KR0161098B1 - Method for manufacturing aluminum chloride anhydride and zinc - Google Patents

Method for manufacturing aluminum chloride anhydride and zinc

Info

Publication number
KR0161098B1
KR0161098B1 KR1019950048797A KR19950048797A KR0161098B1 KR 0161098 B1 KR0161098 B1 KR 0161098B1 KR 1019950048797 A KR1019950048797 A KR 1019950048797A KR 19950048797 A KR19950048797 A KR 19950048797A KR 0161098 B1 KR0161098 B1 KR 0161098B1
Authority
KR
South Korea
Prior art keywords
aluminum
zinc
chloride
aluminum chloride
reaction
Prior art date
Application number
KR1019950048797A
Other languages
Korean (ko)
Other versions
KR970042265A (en
Inventor
김수태
Original Assignee
김수태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김수태 filed Critical 김수태
Priority to KR1019950048797A priority Critical patent/KR0161098B1/en
Priority to PCT/KR1996/000215 priority patent/WO1997021628A1/en
Publication of KR970042265A publication Critical patent/KR970042265A/en
Application granted granted Critical
Publication of KR0161098B1 publication Critical patent/KR0161098B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/56Chlorides
    • C01F7/58Preparation of anhydrous aluminium chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 염화아연과 알루미늄 금속분말 또는 용융액을 응용하여 복분해 치환반응시켜 고순도 금속아연 및 고순도 염화알루미늄의 제조방법을 제공한다. 또한 본 발명의 얻어지는 염화알루미늄을 고순도로 얻기 위하여 반응에서 생성되는 미량의 염화아연이 함유된 기상 염화알루미늄을 알루미늄 그래뉼이 함유된 튜브로 통과시켜 알루미늄을 접촉시켜 정제할 수 있다.The present invention provides a method for producing high purity metal zinc and high purity aluminum chloride by applying metathesis substitution reaction by applying zinc chloride and aluminum metal powder or melt. In addition, in order to obtain a high purity of the obtained aluminum chloride of the present invention, gaseous aluminum chloride containing a small amount of zinc chloride produced in the reaction can be passed through a tube containing aluminum granules to be purified by contacting aluminum.

Description

무수 염화알루미늄 및 아연의 동시 제조방법Simultaneous preparation of anhydrous aluminum chloride and zinc

본 발명은 무수 염화알루미늄과 아연을 동시에 제조하는 방법에 관한 것이다. 더 상세히는 염화아연에 금속 알루미늄을 당량비로 혼합, 가열하여 183℃ 에서 승화하는 무수 염화알루미늄을 냉각, 응축시켜 회수함과 동시에 420℃ 에서 용융하는 아연을 중력에 의해 분리하여 회수하는 방법에 관한 것이다.The present invention relates to a method for simultaneously producing anhydrous aluminum chloride and zinc. More particularly, the present invention relates to a method of recovering zinc which is molten at 420 ° C. by gravity, while recovering by cooling and condensing anhydrous aluminum chloride which is sublimed at 183 ° C. by mixing and heating metal aluminum in an equivalent ratio to zinc chloride. .

무수 염화알루미늄(AlCl3)은 석유크랙킹이나 프리델 크라프트 반응 등의 산촉매로 사용되고, 그의 6수화물은 양모(羊毛)정제, 목재방부재, 염색, 석유정제, 제지, 페인트, 도료, 인쇄잉크 등의 첨가제 등으로 연간 약 3,000톤 정도 수입하여 사용하고 있으며, 또한 정수용으로 약 10,000 톤 정도는 습식 제조하여 사용되고 있다. 또한, 금속아연(Zn)은 연간 50만톤 이상이 국내에서 생산하거나 수입하여 강판도금, 파이프도금, 다이캐스트, 동합금용 등으로 다량 사용되고 있다.Anhydrous aluminum chloride (AlCl 3 ) is used as an acid catalyst for petroleum cracking and Friedel Kraft reactions, and its hexahydrate is an additive such as wool refining, wood preservatives, dyeing, petroleum refining, papermaking, paint, paint, printing ink, etc. About 3,000 tons are imported and used annually, and about 10,000 tons are used for water purification. In addition, more than 500,000 tons of metal zinc (Zn) is produced or imported in Korea annually and used in large quantities for steel plate plating, pipe plating, die cast, copper alloy, and the like.

무수 염화알루미늄의 제조방법으로는 종래부터 다수 제안되어 왔으며, 이들 방법은 대별하면, 금속알루미늄과 염소를 고온에서 반응시키는 방법; 금속알루미늄과 염화수소 개스를 고온에서 반응시키는 방법; 알루미나 또는 보오크사이트와 같은 알루미나 함유물질을 일산화탄소 및 염소 또는 포스겐과 반응시키는 방법; 알루미나 또는 알루미나 함유물질을 카본 존재하 염소와 반응시키는 방법으로 나눌 수 있다.Many methods for producing anhydrous aluminum chloride have been conventionally proposed, and these methods include, for example, a method of reacting metal aluminum with chlorine at high temperature; A method of reacting metal aluminum with hydrogen chloride gas at high temperature; Reacting alumina containing materials such as alumina or bauxite with carbon monoxide and chlorine or phosgene; Alumina or an alumina containing material can be divided into a method of reacting with chlorine in the presence of carbon.

현재, 공업적으로는 일반적으로 상기 방법중 금속알루미늄과 염소 또는 염화수소개스를 고온에서 반응시키는 방법을 채용하고 있으며, 구체적으로는 용융 알루미늄 중에 염소개스를 불어넣으면서 승화하는 염화알루미늄을 냉각하여 분말상 또는 괴상으로 염화알루미늄을 제조하고 있다. 그러나, 이러한 방법에서는 원료인 금속알루미늄은 일반적으로 알루미나를 약 960℃ 이상에서 용융하고, 이를 전기 분해하여 제조하기 때문에 코스트가 높게 된다. 이러한 결점 때문에 알카리금속 또는 알카리 토금속의 할로겐 화물을 함유하는 용융염욕 중에서 환원제(주로 카본) 존재하여 알루미나(Al2O3)와 반응시켜 무수 염화알루미늄을 제조하는 방법(일본국 특공평 2-293호), 알루미늄의 산화물과 염소화 탄화수소를 촉매 비존재하에서, 고온에서 반응시키는 방법(일본국 특공평 1-54286 호), 금속알루미늄과 염화수소와의 접촉 반응율을 높이기 위해 시클로알칸 증기를 존재시켜 반응시키는 방법(일본국 특공소 57-13499호), 알루미늄 함유 물질의 미립자와 탄소함유 물질의 미립자와 결합제의 원료혼합물을 소성하고, 얻어지는 소성혼합물을 개스상의 산소함유 염소를 이용하여 염소화 처리하여 염화알루미늄을 얻는 방법(일본국 특공평 3-51655) 등이 제안되었으며, 또한 얻어진 염화알루미늄의 순도를 높이기 위한 방법(예, 일본국 특공소 53-38277 호 공보, 일본국 특공소 56-35611호 공보 일본국 특공소 58-50931 호 공보, 일본국 특공소 59-5526 호 등)이 제안되었다.At present, the industrial method generally employs a method of reacting metal aluminum with chlorine or hydrochloric acid at a high temperature. Specifically, aluminum chloride sublimed while blowing chlorine gas into molten aluminum is cooled to form a powder or mass. Aluminum chloride is manufactured. However, in such a method, metal aluminum, which is a raw material, generally melts alumina at about 960 ° C. or more, and is produced by electrolysis, thereby increasing the cost. Due to these drawbacks, a method of producing anhydrous aluminum chloride by reacting with alumina (Al 2 O 3 ) in the presence of a reducing agent (mainly carbon) in a molten salt bath containing an alkali metal or an alkaline earth metal halide (Japanese Patent Publication No. 2-293) ), A method of reacting an oxide of aluminum and a chlorinated hydrocarbon at a high temperature in the absence of a catalyst (Japanese Patent Application Laid-Open No. 1-54286), and a method of reacting the presence of cycloalkane vapor in order to increase the contact reaction rate between metal aluminum and hydrogen chloride. (JP-A 57-13499), a raw material mixture of an aluminum-containing material, a fine particle of a carbon-containing material and a binder is fired, and the resulting fired mixture is chlorinated using gaseous oxygen-containing chlorine to obtain aluminum chloride. Method (Japanese Patent Publication No. 3-51655) and the like have been proposed, and also to increase the purity of the obtained aluminum chloride Methods (e.g., JP-A-53-38277, JP-A-56-35611, JP-A-58-50931, JP-A-59-5526, etc.) have been proposed.

전술한 공지의 방법들은 비교적 고가인 염소를 원료로 사용하고, 고온에서 환원제인 카본과 알루미늄 산화물(Al2O3, 보크사이트)과 접촉반응시켜 무수 염화알루미늄 및 일산화탄소, 이산화탄소 개스를 동시에 발생시키고, 이를 복합 기상물(氣相物)을 냉각하고, 재정제하여 고순도의 염화알루미늄을 제조하는 것이다.The above-mentioned known methods use relatively expensive chlorine as a raw material, and generate anhydrous aluminum chloride, carbon monoxide, and carbon dioxide gas at the same time by contacting with a reducing agent carbon and aluminum oxide (Al 2 O 3 , bauxite) at high temperature, The composite gas phase is cooled and refined to produce high purity aluminum chloride.

또한, 금속아연은 재래 방법으로는 대별하여 건식제조법 및 습식제조법이 알려져 있다.In addition, as a conventional method, metal zinc is known in a dry manufacturing method and a wet manufacturing method.

본 출원인은 오랫동안 염화아연 및 아연을 생산, 판매하고 있으며, 본 발명자는 상기 제품에 관련하여 계속하여 연구하여 오던 중, 염화아연과 알루미늄을 반응시킴으로서 염화알루미늄과 아연을 간편하고도 저렴하게 제조할 수 있음을 발견하고, 본 발명을 완성하게 되었다.Applicant has been producing and selling zinc chloride and zinc for a long time, and the present inventors have been continuously researching related to the above products, and the present inventors can easily and inexpensively manufacture aluminum chloride and zinc by reacting zinc chloride and aluminum. It was found that the present invention was completed.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 무수 염화아연(ZnCl2)의 용융욕에 교반기를 부착하고, 염화아연을 교반하면서 알루미늄 분말을 반응시켜 염화알루미늄과 아연을 얻는 것이다.The present invention attaches a stirrer to a molten bath of anhydrous zinc chloride (ZnCl 2 ), and reacts aluminum powder while stirring zinc chloride to obtain aluminum chloride and zinc.

이를 화학식으로 나타내면 다음과 같다.This is represented by the following formula.

3ZnCl2 +2Al3Zn + 2AlCl3 3ZnCl2 + 2Al 3Zn + 2AlCl 3

즉, 본 발명은 고순도 염화아연 용융욕 중에 알루미늄 용융금속 또는 알루미늄 분말을 일정량 투입하여 교반하면서 평균온도 420~500℃ 로 유지된 상태에서 반응시키면 염화알루미늄은 183℃ 이상에서 승화하고, 승화되는 알루미늄은 냉각, 고화(desublimation)시켜 분말상 또는 플레이크상으로 얻는다.That is, in the present invention, when a predetermined amount of aluminum molten metal or aluminum powder is added to a high-purity zinc chloride melting bath and stirred, the reaction is carried out while maintaining the average temperature at 420 to 500 ° C. Cooling, desublimation to obtain powder or flakes.

한편, 염화아연 용융액 하부에는 금속아연(Zn)이 형성하여 중력차에 의해 침강한다. 이를 욕하부의 드레인 파이프를 통해 배출시켜 아연 주형틀에 유도하여 응고시켜 제품으로 한다.On the other hand, metal zinc (Zn) is formed in the lower portion of the zinc chloride melt and settles due to the gravity difference. This is discharged through the drain pipe in the lower part of the bath and guided to the zinc mold to solidify the product.

반응 조건은 상기 온도 범위에서 적당하며, 740℃ 이상에서는 염화아연이 증발하여 승화하는 염화알루미늄의 제품을 오염시키기 때문에 불편하고, 420℃ 이하에서는 아연의 용융점(420℃) 이하이므로 아연의 연속 배출이 어려워진다. 이러한 반응물질 및 생성물질의 물성 때문에 반응온도는 420~500℃, 특히 450~480℃ 가 바람직하다.The reaction conditions are suitable in the above temperature range, zinc chloride is evaporated above 740 ℃ to contaminate the product of aluminum chloride sublimation, it is inconvenient, and below 420 ℃ below the melting point of zinc (420 ℃) it is continuous discharge of zinc Becomes difficult. Because of the physical properties of these reactants and products, the reaction temperature is preferably 420 ~ 500 ℃, especially 450 ~ 480 ℃.

본 발명의 방법에서 생성되는 아연(Zn)금속의 순도는 반응원료인 염화아연의 순도에 좌우된다. 즉, 염화아연중의 철, 닉켈, 카드뮴 등의 중금속 함량이 1~100ppm 이하의 고순도의 염화아연을 사용하거나, 염화아연중의 상기 금속성분을 제거 정제한 제품을 사용하면 생성되는 아연이 99.99% 또는 99.999%의 고순도 제품으로 제조할 수 있다.The purity of the zinc (Zn) metal produced in the process of the present invention depends on the purity of the zinc chloride as a reaction raw material. That is, when using a high-purity zinc chloride of 1 ~ 100ppm or less heavy metals such as iron, nickel, cadmium, etc. in zinc chloride, or using a product obtained by removing and purifying the metal component in zinc chloride, zinc produced is 99.99%. Or 99.999% high purity products.

한편, 승화되는 고순도의 염화알루미늄은 다단식 접촉 증류탑으로 유도하고, 185~380℃ 증기온도를 유지하면서 동반되는 염화아연의 증기를 최대한 접촉 제거하고, 다음 단계에서 알루미늄 입자(3~10mm)층을 통과시켜서, 염화알루미늄 기체 중에 존재하는 극미량의 염화아연을 알루미늄 층에서 접촉 반응시킨 후 고순도의 염화알루미늄 기체를 급냉하여 분말상 또는 플레이크상으로 얻는다.On the other hand, sublimated high-purity aluminum chloride is led to a multi-stage contact distillation column, while maintaining the vapor temperature of 185 ~ 380 ° C to remove the accompanying zinc chloride vapor as much as possible, in the next step through the aluminum particle (3 ~ 10mm) layer After a small amount of zinc chloride present in the aluminum chloride gas is brought into contact with the aluminum layer, the aluminum chloride gas of high purity is quenched to obtain a powder or flake form.

본 발명의 반응은 뱃치식으로도 가능하나, 반응물질인 염화아연과 알루미늄의 반응비율의 조정이 어렵기 때문에 연속공정으로 하는 것이 바람직하다. 즉, 반응기 내부에 반응이 진행하는 동안 계속해서 염화아연 용융액과 알루미늄 분말 또는 알루미늄 용융금속을 일정하게 공급함으로서 1일 생산량이 10~100톤을 충분히 생산할 수 있다.Although the reaction of the present invention can be carried out in a batch type, it is preferable to use a continuous process because it is difficult to adjust the reaction ratio of the zinc chloride and aluminum as the reactants. That is, by continuously supplying zinc chloride melt and aluminum powder or aluminum molten metal continuously during the reaction in the reactor, it is possible to sufficiently produce 10 to 100 tons of daily output.

종래의 방법에서는 염화알루미늄을 얻기 위하여 염소 또는 염화수소 개스를 반응시키나, 본 발명에서는 이러한 유독한 기체를 사용하지 않고, 아연 스크랩 등을 염산용액과 반응시켜 염화아연을 얻고, 이를 알루미늄 금속 또는 알루미늄 스크랩에서 얻은 알루미늄분말 또는 알루미늄 용융액을 치환반응시켜 염화알루미늄과 아연금속을 고순도로 얻을 수 있으며, 종래의 방법에 비해 상당히 낮은 온도에서 반응이 진행, 완결됨으로 대단히 경제적이다.In the conventional method, chlorine or hydrogen chloride gas is reacted to obtain aluminum chloride, but in the present invention, zinc chloride is reacted with hydrochloric acid solution to obtain zinc chloride without using such a toxic gas, which is obtained from aluminum metal or aluminum scrap. Aluminum chloride and zinc metal can be obtained in high purity by substitution reaction of the obtained aluminum powder or aluminum melt, and it is very economical because the reaction proceeds and is completed at a considerably lower temperature than the conventional method.

[실시예 1]Example 1

고순도 염화아연 200g과 당량비에 해당하는 고순도 알루미늄분말 26.39g을 삼각플라스크에 넣고, 평균온도 480℃ 를 유지하면서 40분간 가열하면 고순도 염화알루미늄 130g(수율:99.65%)이 증기화되어 냉각기에 포집되고, 용기하부로부터 92.16g(96.07%)의 아연금속이 얻어졌다. 이 반응에서 아연의 수율이 약 96%인 것을 불연속 반응에 의한 미반응 및 미진행으로 인한 손실이다.200 g of high purity zinc chloride and 26.39 g of high purity aluminum powder corresponding to the equivalent ratio are put in a Erlenmeyer flask, and heated for 40 minutes while maintaining an average temperature of 480 ° C. 92.16 g (96.07%) of zinc metal was obtained from the bottom of the vessel. The yield of zinc in this reaction is about 96%, the loss due to unreacted and unprogressed by discontinuous reactions.

[실시예 2]Example 2

염화아연 순도 95%, 철분 2%, Pb 1%, ZnO 2%, 성분비의 용융액 210.5g을 평균온도 480℃ 에서 당량에 해당되는 알루미늄(Al) 26.4g 넣고 50분간 가열 반응완료한 결과 아연금속 98.5%, Fe 1%, Pb 0.5% 등의 불순한 금속 약 97.4g을 회수했다. 염화아연의 정제가 불가피하며, 염화아연 용융액에 철, 카드뮴, 납, 기타 중금속 염소화합물은 대부분 알루미늄과 동시 환원되어 아연금속에 합금되어 제품의 순도를 저하시키는 것을 실험으로 입증되었다.210.5 g of zinc chloride purity, 2% iron, 1% Pb, 2% ZnO, and 20.5 g of aluminum (Al) equivalent to the equivalents were added at an average temperature of 480 ° C. About 97.4 g of impure metals, such as%, Fe 1%, and Pb 0.5%, were recovered. Purification of zinc chloride is inevitable, and it has been experimentally demonstrated that iron, cadmium, lead, and other heavy metal chlorine compounds in zinc chloride melt are co-reduced with aluminum and alloyed with zinc metal to reduce product purity.

[실시예 3]Example 3

정제된 고순도 염화아연(ZnCl2) 200g 과 500cc 삼각플라스크에 알루미늄 26.4g 넣고 가열하면서(480℃) 발생하는 염화알루미늄(AlCl3) 증기를 수집하여 분석하여 본 바, 약 1~3%의 염화아연(ZnCl2)을 함유되어 있었다. 이 염화아연(ZnCl2)을 제거하기 위하여 염화알루미늄 증기유도관에 알루미늄 그래뉼 입자(직경 3mm~5mm)를 튜브(총길이 1m)의 2/3(평균) 되게 넣고, 이 튜브의 평균온도를 380℃ 로 유지하면서 통과시킨 후, 냉각 결정화하여 염화알루미늄 약 130.44g 을 얻었다. 이 염화알루미늄을 분석한 결과, 순도는 평균 99.99% 이었고, 염화아연(ZnCl2)의 잔존량은 0.1ppm 이하였다.200 g of purified high purity zinc chloride (ZnCl 2 ) and 26.4 g of aluminum were put into a 500 cc Erlenmeyer flask to collect aluminum chloride (AlCl 3 ) vapor generated by heating (480 ° C.). (ZnCl 2 ). In order to remove this zinc chloride (ZnCl 2 ), aluminum granule particles (diameter 3 mm to 5 mm) are placed in an aluminum chloride vapor induction pipe to be 2/3 (average) of the tube (total length 1 m), and the average temperature of the tube is 380 ° C. After allowing to pass through, the mixture was cooled and crystallized to obtain about 130.44 g of aluminum chloride. The analysis of the aluminum chloride, and the purity was 99.99% average, the remaining amount of zinc chloride (ZnCl 2) was less than 0.1ppm.

[실시예 4]Example 4

정제된 염화아연 200g에 알루미늄 분말 40g을 500cc 플라스크에 넣고, 가열반응을 종료한 후 생산된 아연은 상당량, 알루미늄의 합금이 이루어져 있었다. 이러한 고순도 알루미늄 합금제를 다시 고순도 염화아연을 넣고 계속, 교반 반응시켜 고순도의 아연(99.99%)을 얻었다. 알루미늄/아연 합금체도 충분한 교반온도가 주어질 때는 선택적으로 알루미늄만이 제거된다.40 g of aluminum powder and 200 g of purified zinc chloride were placed in a 500 cc flask, and the zinc produced after the completion of the heating reaction was made of a significant amount of an alloy of aluminum. The high-purity aluminum alloy was added to high-purity zinc chloride again, followed by stirring to obtain high-purity zinc (99.99%). Aluminum / zinc alloys are also selectively removed only when given sufficient stirring temperatures.

Claims (3)

반응기내의 온도를 420~500℃ 로 유지하여 염화아연을 용융시키고, 여기에 알루미늄 금속분말을 가하여 치환반응시킴을 특징으로 하는 고순도 금속아연 및 고순도 염화알루미늄의 제조방법.A method of producing high purity metal zinc and high purity aluminum chloride, characterized in that the zinc chloride is melted by maintaining the temperature in the reactor at 420-500 ° C., and aluminum metal powder is added thereto to perform a substitution reaction. 제1항에 있어서, 반응의 평균온도를 450~480℃ 로 유지함을 특징으로 하는 방법.The method of claim 1, wherein the average temperature of the reaction is maintained at 450 ~ 480 ℃. 제1항에 있어서, 반응에서 생성되는 기상 염화알루미늄을 알루미늄 그래뉼이 함유된 튜브로 통과시켜 염화알루미늄속에 미량 함유된 염화아연을 제거함을 특징으로 하는 방법.The method of claim 1 wherein the gaseous aluminum chloride produced in the reaction is passed through a tube containing aluminum granules to remove traces of zinc chloride contained in aluminum chloride.
KR1019950048797A 1995-12-12 1995-12-12 Method for manufacturing aluminum chloride anhydride and zinc KR0161098B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019950048797A KR0161098B1 (en) 1995-12-12 1995-12-12 Method for manufacturing aluminum chloride anhydride and zinc
PCT/KR1996/000215 WO1997021628A1 (en) 1995-12-12 1996-11-25 Process for simultaneously preparing anhydrous aluminum chloride and zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048797A KR0161098B1 (en) 1995-12-12 1995-12-12 Method for manufacturing aluminum chloride anhydride and zinc

Publications (2)

Publication Number Publication Date
KR970042265A KR970042265A (en) 1997-07-24
KR0161098B1 true KR0161098B1 (en) 1998-11-16

Family

ID=19439323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048797A KR0161098B1 (en) 1995-12-12 1995-12-12 Method for manufacturing aluminum chloride anhydride and zinc

Country Status (2)

Country Link
KR (1) KR0161098B1 (en)
WO (1) WO1997021628A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087955A (en) * 2000-03-09 2001-09-26 김수태 Process for simultaneously preparing anhydrous aluminum chloride and iron powder
KR101219184B1 (en) * 2010-10-18 2013-01-07 한국기계연구원 The method for preparation of Alumium Chloride and Alumium Chloride using the same
KR101404762B1 (en) * 2013-06-24 2014-06-12 김수태 Process for preparing aluminum chloride and zinc in high purity at the same time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277036A (en) * 2015-05-21 2017-01-04 华仁药业股份有限公司 Anhydrous organic solvent method prepares the preparation method of zinc chloride

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1467268B2 (en) * 1964-10-06 1970-02-19 Imperial Smelting Corp. (N.S.C.) Ltd., London Process for the continuous production of anhydrous aluminum chloride
GB1185234A (en) * 1967-10-13 1970-03-25 Imp Smelting Corp Ltd Production of High-Purity Aluminium Chloride
FR2277038A1 (en) * 1974-07-05 1976-01-30 Esb Inc Purified aluminium chloride - alkali chloride melt - for battery electrolytes, has improved coulombic yield
DE2910830B1 (en) * 1979-02-16 1980-07-24 Alusuisse Device for extracting solid aluminum chloride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087955A (en) * 2000-03-09 2001-09-26 김수태 Process for simultaneously preparing anhydrous aluminum chloride and iron powder
KR101219184B1 (en) * 2010-10-18 2013-01-07 한국기계연구원 The method for preparation of Alumium Chloride and Alumium Chloride using the same
KR101404762B1 (en) * 2013-06-24 2014-06-12 김수태 Process for preparing aluminum chloride and zinc in high purity at the same time
WO2014208944A1 (en) * 2013-06-24 2014-12-31 김철한 Method for simultaneously preparing high purity aluminum chloride and zinc

Also Published As

Publication number Publication date
WO1997021628A1 (en) 1997-06-19
KR970042265A (en) 1997-07-24

Similar Documents

Publication Publication Date Title
EA015885B1 (en) A method of producing titanium
US2823991A (en) Process for the manufacture of titanium metal
WO1983002773A1 (en) Process for preparing dialkyl trisulfides
EA012213B1 (en) PROCESS FOR THE PRODUCTION OF Si BY REDUCTION OF SiClWITH LIQUID Zn
EP0307486B1 (en) Process for preparing an iron oxide
US4601798A (en) Continuous preparation of silane, SiH4
EP1437326B1 (en) Method for producing silicon
KR0161098B1 (en) Method for manufacturing aluminum chloride anhydride and zinc
JPH0264006A (en) Production of solar silicon
JP2002540046A (en) Apparatus and method for salt melt production and use of the salt
US3627483A (en) Method of purifying aluminum chloride
KR20010083640A (en) Process for simultaneously preparing anhydrous aluminum chloride and zinc
US3977866A (en) Method for producing titanium
RU2074109C1 (en) Method of preparing aluminium nitride
KR20010087955A (en) Process for simultaneously preparing anhydrous aluminum chloride and iron powder
Ye et al. Removal of lead from crude antimony by using NaPO3 as lead elimination reagent
JPH06263438A (en) Production of high purity anhydrous aluminum chloride
US4612168A (en) Process for refining brass and aluminum scraps
JPS61500661A (en) Aluminum chloride purification method
US2954389A (en) Preparation of trimethylaluminum
US3406009A (en) Process for aluminum chloride production
US4259298A (en) Recovery of chlorine values from iron chloride by-product in chlorination of aluminous materials
JPS59195519A (en) Manufacture of hexachlorodisilane
US2954388A (en) Preparation of triethylaluminum
JP3528424B2 (en) Method for producing high-purity anhydrous aluminum chloride

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030813

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee