mm, vol. = 1130ml) filled with porous ceramic beads, the culture medium and synthetic wastewater I (3g glucose, 1.5g ammonium sulfate, 0.5g potassium dihydrogen phosphate) , 0.2 g of magnesium sulfate, 0.1 g of sodium chloride, 5 mg of iron chloride hexahydrate, 50 mg of potassium chloride dihydrate, and 10 mg of yeast extract in 1 liter of water, a synthetic wastewater with a COD concentration of 3,000 mg / l) After flowing continuously for 1 day with a residence time of 1 day in an upward flow while self-circulating at 0.15 m / hr, the biofilm was formed primarily by introducing only synthetic wastewater I for the next 2 to 3 days. Under the same conditions, synthetic wastewater Ⅱ (20g glucose, 20g ammonium sulfate, 0.5g potassium dihydrogen phosphate, 0.2g magnesium sulfate, 0.1g sodium chloride, 5mg iron chloride hexahydrate, 50mg calcium chloride dihydrate, 10mg yeast extract) Synthetic wastewater having a COD concentration of 20,000 mg / l) was added to 1 L to form a biofilm of photosynthetic bacteria. In addition, diluting G wastewater, which is a field wastewater, was introduced for 10-20 days under the same conditions, and the growth of biofilm and adaptation to wastewater were carried out.
[고정상 생물막 반응기에서의 폐수처리]Wastewater Treatment in Fixed Bed Biofilm Reactors
다공성 세라믹 비드를 충진시킨 광합성 세균의 고정상 생물막 반응기를 사용하여 체류시간을 2일로 하고 G 폐수의 농도를 변화시키면서 유기물 부하량(BOD loading rate)을 달리하여 선속도 0.15m/hr로 자체순환시키면서 상향류식으로 G 폐수를 연속적으로 유입시켜 유출수의 BOD의 농도와 BOD 제거효율을 측정한 결과를 도면 1에 나타내었다. 유기물 부하량이 증가함에 따라 유출수의 BOD 농도가 증가하여 BOD 제거효율이 감소하였으나 BOD 부하 20kgBOD/m ·day에서도 유출수의 BOD 농도는 2,500mg/ℓ 이하, BOD 제거효율은 90%이상을 유지하였다.Using a fixed-phase biofilm reactor with photosynthetic bacteria filled with porous ceramic beads, the retention time was 2 days, and the organic matter was loaded upstream while varying the concentration of G wastewater (BOD loading rate) at a linear rate of 0.15 m / hr. As shown in FIG. 1, the result of measuring the concentration of BOD and the efficiency of BOD removal in the effluent by continuously introducing the G wastewater was measured. BOD removal efficiency decreased due to the increase of BOD concentration of effluent with increasing organic load, but BOD load 20kgBOD / m On day, the BOD concentration of effluent was below 2,500mg / l and the BOD removal efficiency was above 90%
[비교실시예 1]Comparative Example 1
원통형 반응기(60(ψ)×400(H)mm, vol.=1130ml)에 상기 실시예 1에서의 광합성 세균 배양액과 합성폐수 Ⅰ의 1:1 혼합액을 가득 채우고 그 부피의 30%(v/v)되게 분말 활성탄을 현탁시킨 후 분말 활성탄이 잘 섞이도록 원활한 유동을 하였다. 이 반응기에 광합성 세균 배양액과 합성폐수 Ⅰ의 1:1 혼합액을 선속도 0.15m/hr로 자체순환시키면서 상향류식으로 체류시간 1일로 연속유입한 후, 다음 2∼3일간은 합성폐수 Ⅰ만을 유입시키면서 1차적으로 생물막을 형성시켰다. 그리고 현장폐수인 G 폐수를 희석하여 동일한 조건으로 10∼20일간 유입시키면서 생물막의 성장 및 폐수에의 적응을 진행하였다. 형성된 유동상 생물막 반응기를 사용하여 실시예 1에서의 고정상 생물막 반응기와 동일하게 체류시간을 2일로 하고 G 폐수의 농도를 변화시키면서 유기물 부하량을 달리하여 선속도 0.15m/hr로 자체순환시키며서 상향류식으로 G 폐수를 연속적으로 유입시켜 운전하면서 결과를 고정상 생물막 반응기와 비교하였다. 그 결과를 요약하면 표 3에 나타낸 것과 같다.A cylindrical reactor (60 (ψ) × 400 (H) mm, vol. = 1130ml) was filled with a 1: 1 mixture of the photosynthetic bacterial culture solution and synthetic wastewater I in Example 1 and 30% (v / v) of the volume. ) Suspended powder activated carbon, and then smooth flow was performed so that the powdered activated carbon was mixed well. A 1: 1 mixture of photosynthetic bacterial culture solution and synthetic wastewater I was continuously circulated to the reactor at a linear speed of 0.15 m / hr, with a flow rate of up to 1 day in the upstream, and then only synthetic wastewater I was introduced for the next two to three days. The biofilm was formed primarily. The G wastewater, which is a field wastewater, was diluted and introduced for 10 to 20 days under the same conditions, and the biofilm growth and adaptation to the wastewater were carried out. Using the formed fluidized bed biofilm reactor, the same flow rate as the stationary bed biofilm reactor in Example 1 was set to 2 days, and the organic load was varied while changing the concentration of the G wastewater, and self-circulating at a linear speed of 0.15 m / hr. The results were compared with a fixed bed biofilm reactor, operating continuously with G wastewater. The results are summarized in Table 3.
고정상 생물막 반응기가 유동상 생물막 반응기에 비하여 비교적 처리효율도 좋으며 안정적인 운전이 가능하였다. BOD 용적부하의 경우도 고정상 생물막 반응기는 20kgBOD/m ·day 이상인 반면 유동상 생물막 반응기는 5∼8kgBOD/m ·day 정도밖에 되지 않았으며, 운전경비도 고정상 생물막 반응기가 유동상 생물막 반응기에 비하여 저렴하였다.Fixed bed biofilm reactors have a relatively good treatment efficiency and stable operation compared to fluidized bed biofilm reactors. 20 kgBOD / m for fixed bed biofilm reactor Fluid bed biofilm reactor is 5-8kgBOD / m Only about a day, the operating cost was lower than that of the fluidized bed biofilm reactor.
광합성 세균의 고정상 생물막법에 의한 폐수처리와 활성오니 처리법을 비교하면 표 4에 나타낸 것과 같다.Comparison of wastewater treatment and activated sludge treatment by the fixed-phase biofilm method of photosynthetic bacteria is shown in Table 4.
광합성 세균의 고정상 생물막 반응기에서의 처리효율이 90%가 넘는 BOD 용억부하는 20kgBOD/m ·day 이상으로 표준 활성오니법에서의 0.6kgBOD/m ·day에 비하여 30배 이상이었다.20kgBOD / m of BOD loading load exceeding 90% in the fixed bed biofilm reactor for photosynthetic bacteria 0.6kgBOD / m in standard activated sludge method over day More than 30 times compared to day.
[실시예 2]Example 2
다공성 세라믹 비드를 충진시킨 충진형 반응기(60(ψ)×400(H)mm, vol.=1130ml)를 여러개 준비하고, 실시예 1에서 사용한 광합성 세균과 동일하게 배양된 배양액을 합성폐수 Ⅰ과 1:1로 혼합하여 선속도 0.15m/hr로 자체순환시키면서 상향류식으로 체류시간 1일로 1일간 연속유입한 후, 다음 2∼3일간은 합성폐수 Ⅰ만을 유입시키면서 1차적으로 생물막을 형성시켰다. 같은 조건으로 다음 10일간은 합성폐수 Ⅱ을 유입시켜서 광합성 세균의 생물막을 형성시켰다. 그리고 현장폐수인 G 폐수를 희석하여 동일한 조건으로 10∼20일간 유입시키며 생물막의 성장 및 폐수에의 적응을 진행하였다. 다음 각 반응기별로 체류시간을 달리하여 연속적으로 G 폐수 (COD 농도를 20,000mg/ℓ로 맞춘 것)를 유입시키면서 체류시간에 따른 유출수의 처리농도 및 처리성을 측정하였다.Several reactors filled with porous ceramic beads (60 (ψ) × 400 (H) mm, vol. = 1130ml) were prepared, and the culture medium cultured in the same manner as the photosynthetic bacteria used in Example 1 was prepared using synthetic wastewater I and 1 The mixture was mixed at 1: 1 and continuously flowed for 1 day at a residence time of 1 day in an upflow manner while circulating itself at a linear speed of 0.15 m / hr, and the biofilm was formed primarily by introducing only synthetic wastewater I for the next 2 to 3 days. Under the same conditions, synthetic wastewater II was introduced for the next 10 days to form a biofilm of photosynthetic bacteria. And diluting the G wastewater, which is the field wastewater, was introduced for 10-20 days under the same conditions, and the growth of the biofilm and adaptation to the wastewater were performed. Next, the treatment concentration and treatability of the effluent according to the residence time were measured while continuously introducing G wastewater (with COD concentration set to 20,000 mg / l) by varying the residence time for each reactor.
체류시간에 따른 G 폐수의 처리특성의 결과는 도면 2에 나타낸 것과 같으며, 일정한 유입농도하에서 체류시간이 1일 이상으로 길어질수록 처리성이 90% 이상 증가하는 경향을 보이며 유출수도 COD 500∼600mg/ℓ로 안정적으로 처리되었다.The results of the treatment characteristics of the G wastewater according to the residence time are shown in Fig. 2, and as the residence time is longer than 1 day under a constant inflow concentration, the treatment tends to increase by 90% or more, and the effluent is also COD 500 to 600 mg. Stable treatment at / l.
[실시예 3]Example 3
다공성 세라믹 비드, 과립형 활성탄을 각각 충진시킨 충진형 반응기(60(ψ)×400(H)mm, vol.=1130ml)를 준비하고, 상기 실시예 1에서와 동일하게 생물막을 형성시킨 후, 형성된 고정상 생물막 반응기를 사용하여 실시예 1에서의 고정상의 생물막 반응기와 동일하게 체류시간을 2일로 하고 G 폐수의 농도를 변화시키면서 유기물 부하량을 달리하여 선속도 0.15m/hr로 자체순환시키면서 상향류식으로 G 폐수를 연속적으로 유입시켜 유츌수의 BOD 농도와 BOD 제거효율을 측정하여 결과를 고정상 생물막 반응기와 비교하여 그 결과를 도면 3에 나타내었다. 다공성 세라믹 비드를 충진한 생물막 반응기나 과립형 활성탄을 충진한 생물막 반응기나 공히 유기물 부하량이 증가함에 따라 유출수의 BOD 농도가 증가하여 BOD 제거효율이 감소하는 경향을 나타내고 있었다. 다공성 세라믹 비드를 사용한 경우가 활성탄을 사용한 경우보다는 양호한 처리성을 나타내는 것을 알 수 있다.A packed reactor (60 (ψ) × 400 (H) mm, vol. = 1130ml) filled with porous ceramic beads and granular activated carbon, respectively, was prepared and formed in the same manner as in Example 1, and then formed Using the fixed bed biofilm reactor, the retention time was set to 2 days in the same manner as the fixed bed biofilm reactor in Example 1, and the organic matter was loaded while varying the concentration of the G wastewater, while circulating itself at a linear velocity of 0.15 m / hr, Wastewater was continuously introduced to measure the BOD concentration and BOD removal efficiency of the effluent, and the results are compared with the fixed bed biofilm reactor. The biofilm reactor filled with porous ceramic beads or the biofilm reactor filled with granular activated carbon also showed a tendency for BOD removal efficiency to decrease as the BOD concentration of the effluent increased with increasing organic load. It can be seen that the use of porous ceramic beads shows better processability than the use of activated carbon.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940034045A KR0161665B1 (en) | 1994-12-14 | 1994-12-14 | High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940034045A KR0161665B1 (en) | 1994-12-14 | 1994-12-14 | High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960022281A KR960022281A (en) | 1996-07-18 |
KR0161665B1 true KR0161665B1 (en) | 1998-11-16 |
Family
ID=19401351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940034045A KR0161665B1 (en) | 1994-12-14 | 1994-12-14 | High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteria |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0161665B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448629B1 (en) * | 2000-12-19 | 2004-09-13 | 주식회사 포스코 | A denitrification method of wastewater containing high concentration fluoride and nitrate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100460214B1 (en) * | 2001-01-05 | 2004-12-08 | 학교법인 인하학원 | Wastewater treatment method and wastewater treatment system using photosynthetic microorganisms |
-
1994
- 1994-12-14 KR KR1019940034045A patent/KR0161665B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448629B1 (en) * | 2000-12-19 | 2004-09-13 | 주식회사 포스코 | A denitrification method of wastewater containing high concentration fluoride and nitrate |
Also Published As
Publication number | Publication date |
---|---|
KR960022281A (en) | 1996-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Denitrification and methanogenesis in a co-immobilized mixed culture system | |
Chen et al. | Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms | |
US8216472B2 (en) | Biological nitrogen removal | |
Zayed et al. | Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification | |
dos Santos et al. | The magic-bead concept: an integrated approach to nitrogen removal with co-immobilized micro-organisms | |
CN109231492A (en) | A kind of livestock and poultry farm saprobia cleanser and preparation method thereof | |
Lazarova et al. | Biofilm performance of a fluidized bed biofilm reactor for drinking water denitrification | |
CN110655183A (en) | Method for strengthening aerobic sludge granulation and decontamination performance by weak magnetic field | |
Sreekrishnan et al. | Effect of operating variables on biofilm formation and performance of an anaerobic fluidized‐bed bioreactor | |
Henneken et al. | Biological degradation of EDTA: Reaction kinetics and technical approach | |
KR100202301B1 (en) | Treatment method and system of livestock farming wastewater using photosynthetic bacteria | |
Hiraishi et al. | Effects of organic nutrient strength on the purple nonsulfur bacterial content and metabolic activity of photosynthetic sludge for wastewater treatment | |
Arnaiz et al. | Support material selection for anaerobic fluidized bed reactors by phospholipid analysis | |
Kokufuta et al. | Continuous column denitrfication using polyelectrolyte complex-entrapped Paracoccus denitrificans cells | |
CN106947711B (en) | A kind of preparation method of high applicability nitrification microbial inoculum | |
KR0161665B1 (en) | High concentrated waste water treatment using immobilized biofilm consisting of photosynthetic bacteria | |
US3941691A (en) | Method of biological purification of industrial effluents from chromates and bichromates | |
Nowak et al. | Characteristics of Nostocoida limicola and its activity in activated sludge suspension | |
CN111592995A (en) | Acinetobacter and culture method and application thereof | |
Khlebnikov et al. | Biodegradation of p-toluenesulphonic acid by Comamonas testosteroni in an aerobic counter-current structured packing biofilm reactor | |
CN114437981A (en) | Fermentation method for rapidly culturing sulfur autotrophic denitrifying bacteria | |
JPH027718B2 (en) | ||
Morgan et al. | Upflow sludge blanket reactors: The effect of bio‐supplements on performance and granulation | |
Suhaimi et al. | NH+/4‐N assimilation by Rhodobacter capsulatus ATCC 23782 grown axenically and non‐axenically in N and C rich media | |
KR100251390B1 (en) | Preparation method of bio filter using photosynthetic bacteria for waste water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070628 Year of fee payment: 10 |
|
LAPS | Lapse due to unpaid annual fee |