JP3528424B2 - Method for producing high-purity anhydrous aluminum chloride - Google Patents

Method for producing high-purity anhydrous aluminum chloride

Info

Publication number
JP3528424B2
JP3528424B2 JP11487996A JP11487996A JP3528424B2 JP 3528424 B2 JP3528424 B2 JP 3528424B2 JP 11487996 A JP11487996 A JP 11487996A JP 11487996 A JP11487996 A JP 11487996A JP 3528424 B2 JP3528424 B2 JP 3528424B2
Authority
JP
Japan
Prior art keywords
aluminum chloride
aluminum
chloride
gas
anhydrous aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11487996A
Other languages
Japanese (ja)
Other versions
JPH09301714A (en
Inventor
徳次 常泉
幹夫 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP11487996A priority Critical patent/JP3528424B2/en
Publication of JPH09301714A publication Critical patent/JPH09301714A/en
Application granted granted Critical
Publication of JP3528424B2 publication Critical patent/JP3528424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高純度無水塩化
アルミニウムの製造方法に係り、特に工業的に高純度の
無水塩化アルミニウムを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity anhydrous aluminum chloride, and more particularly to a method for industrially producing high-purity anhydrous aluminum chloride.

【0002】[0002]

【従来の技術】無水塩化アルミニウム(AlCl3
は、従来より石油化学工業の分野において有機合成反応
の触媒や合成ゴム重合の際の触媒として大量に使用され
ているほか、近年では、顔料、医薬、農薬、リチウム電
池の電解液、アルミニウム非水溶液電気メッキ、レーザ
ー用のガラス原料等の用途にも多用されるようになり、
従来の用途も含めて純度の高い高品質の製品が要求され
るようになってきた。
2. Description of the Related Art Anhydrous aluminum chloride (AlCl 3 )
Has been used in large quantities in the field of petrochemical industry as a catalyst for organic synthetic reactions and a catalyst for the polymerization of synthetic rubber, and in recent years, pigments, pharmaceuticals, agricultural chemicals, electrolytes for lithium batteries, non-aqueous aluminum solutions. It has come to be widely used in applications such as electroplating and glass raw materials for lasers,
High-quality products with high purity have come to be required including conventional applications.

【0003】このような無水塩化アルミニウムの製造方
法としては、アルミナをカーボンで還元した中に塩素ガ
スを導入し、アルミナ中の酸素を塩素に置換するアルコ
ア法や、アルミニウム溶湯中に塩素ガスを導入して反応
させ、生成した塩化アルミニウムガスを凝固させる曝気
法が代表的であるが、前者のアルコア法には1000℃
以上もの高温操業になるために耐蝕性に優れた反応炉を
必要とし、製造コストが嵩むほか、得られる無水塩化ア
ルミニウム中の鉄分濃度が高くて特別な精製工程を必要
として高純度製品の製造には不向きであり、高純度無水
塩化アルミニウムの製造方法としては工業的には曝気法
が採用されている。
As a method for producing such anhydrous aluminum chloride, chlorine gas is introduced into alumina after reducing it with carbon to replace oxygen in the alumina with chlorine, or chlorine gas is introduced into molten aluminum. The aeration method in which the aluminum chloride gas produced by the reaction is reacted to solidify the produced aluminum chloride gas is typical, but the former Alcoa method is 1000 ° C.
The above high temperature operation requires a reactor with excellent corrosion resistance, which increases the manufacturing cost and also requires a special refining process due to the high iron content in the obtained anhydrous aluminum chloride, which is necessary for the manufacture of high-purity products. Is not suitable, and the aeration method is industrially adopted as a method for producing high-purity anhydrous aluminum chloride.

【0004】しかしながら、この曝気法による無水塩化
アルミニウムの製造方法においても、原料のアルミニウ
ム中に存在する金属不純物に由来する金属塩化物不純
物、例えば鉄(Fe)やマグネシウム(Mg)の塩化物
や、原料の塩素ガス中に存在する二酸化炭素(CO2
や酸素(O2 )に由来する水不溶解性不純物、例えばア
ルミナやカーボン等の固形物が製品の無水塩化アルミニ
ウム中に混入されることは避けられず、これらの不純物
の混入量は原料のアルミニウムや塩素ガス中に含まれて
いる不純物の量に対応して増加する。
However, also in the method of producing anhydrous aluminum chloride by this aeration method, metal chloride impurities derived from metal impurities present in the raw material aluminum, for example, chlorides of iron (Fe) and magnesium (Mg), Carbon dioxide (CO 2 ) present in the raw material chlorine gas
It is inevitable that water-insoluble impurities derived from oxygen and oxygen (O 2 ), for example, solid substances such as alumina and carbon, will be mixed into the anhydrous aluminum chloride of the product, and the amount of these impurities mixed will be Increases with the amount of impurities contained in chlorine gas.

【0005】そして、このような製品の無水塩化アルミ
ニウム中の不純物は、この無水塩化アルミニウムを用い
て製造される製品の品位が高度になればなるほど、その
許容量が低下し、例えば、原料アルミニウムに由来する
金属塩化物不純物については、鉄塩化物は有機合成反応
の触媒毒になるほかレーザー用ガラス原料の着色源にな
り、また、マグネシウム塩化物は有機合成反応の触媒毒
になり、そして、原料塩素ガスに由来する水不溶解性不
純物については、カーボンは製品の無水塩化アルミニウ
ムの外観を黒ずんだ状態に汚染し、アルミナは親油性で
あるために有機顔料等の有機製品中に入り込み、特に印
刷インキ用顔料中に入り込むとその研磨力故に印刷板面
の摩耗を促進する等、多くの分野でこれら不純物の含有
量をより一層低減することが求められている。
Impurities in the anhydrous aluminum chloride of such a product decrease in the permissible amount as the quality of the product manufactured using this anhydrous aluminum chloride becomes higher, and, for example, in the raw material aluminum. Regarding the metal chloride impurities derived from it, iron chloride becomes a catalyst poison for the organic synthesis reaction as well as a coloring source of the glass material for laser, and magnesium chloride becomes a catalyst poison for the organic synthesis reaction, and the raw material. Regarding water-insoluble impurities derived from chlorine gas, carbon contaminates the anhydrous aluminum chloride appearance of the product in a darkened state, and since alumina is lipophilic, it penetrates into organic products such as organic pigments, especially when printing. In many fields, the content of these impurities is further reduced, such as the abrasion of the printing plate surface is promoted due to the abrasive force when entering the pigment for ink. Rukoto there is a demand.

【0006】そこで、従来においては、曝気法で製造さ
れた無水塩化アルミニウムそのものではその品位が満足
されないような用途に用いられるものについては、この
曝気法で製造した無水塩化アルミニウムを更に精製し、
不純物の金属塩化物不純物や水不溶解性不純物を除去し
て高純度化を図ることが試みられている。
[0006] Therefore, conventionally, for anhydrous aluminum chloride itself produced by the aeration method, which is used for applications where the quality is not satisfied, the anhydrous aluminum chloride produced by the aeration method is further purified,
Attempts have been made to achieve high purity by removing impurities such as metal chloride impurities and water-insoluble impurities.

【0007】例えば特公昭44−18568号公報に
は、不純物として塩化鉄を含む無水塩化アルミニウムを
溶融塩に溶解し、この溶融塩浴中の塩化鉄を鉄よりイオ
ン化傾向の大きい金属で還元した後、溶融塩浴から無水
塩化アルミニウムを蒸発させることにより、不純物の塩
化鉄を分離除去することが提案されている。
For example, in Japanese Examined Patent Publication No. 44-18568, after dissolving anhydrous aluminum chloride containing iron chloride as an impurity in a molten salt and reducing the iron chloride in the molten salt bath with a metal having a greater ionization tendency than iron, It has been proposed to separate and remove the impurity iron chloride by evaporating anhydrous aluminum chloride from the molten salt bath.

【0008】また、特公昭47−45677号公報に
は、無水塩化アルミニウムを有機溶媒に溶解し、この有
機溶液中にアルミニウムアマルガムと塩化水素ガスとを
導入してしばらく放置し、上澄み液から高純度の無水塩
化アルミニウム溶液を取り出すことにより、主として鉄
分が除去された無水塩化アルミニウムの精製方法が提案
されている。
Further, Japanese Patent Publication No. 47-45677 discloses that anhydrous aluminum chloride is dissolved in an organic solvent, aluminum amalgam and hydrogen chloride gas are introduced into this organic solution, and the mixture is allowed to stand for a while. A method for purifying anhydrous aluminum chloride from which iron is mainly removed by taking out the anhydrous aluminum chloride solution is proposed.

【0009】更に、特公昭49−42599号公報に
は、曝気法で得られた塩化アルミニウムガスを金属アル
ミニウムの充填塔に通し、この充填塔で一塩化アルミニ
ウムの副生原因となる金属アルミニウム超微粒子を除去
することが開示されているほか、特公昭56−9451
号公報には、無水塩化アルミニウムにマグネシウムを加
えて昇華させ、不純物の塩化第二鉄を除去することが開
示されている。
Further, in Japanese Patent Publication No. Sho 49-42599, aluminum chloride gas obtained by the aeration method is passed through a packed column of metallic aluminum, and ultrafine particles of metallic aluminum which are a by-product of aluminum monochloride in this packed column. Is disclosed, and Japanese Patent Publication Sho 56-9451
The publication discloses that magnesium is added to anhydrous aluminum chloride for sublimation to remove ferric chloride as an impurity.

【0010】更にまた、特開平6−1607号公報に
は、曝気法のアルミニウム溶湯の表面に塩化アルミニウ
ム・塩化ナトリウムの複塩からなる溶融塩層(いわゆる
「ナウター浴層」)を形成し、曝気法で生成した塩化ア
ルミニウムガスがこの溶融塩層を通過するようにしてそ
こで金属塩化物不純物や水不溶解性不純物を捕捉し、及
び/又は、その後工程に洗浄器を配設し、この洗浄器中
で塩化アルミニウムガスに塩化アルミニウム・塩化ナト
リウムの複塩からなる溶融塩を接触させて洗浄し、そこ
で更に金属塩化物不純物や水不溶解性不純物を捕捉する
ことにより、高純度の無水塩化アルミニウムを製造する
方法が提案されている。
Further, in JP-A-6-1607, a molten salt layer (so-called "Nauta bath layer") composed of a double salt of aluminum chloride / sodium chloride is formed on the surface of an aluminum melt of aeration method, and aeration is performed. Aluminum chloride gas produced by the method is passed through this molten salt layer to capture metal chloride impurities and water-insoluble impurities there, and / or a washing machine is disposed in the subsequent step, and this washing machine is used. High-purity anhydrous aluminum chloride is obtained by contacting a molten salt composed of a double salt of aluminum chloride and sodium chloride with aluminum chloride gas and cleaning it, and further capturing metal chloride impurities and water-insoluble impurities therein. A method of manufacturing has been proposed.

【0011】しかしながら、これら従来の方法は、その
何れの方法においても、曝気法による無水塩化アルミニ
ウムの製造のための工程以外に、吸湿性の高い添加剤を
取り扱う作業や溶融塩浴の調製や浴管理の作業等を伴う
精製工程の必要とし、更にはこの精製工程に伴う安全上
の管理、作業環境上の対策、廃棄物処理、労働管理等が
必要となり、高純度化に伴って経済的、あるいは、人的
な負担が大幅に増大し、実際には医薬、農薬等のファイ
ンケミカル向けの少量バッチ式による製造が限界であっ
て、安価で大量生産に適した高純度無水塩化アルミニウ
ムの工業的製造方法といえるものではなかった。
However, in any of these conventional methods, in addition to the step for producing anhydrous aluminum chloride by the aeration method, in any of these methods, an operation of handling an additive having a high hygroscopic property, preparation of a molten salt bath and a bath are carried out. It requires a refining process that involves management work, and further requires safety management, work environment measures, waste treatment, labor management, etc. that accompany this refining process. Alternatively, the burden on human beings will increase significantly, and in reality, there is a limit to the production in small batches for fine chemicals such as pharmaceuticals and agricultural chemicals, and industrial production of high-purity anhydrous aluminum chloride that is inexpensive and suitable for mass production. It wasn't a method.

【0012】そして、従来の無水塩化アルミニウムの製
造方法においては、通常の曝気法による製造条件(操業
温度約700〜800℃)では、沸点が317℃と低い
塩化第二鉄は製品の無水塩化アルミニウム中に混入する
のを避けられず、また、沸点1410℃と無水塩化アル
ミニウムよりはるかに高い沸点を有して本来は混入し得
ないと考えられる塩化マグネシウムの混入もあり、しか
も、塩素ガスに由来するカーボンやアルミナの不純物も
あり、これらの不純物の混入を防止して高品位の無水塩
化アルミニウムを製造することは困難であると考えられ
ていた。
In the conventional method for producing anhydrous aluminum chloride, ferric chloride having a low boiling point of 317 ° C. is a product of anhydrous aluminum chloride under the conventional aeration method (operating temperature of about 700 to 800 ° C.). It is unavoidable to mix in, and there is also mixing of magnesium chloride, which has a boiling point of 1410 ° C and a boiling point far higher than that of anhydrous aluminum chloride and should not be mixed in originally, and is derived from chlorine gas. It is considered that it is difficult to produce high-quality anhydrous aluminum chloride by preventing impurities from being mixed with carbon and alumina.

【0013】また、高純度の無水塩化アルミニウムを製
造するために、予め製造原料のアルミニウム中の鉄分や
マグネシウム分を可及的に除去しておくことが考えられ
るが、この方法もアルミニウムの精製に費用がかかりす
ぎ、高純度無水塩化アルミニウムを工業的に製造する有
効な方法とはなり得ない。
Further, in order to produce high-purity anhydrous aluminum chloride, it is conceivable to remove as much iron and magnesium as possible from the production raw material aluminum in advance. This method is also used for the purification of aluminum. It is too expensive and cannot be an effective method for industrially producing high-purity anhydrous aluminum chloride.

【0014】[0014]

【発明が解決しようとする課題】そこで、本発明者ら
は、これら従来の無水塩化アルミニウムの製造方法につ
いて鋭意検討した結果、意外なことには、通常の製造条
件で実施される曝気法において、炭酸ガス含有量が可及
的に低減された精製塩素ガスを用いることにより、単に
この塩素ガス由来の水不溶解性不純物の含有量を低減で
きるだけでなく、原料アルミニウム由来の金属塩化物不
純物についても大幅に低減でき、従来の精製法で精製さ
れた高純度無水塩化アルミニウムと同等の品質、例えば
金属塩化物不純物10重量ppm以下及び水不溶解性不
純物20重量ppm以下という高純度の無水塩化アルミ
ニウムを容易に製造できることを見出し、本発明を完成
した。
Therefore, as a result of diligent examination of these conventional methods for producing anhydrous aluminum chloride, the present inventors have found that, surprisingly, in the aeration method carried out under ordinary production conditions, By using purified chlorine gas whose carbon dioxide content has been reduced as much as possible, not only can the content of water-insoluble impurities derived from this chlorine gas be reduced, but metal chloride impurities derived from raw material aluminum Significantly reduced quality equivalent to high-purity anhydrous aluminum chloride purified by conventional purification methods, for example, high-purity anhydrous aluminum chloride with a metal chloride impurity content of 10 ppm by weight or less and a water-insoluble impurity content of 20 ppm by weight or less. They have found that they can be easily manufactured and have completed the present invention.

【0015】従って、本発明の目的は、精製工程を経て
製造される高純度無水塩化アルミニウムと遜色のない高
品位を有する高純度無水塩化アルミニウムを工業的に有
利に製造することができる高純度無水塩化アルミニウム
の製造方法を提供することにある。
Therefore, an object of the present invention is to produce industrially advantageously high-purity anhydrous aluminum chloride having a high quality comparable to that of high-purity anhydrous aluminum chloride produced through a purification process. It is to provide a method for producing aluminum chloride.

【0016】[0016]

【課題を解決するための手段】すなわち、本発明は、反
応炉内でアルミニウム溶湯中に塩素ガスを導入して反応
させ、生成した塩化アルミニウムガスを凝固させて無水
塩化アルミニウムを製造する方法において、反応炉内の
アルミニウム溶湯の温度を650〜850℃の範囲に保
持すると共に、このアルミニウム溶湯中には炭酸ガス含
有量を可及的に低減した精製塩素ガスを導入する高純度
無水塩化アルミニウムの製造方法である。
Means for Solving the Problems That is, the present invention provides a method for producing anhydrous aluminum chloride by introducing chlorine gas into a molten aluminum in a reaction furnace to cause a reaction, and solidifying the produced aluminum chloride gas, Production of high-purity anhydrous aluminum chloride in which the temperature of the molten aluminum in the reaction furnace is kept in the range of 650 to 850 ° C., and purified chlorine gas in which the carbon dioxide content is reduced as much as possible is introduced into the molten aluminum Is the way.

【0017】本発明方法において、反応に用いる原料の
アルミニウム溶湯は、汎用的には純度95.0重量%以
上あればよく、より高純度の無水塩化アルミニウムを製
造するという観点からは、このアルミニウム純度は高け
れば高いほど好ましい。例えば電解精錬炉のアルミニウ
ム溶湯そのものやこの電解精錬炉アルミニウム溶湯の溶
製処理後のインゴットや加工製品のスクラップ等も使用
できる。これらのアルミニウム溶湯には、程度の差はあ
るものの、種々の金属やその酸化物、アルミニウム化合
物等の金属化合物を不純物として含んでおり、鉄やマグ
ネシウムも例外ではない。
In the method of the present invention, the raw material aluminum melt used for the reaction may generally have a purity of 95.0% by weight or more. From the viewpoint of producing higher purity anhydrous aluminum chloride, this aluminum purity The higher the, the better. For example, the molten aluminum itself of the electrolytic refining furnace, or the ingot or the scrap of the processed product after the melting treatment of the electrolytic refining aluminum molten metal can be used. These aluminum melts contain various metals, their oxides, and metal compounds such as aluminum compounds as impurities, although iron oxides and magnesium are no exception.

【0018】本発明方法では、このアルミニウム溶湯に
導入して塩化アルミニウムガスを生成せしめる塩素ガス
として、炭酸ガス含有量を可及的に低減した精製塩素ガ
スを用いる。この精製塩素ガスの炭酸ガス含有量につい
ては、20容量ppm以下、好ましくは10容量ppm
以下であるのがよい。精製塩素ガスの炭酸ガス含有量が
20容量ppmを超えると、無水塩化アルミニウム中の
金属不純物や水不溶解性不純物が相対的に増加し、高純
度の製品が得難くなるという問題が生じる。
In the method of the present invention, purified chlorine gas having a carbon dioxide gas content reduced as much as possible is used as the chlorine gas which is introduced into the molten aluminum to produce aluminum chloride gas. The carbon dioxide content of this purified chlorine gas is 20 ppm by volume or less, preferably 10 ppm by volume.
It should be: When the carbon dioxide content of the purified chlorine gas exceeds 20 ppm by volume, metal impurities and water-insoluble impurities in anhydrous aluminum chloride relatively increase, and it becomes difficult to obtain a high-purity product.

【0019】このような精製塩素ガスは、一般的な蒸留
・精留の手段で容易に製造することができ、具体的には
例えば特公昭54−25519号公報に記載された方法
等が挙げられる。また、近年では、炭酸ガス含有量の少
ない高純度の精製塩素ガスが半導体製造用として市販さ
れており、容易に入手することができる。なお、一般に
塩素ガス中の炭酸ガス含有量を測定することは比較的困
難であるが、本発明にいう炭酸ガス含有量の値(20容
量ppm以下)はガスクロマトグラフィーのTCD (Th
ermal Conductivity Detector)法により測定された値で
ある。
Such purified chlorine gas can be easily produced by general means of distillation / rectification, and specific examples thereof include the method described in Japanese Patent Publication No. 54-25519. . Further, in recent years, high-purity purified chlorine gas having a low carbon dioxide content is commercially available for semiconductor production, and can be easily obtained. In general, it is relatively difficult to measure the carbon dioxide content in chlorine gas, but the value of the carbon dioxide content in the present invention (20 ppm by volume or less) is the TCD (Th
ermal Conductivity Detector) method.

【0020】本発明方法においては、通常の曝気法によ
る無水塩化アルミニウムの製造と同様に、アルミニウム
溶湯中に耐蝕性ノズルを介して精製塩素ガスを吹き込ん
で反応させ、塩化アルミニウムガスを生成せしめると共
に、生成した塩化アルミニウムガスを鉄等の良熱伝導材
料で形成されたコンデンサー(凝縮器)に導き、冷却し
て固化し、固体の無水塩化アルミニウムとして回収すれ
ばよい。
In the method of the present invention, similar to the production of anhydrous aluminum chloride by the usual aeration method, purified chlorine gas is blown into a molten aluminum through a corrosion resistant nozzle to cause reaction, and aluminum chloride gas is produced. The produced aluminum chloride gas may be introduced into a condenser (condenser) made of a material having good heat conductivity such as iron, cooled and solidified, and recovered as solid anhydrous aluminum chloride.

【0021】[0021]

【発明の実施の形態】アルミニウム溶湯を反応炉中に仕
込んでその温度を650〜850℃、好ましくは700
〜800℃に管理し、この温度管理されたアルミニウム
溶湯中に耐蝕性ノズルを介して炭酸ガス含有量20容量
ppm以下の精製塩素ガスを導入し、反応して生成した
塩化アルミニウムガスをコンデンサーで凝固させ、固体
の無水塩化アルミニウムを回収する。
BEST MODE FOR CARRYING OUT THE INVENTION A molten aluminum is charged into a reactor and the temperature thereof is 650 to 850 ° C., preferably 700.
The temperature of the aluminum melt is controlled to 800 ° C, and purified chlorine gas having a carbon dioxide gas content of 20 ppm by volume or less is introduced into the temperature-controlled aluminum melt through a corrosion-resistant nozzle, and the aluminum chloride gas produced by the reaction is solidified by a condenser. To recover solid anhydrous aluminum chloride.

【0022】ここで、アルミニウム溶湯中に導入された
塩素ガスは、このアルミニウム溶湯中のアルミニウムや
金属不純物と反応し、それぞれ塩化アルミニウムガスや
金属塩化物ガスを生成するが、その反応はアルミニウム
溶湯への塩素ガス導入用のノズル近傍のアルミニウム溶
湯と吹き込まれた塩素ガスとの界面で起こり、反応初期
には反応熱により1000℃を超える高温になると考え
られるが、発生した熱は速やかに周囲に拡散し、上記管
理温度650〜850℃になる。
Here, the chlorine gas introduced into the molten aluminum reacts with aluminum and metal impurities in the molten aluminum to generate aluminum chloride gas and metal chloride gas, respectively. It is thought that it occurs at the interface between the molten aluminum and the chlorine gas blown in near the nozzle for introducing the chlorine gas, and the temperature rises to over 1000 ° C due to the reaction heat at the initial stage of the reaction, but the heat generated diffuses quickly to the surroundings. Then, the control temperature becomes 650 to 850 ° C.

【0023】そして、アルミニウムと塩素ガスとの反応
において、1000℃以上の雰囲気では下記反応式
(1) 2Al + Cl2 → 2AlCl (1) に従って一塩化アルミニウムが生成し、上記アルミニウ
ム溶湯の管理温度650〜850℃では下記反応式
(2) 3AlCl → 2Al + AlCl3 (2) に従って三塩化アルミニウムが生成し、ここでは極めて
強い還元雰囲気になる。
In the reaction between aluminum and chlorine gas, in an atmosphere of 1000 ° C. or higher, aluminum monochloride is produced according to the following reaction formula (1) 2Al + Cl 2 → 2AlCl (1), and the control temperature 650 of the molten aluminum is At ˜850 ° C., aluminum trichloride is produced according to the following reaction formula (2) 3AlCl → 2Al + AlCl 3 (2), and an extremely strong reducing atmosphere is obtained here.

【0024】ここで、アルミニウム溶湯中に存在する不
純物の鉄について検討してみると、この不純物の鉄は、
下記反応式(3) 2Fe + 3Cl2 → 2FeCl3 (3) に従って塩化第二鉄を生成するが、アルミニウム溶湯の
管理温度650〜850℃ではこの塩化第二鉄は鉄より
イオン化傾向の高いアルミニウムにより還元されて、下
記反応式(4) FeCl3 + 4Al → FeAl3 + AlCl3 (4) に従って鉄−アルミニウム化合物を形成し、アルミニウ
ム溶湯中に蓄積し、塩化アルミニウムガスに同伴して反
応炉外に出てくるのが防止される。
Now, when examining the impurity iron present in the molten aluminum, the impurity iron is
Ferric chloride is produced according to the following reaction formula (3) 2Fe + 3Cl 2 → 2FeCl 3 (3). However, at a control temperature of molten aluminum of 650 to 850 ° C., this ferric chloride is more likely to be ionized than aluminum. It is reduced to form an iron-aluminum compound according to the following reaction formula (4) FeCl 3 + 4Al → FeAl 3 + AlCl 3 (4), which accumulates in the molten aluminum and is entrained in the aluminum chloride gas and is carried out of the reactor. It is prevented from coming out.

【0025】ここで、もし塩素ガス中に20容量ppm
を超える炭酸ガスや酸素等が含まれていると、還元雰囲
気下で起こる反応式(4)の反応が阻害され、反応式
(3)で生成した塩化第二鉄が塩化アルミニウムガスに
同伴して反応炉外に出てくることになる。
Here, if 20 volume ppm in chlorine gas
When carbon dioxide gas, oxygen, etc., which exceeds the above range, the reaction of the reaction formula (4) that occurs in a reducing atmosphere is inhibited, and the ferric chloride generated in the reaction formula (3) is entrained in the aluminum chloride gas. It will come out of the reactor.

【0026】また、塩素ガス中の炭酸ガスや酸素は、反
応式(2)で生成した金属アルミニウム微粒子に対して
酸素供給源となって下記反応式(5)及び(6) 4Al + 3CO2 → 2Al2 3 + 3C (5) 4Al + 3O2 → 2Al2 3 (6) に従ってアルミナを生成し、また、炭酸ガス中の炭素は
遊離のカーボンとなり、それぞれ塩化アルミニウムガス
に同伴して反応炉外に出てくることになる。
Further, carbon dioxide gas and oxygen in chlorine gas serve as an oxygen supply source for the metal aluminum fine particles produced by the reaction formula (2), and the reaction formulas (5) and (6) 4Al + 3CO 2 → 2Al 2 O 3 + 3C (5) 4Al + 3O 2 → 2Al 2 O 3 (6) Alumina is produced, and carbon in carbon dioxide gas becomes free carbon, which is entrained in aluminum chloride gas, respectively, and is accompanied by a reactor. It will come out.

【0027】更に、アルミニウム溶湯中に不純物として
存在するマグネシウムについても、塩素ガス中の炭酸ガ
スの含有量を低減することにより、これがマグネシウム
不純物として無水塩化アルミニウム中に入り込んでくる
のを抑制することができる。すなわち、アルミニウム溶
湯中のマグネシウムは塩素ガスと反応して塩化マグネシ
ウムを生成し、この塩化マグネシウムが塩素ガス中に含
まれる炭酸ガス等と反応し、あるいは、アルミニウム溶
湯中のマグネシウムが直接に炭酸ガス等と反応し、酸化
マグネシウムを生成する。更に、生成した酸化マグネシ
ウムはアルミナと結合してスピネル(MgO・Al2
3 )をも生成する。従って、反応系中のマグネシウム
は、これら何れかの形態で不純物として無水塩化アルミ
ニウム中に存在していると考えられるが、何れも使用す
る塩素ガス中の炭酸ガス含有量を可及的に低減すること
により、これらマグネシウム不純物の生成を可及的に抑
制することができ、これによって反応中に塩素ガスバブ
ルがアルミニウム溶湯中を上昇してその界面で破裂し、
マグネシウム不純物が塩化アルミニウムガスに同伴され
るのを可及的に抑制することができる。
Further, regarding magnesium which is present as an impurity in the molten aluminum, it is possible to suppress the entry of carbon dioxide gas in chlorine gas into anhydrous aluminum chloride as a magnesium impurity by reducing the content of carbon dioxide gas in the chlorine gas. it can. That is, magnesium in the aluminum melt reacts with chlorine gas to produce magnesium chloride, and this magnesium chloride reacts with carbon dioxide gas contained in the chlorine gas, or magnesium in the aluminum melt directly dissolves carbon dioxide gas, etc. Reacts with magnesium oxide. Further, the generated magnesium oxide is combined with alumina to form spinel (MgO.Al 2 O
3 ) is also generated. Therefore, it is considered that magnesium in the reaction system is present as an impurity in anhydrous aluminum chloride in any of these forms, but both reduce the carbon dioxide content in the chlorine gas used as much as possible. By doing so, it is possible to suppress the production of these magnesium impurities as much as possible, whereby chlorine gas bubbles rise in the molten aluminum during the reaction and burst at the interface,
It is possible to suppress the magnesium impurities from being entrained in the aluminum chloride gas as much as possible.

【0028】本発明においては、塩素ガス中に不純物と
して含まれる酸素源、特に炭酸ガス含有量を20容量p
pm以下にすることにより、結果として上記反応式
(4)を促進し、また、アルミナやカーボンの生成を抑
制することになり、金属塩化物不純物や水不溶解性不純
物の生成を可及的に抑制することができる。
In the present invention, the oxygen source contained as an impurity in chlorine gas, particularly the carbon dioxide gas content, is 20 vol.
By setting it to be pm or less, as a result, the above reaction formula (4) is promoted, and the production of alumina and carbon is suppressed, and the production of metal chloride impurities and water-insoluble impurities is minimized. Can be suppressed.

【0029】[0029]

【実施例】以下、実施例及び比較例に基づいて、本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples.

【0030】実施例1 図1に示すように、耐火キャスタブルで製造された反応
炉Aの反応部1に鉄1145ppm及びマグネシウム26p
pmを含有する純度99.9重量%のアルミニウムインゴ
ットを溶融してなるアルミニウム溶湯2を仕込み、管理
温度750℃の条件で反応部1に設けられた塩素ガス導
入口3から炭酸ガス5容積ppm、酸素ガス1容積ppm以下
及び水分3容積ppmを含む純度99.99容量%の精製塩
素ガス4をアルミニウム溶湯1トンに対して1200m3
/20℃・1気圧の割合で導入した。
Example 1 As shown in FIG. 1, 1145 ppm of iron and 26 p of magnesium were added to the reaction part 1 of the reactor A manufactured by refractory castable.
Aluminum ingo containing pm and having a purity of 99.9% by weight
An aluminum melt 2 formed by melting a molten iron is charged, and 5 volume ppm of carbon dioxide gas, 1 volume ppm or less of oxygen gas, and 3 volume ppm of water content are supplied from a chlorine gas inlet 3 provided in the reaction section 1 under the condition of a control temperature of 750 ° C. Purified chlorine gas 4 with a purity of 99.99% by volume containing 1200 m 3 for 1 ton of molten aluminum
It was introduced at a rate of / 20 ° C and 1 atm.

【0031】上記反応部1で生成した塩化アルミニウム
ガス5については、ガス移送部6を介してコンデンサー
Bに導き、このコンデンサーBで凝固させ、生成した無
水塩化アルミニウム7をコンデンサーBから抜き出すと
共に、凝固しない排気ガス8を抜き出して水洗後排気さ
せた。
The aluminum chloride gas 5 produced in the reaction section 1 is introduced into the condenser B via the gas transfer section 6 and coagulated in the condenser B, and the produced anhydrous aluminum chloride 7 is extracted from the condenser B and coagulated. The exhaust gas 8 was extracted, washed with water, and then exhausted.

【0032】得られた無水塩化アルミニウム7の適当量
を秤量し、純水に溶解した後、FeについてはJIS
K8115に準じて分析し、また、Mgについてはフレ
ーム原子吸光度法で測定し、更に、水不溶解性不純物に
ついてはJIS K0102に準じて分析した。結果
は、Fe:5重量ppm、Mg:1.2重量ppm及び
水不溶解性不純物10重量ppmであり、色相は目視で
黄白色であった。また、反応炉内に生成した炉内スカム
の除去量は、本発明実施前の約1/9に減少した。
An appropriate amount of the obtained anhydrous aluminum chloride 7 was weighed and dissolved in pure water.
The analysis was performed according to K8115, the Mg was measured by the flame atomic absorption method, and the water-insoluble impurities were analyzed according to JIS K0102. As a result, Fe: 5 weight ppm, Mg: 1.2 weight ppm and water-insoluble impurities 10 weight ppm, and the hue was visually yellowish white. Further, the removal amount of in-furnace scum generated in the reaction furnace was reduced to about 1/9 of that before the present invention was carried out.

【0033】実施例2 原料のアルミニウムとして鉄300ppm及びマグネシウ
ム2ppmを含有する純度99.8重量%のアルミニウムイ
ンゴットを用いた以外は、上記実施例1と同様にして無
水塩化アルミニウムを製造し、得られた無水塩化アルミ
ニウム中のFe、Mg及び水不溶解性不純物の測定をし
た。結果は、Fe:2重量ppm、Mg:1.0重量ppm及
び水不溶解性不純物5重量ppmであり、色相は透明感の
ある淡黄色であった。また、反応炉内に生成した炉内ス
カムの除去量は、本発明実施前の約1/10に減少し
た。
[0033] Example 2 material purity of 99.8% by weight containing iron 300ppm and magnesium 2ppm as aluminum aluminum Lee
Anhydrous aluminum chloride was produced in the same manner as in Example 1 except that nuggets were used, and Fe, Mg and water-insoluble impurities in the obtained anhydrous aluminum chloride were measured. As a result, Fe: 2 weight ppm, Mg: 1.0 weight ppm and water-insoluble impurities 5 weight ppm, and the hue was light yellow with a transparent feeling. Further, the removal amount of in-furnace scum generated in the reaction furnace was reduced to about 1/10 of that before the present invention was carried out.

【0034】実施例3 原料のアルミニウムとして鉄2.8重量%及びマグネシ
ウム16ppmを含有する純度97.1重量%のアルミニウ
ムインゴットを用いた以外は、上記実施例1と同様にし
て無水塩化アルミニウムを製造し、得られた無水塩化ア
ルミニウム中のFe、Mg及び水不溶解性不純物の測定
をした。結果は、Fe:6重量ppm、Mg:1.0重量p
pm及び水不溶解性不純物10重量ppmであり、色相は透
明感のある黄白色であった。また、反応炉内に生成した
炉内スカムの除去量は、本発明実施前の約1/9に減少
した。
The iron-containing 2.8% by weight and magnesium 16ppm as aluminum in Example 3 starting material purity 97.1% by weight of aluminum
Anhydrous aluminum chloride was produced in the same manner as in Example 1 except that a muingot was used, and Fe, Mg and water-insoluble impurities in the obtained anhydrous aluminum chloride were measured. The results are: Fe: 6 weight ppm, Mg: 1.0 weight p
pm and 10 ppm by weight of water-insoluble impurities, and the hue was yellowish white with transparency. Further, the removal amount of in-furnace scum generated in the reaction furnace was reduced to about 1/9 of that before the present invention was carried out.

【0035】比較例1 液化塩素を加熱蒸発させて炭酸ガス500容量ppm、
酸素ガス300容量ppm及び水分50容積ppmを含
む純度99.9容量%の塩素ガスを用いた以外は、上記
実施例1と同様にして無水塩化アルミニウムを製造し、
得られた無水塩化アルミニウム中のFe、Mg及び水不
溶解性不純物の測定をした。結果は、Fe:150重量
ppm、Mg:2.0重量ppm及び水不溶解性不純物
250重量ppmであり、色相は黄灰色であった。
COMPARATIVE EXAMPLE 1 Liquefied chlorine was evaporated by heating to obtain 500 ppm by volume of carbon dioxide gas,
Anhydrous aluminum chloride was produced in the same manner as in Example 1 except that chlorine gas having a purity of 99.9% by volume containing 300 volume ppm of oxygen gas and 50 volume ppm of water was used.
Fe, Mg and water-insoluble impurities in the obtained anhydrous aluminum chloride were measured. As a result, Fe: 150 wtppm, Mg: 2.0 wtppm and water-insoluble impurities of 250 wtppm, and the hue was yellowish gray.

【0036】[0036]

【発明の効果】本発明によれば、特別な添加物を使用し
たり、あるいは、特別に精製工程を設けることなく、従
来の曝気法と同様の方法で工業的に有利にかつ安価に高
純度の無水塩化アルミニウムを製造することができる。
また、特別な添加物の使用や精製工程を必要としないの
で、老化溶融塩浴等の廃棄物処理の必要もなく、しか
も、反応炉内のスカムの発生も大幅に低減し、無水塩化
アルミニウム製造時の作業負荷が大幅に軽減するという
効果もある。
EFFECTS OF THE INVENTION According to the present invention, it is industrially advantageous and inexpensive and of high purity by the same method as the conventional aeration method without using a special additive or providing a special purification step. It is possible to produce anhydrous aluminum chloride.
In addition, since there is no need to use special additives or refining processes, there is no need to treat waste such as an aged molten salt bath, and the generation of scum in the reaction furnace is greatly reduced, producing anhydrous aluminum chloride. It also has the effect of significantly reducing the work load.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の高純度無水塩化アルミニウ
ムの製造を行うための設備を模式的に説明する説明図で
ある。
FIG. 1 is an explanatory view schematically illustrating equipment for producing high-purity anhydrous aluminum chloride of the present invention.

【符号の説明】[Explanation of symbols]

A…反応炉、B…コンデンサー、1…反応部、2…アル
ミニウム溶湯、3…塩素ガス導入口、4…精製塩素ガ
ス、5…塩化アルミニウムガス、6…ガス移送部、7…
無水塩化アルミニウム、8…排気ガス。
A ... Reactor, B ... Condenser, 1 ... Reaction part, 2 ... Aluminum melt, 3 ... Chlorine gas inlet port, 4 ... Purified chlorine gas, 5 ... Aluminum chloride gas, 6 ... Gas transfer part, 7 ...
Anhydrous aluminum chloride, 8 ... Exhaust gas.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応炉内でアルミニウム溶湯中に塩素ガ
スを導入して反応させ、生成した塩化アルミニウムガス
を凝固させて無水塩化アルミニウムを製造する方法にお
いて、反応炉内のアルミニウム溶湯の温度を650〜8
50℃の範囲に保持すると共に、このアルミニウム溶湯
中には炭酸ガス含有量を20容量ppm以下に低減した
製塩素ガスを導入することを特徴とする高純度無水塩化
アルミニウムの製造方法。
1. In a method for producing anhydrous aluminum chloride by introducing chlorine gas into an aluminum melt in a reaction furnace to cause a reaction and solidifying the produced aluminum chloride gas, the temperature of the aluminum melt in the reaction furnace is 650. ~ 8
Production of high-purity anhydrous aluminum chloride, which is characterized in that a purified chlorine gas having a carbon dioxide content reduced to 20 ppm by volume or less is introduced into the molten aluminum while maintaining the temperature in the range of 50 ° C. Method.
【請求項2】 反応炉内のアルミニウム溶湯の温度が、
700〜800℃の範囲に保持されている請求項1に
載の高純度無水塩化アルミニウムの製造方法。
2. The temperature of the molten aluminum in the reactor is
The method for producing high-purity anhydrous aluminum chloride according to claim 1, which is maintained in the range of 700 to 800 ° C.
JP11487996A 1996-05-09 1996-05-09 Method for producing high-purity anhydrous aluminum chloride Expired - Fee Related JP3528424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11487996A JP3528424B2 (en) 1996-05-09 1996-05-09 Method for producing high-purity anhydrous aluminum chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11487996A JP3528424B2 (en) 1996-05-09 1996-05-09 Method for producing high-purity anhydrous aluminum chloride

Publications (2)

Publication Number Publication Date
JPH09301714A JPH09301714A (en) 1997-11-25
JP3528424B2 true JP3528424B2 (en) 2004-05-17

Family

ID=14648976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11487996A Expired - Fee Related JP3528424B2 (en) 1996-05-09 1996-05-09 Method for producing high-purity anhydrous aluminum chloride

Country Status (1)

Country Link
JP (1) JP3528424B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708518A (en) * 2012-09-29 2014-04-09 贵阳铝镁设计研究院有限公司 Anhydrous aluminum chloride preparation method
CN104671270A (en) * 2013-11-27 2015-06-03 贵阳铝镁设计研究院有限公司 Anhydrous aluminum chloride preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006107020A1 (en) * 2005-04-04 2006-10-12 Nippon Light Metal Company, Ltd. High-purity anhydrous aluminum chloride and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708518A (en) * 2012-09-29 2014-04-09 贵阳铝镁设计研究院有限公司 Anhydrous aluminum chloride preparation method
CN104671270A (en) * 2013-11-27 2015-06-03 贵阳铝镁设计研究院有限公司 Anhydrous aluminum chloride preparation method

Also Published As

Publication number Publication date
JPH09301714A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
KR100960055B1 (en) A method of producing titanium from a titanium-containing metal or TiO2-containing material, and a method of recovering titanium from ilmenite or TiO2-containing material
US3966458A (en) Separation of zirconium and hafnium
Zhang et al. A perspective on thermochemical and electrochemical processes for titanium metal production
KR20160010874A (en) Process for manufacturing metal containing powder
CN104195355B (en) Prepare the method for zirconium
Seki et al. Reduction of titanium dioxide to metallic titanium by nitridization and thermal decomposition
US5935295A (en) Molten aluminum treatment
JP3528424B2 (en) Method for producing high-purity anhydrous aluminum chloride
US6217632B1 (en) Molten aluminum treatment
EP0360792A4 (en) Process for making zero valent titanium from an alkali metal fluotitanate
JPS6191335A (en) Method for recovering platinum group metal
US11384412B2 (en) Direct scandium alloying
Li et al. An approach to prepare high-purity TiSi 2 for clean utilization of Ti-bearing blast furnace slag
EP1140702B1 (en) Method of producing zinc bromide
US3977866A (en) Method for producing titanium
US4003738A (en) Method of purifying aluminum
US4726840A (en) Method for the electroslag refining of metals, especially those having alloy components with an affinity for oxygen
JPS6036632A (en) Production of metallic alloy by thermit method
JP2788671B2 (en) Manufacturing method of anhydrous aluminum chloride
JP2002534602A (en) Aluminum production by carbon heating using aluminum scrap as coolant.
US489303A (en) Process of manufacturing manganese and alloys of manganese free from carbon
US5009866A (en) Fused salt process for purifying zirconium and/or hafnium tetrachlorides
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
KR101451777B1 (en) Producing method of vanadium with high purity using magnesium vapor and the device thereof
WO1997021628A1 (en) Process for simultaneously preparing anhydrous aluminum chloride and zinc

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees