KR0147202B1 - Absorbent for removing organo phosphorous compounds and the preparing method thereof - Google Patents

Absorbent for removing organo phosphorous compounds and the preparing method thereof

Info

Publication number
KR0147202B1
KR0147202B1 KR1019950029200A KR19950029200A KR0147202B1 KR 0147202 B1 KR0147202 B1 KR 0147202B1 KR 1019950029200 A KR1019950029200 A KR 1019950029200A KR 19950029200 A KR19950029200 A KR 19950029200A KR 0147202 B1 KR0147202 B1 KR 0147202B1
Authority
KR
South Korea
Prior art keywords
adsorbent
present
temperature
thermal processing
producing
Prior art date
Application number
KR1019950029200A
Other languages
Korean (ko)
Other versions
KR970014829A (en
Inventor
오상곤
조영
김윤배
최대성
이용한
Original Assignee
배문한
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배문한, 국방과학연구소 filed Critical 배문한
Priority to KR1019950029200A priority Critical patent/KR0147202B1/en
Publication of KR970014829A publication Critical patent/KR970014829A/en
Application granted granted Critical
Publication of KR0147202B1 publication Critical patent/KR0147202B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing

Abstract

상용의 이온교환수지를 원료로 하여 이를 10-30㎛ 직겨의 분말로 분쇄한 후 불활성 가스 분위기 하에 400℃, 또는 750℃의 온도에서 10분 내지 2시간, 바람직하게는 1시간 동안 열가공하는 것으로 이루어지는 유기인 화합물 제거용 흡착제의 제조방법 및 이 방법에 의해 얻어지는 흡착제가 제공된다. 본 발명에 따라 얻어지는 흡착제의 비표면적은 특히 수용액상에서 유기인 화합물을 효과적으로 제거할 수 있는 범위인 500-700㎡/g 이며, 2.5-10Å의 소형기공이 전체의 90%에 달한다.A commercial ion exchange resin is used as a raw material, which is pulverized into a powder of 10-30 μm woven and heat-processed at 400 ° C. or 750 ° C. for 10 minutes to 2 hours, preferably 1 hour under an inert gas atmosphere. The manufacturing method of the adsorbent for organophosphorus compound removal which consists of this, and the adsorbent obtained by this method are provided. The specific surface area of the adsorbent obtained according to the present invention is in the range of 500-700 m 2 / g, in particular, in the range that can effectively remove the organophosphorus compound in the aqueous solution, the small pores of 2.5-10 Å to 90% of the total.

Description

유기인 화합물 제거용 흡착제 및 그의 제조방법Adsorbent for organophosphorus compound removal and preparation method thereof

제 1 도는 본 발명에 따른 흡착제의 액상 DMMP 최대 흡착능을 분석한 도면이다.1 is a view analyzing the maximum adsorption capacity of the liquid phase DMMP of the adsorbent according to the present invention.

제 2 도는 본 발명에 따른 흡착제의 액상 DMMP 흡착에 미치는 수분의 영향을 분석한 도면이다.2 is a view analyzing the effect of water on the liquid phase DMMP adsorption of the adsorbent according to the present invention.

본 발명은 다공성 폴리머를 원료로 한 유기인 화합물 제거용 흡착제 및 그의 제조방법에 관한 것이다. 더욱 구체적으로는 다공성 폴리머를 분쇄 및 열가공하여 수용액상 및 증기상의 유기인 화합물을 분리 제거하는데 효율적으로 사용가능한 흡착제 및 그의 제조방법에 관한 것이다. 특히, 본 발명에서 제시되는 열가공 과정을 거쳐 제조된 흡착제는 수용액상 및 증기상/액상으로 오염된 각종 유기인 화합물을 제거하는 데 있어서 기존의 흡착제들에 비하여 그 제거효율이 크게 향상된 것이 특징이다.The present invention relates to an adsorbent for removing an organic phosphorus compound using a porous polymer as a raw material and a method for producing the same. More specifically, the present invention relates to an adsorbent that can be efficiently used for separating and removing organic phosphorus compounds in aqueous and vapor phases by grinding and thermally processing porous polymers and a method for preparing the same. In particular, the adsorbent prepared through the heat treatment process proposed in the present invention is characterized in that the removal efficiency is greatly improved compared to the conventional adsorbents in removing various organic phosphorus compounds contaminated with aqueous phase and vapor phase / liquid phase. .

유기인 화합물은 물론 각종 화합물에 대한 흡착제로서 가장 널리 사용되고 있는 것으로 활성탄을 들 수 있으며 그 원료물질로는 안트라사이트(anthracite), 역청탄(bituminous coal), 코우크(coke)등 사용 용도와 생산성 등을 감안하여 여러가지 종류가 활용되고 있다. 이러한 활성탄 제조를 위해서는 두 종류의 활성화 방법이 적용된다.Activated carbon is the most widely used as an adsorbent for not only organic phosphorus compounds but also various compounds. The raw materials include anthracite, bituminous coal, and coke. In view of this, various kinds are utilized. Two kinds of activation methods are applied to produce such activated carbon.

첫째는, 원료로 사용되는 탄소성 물질을 염화하연, 알칼리 카보네이트, 황산 및 인산 등으로 처리하는 것인데, 이 과정은 주로 활성탄 제조시에 탄소성분의 함량을 높이는 목적으로 사용된다. 둘째는 화학적 활성화 방법과는 달리 원료 물질을 열가공 하면서 CO2, N2, HCl, Cl2, H2O 등을 주입하는 공정이다.First, the carbonaceous material used as a raw material is treated with hypochlorite, alkali carbonate, sulfuric acid, phosphoric acid, and the like, which is mainly used to increase the content of carbon in the production of activated carbon. Secondly, unlike chemical activation methods, CO 2 , N 2 , HCl, Cl 2 and H 2 O are injected while the raw materials are thermally processed.

이와 같은 활성화 방법들을 적절히 적용하여 최근에는 제조된 활성탄의 비표면적이 2,000㎥/g에 달하는 등 높은 표면적을 가진 흡착제들이 널리 사용되고 있다. 그러나 이와 같이 제조된 활성탄들은 제조된 입자의 경도가 비교적 약해 쉽게 파괴될 수 있으며 재활용시도 시 상당량의 흡착능이 소실된다는 단점이 있다. 그리고 활성탄의 종류에 따라 다양한 특성이 있겠으나, 특히 본 발명에서 적용되는 수용액 상에서의 유기인 화합물의 제거 및 분리능은 극히 저조한 편이다.By applying such activation methods appropriately, recently, a high surface area adsorbent has been widely used, such as the specific surface area of the manufactured activated carbon reaching 2,000 m 3 / g. However, the activated carbons prepared as described above have a disadvantage in that the hardness of the prepared particles is relatively weak so that they can be easily destroyed and a considerable amount of adsorption capacity is lost upon recycling. And although there are various characteristics depending on the type of activated carbon, in particular, the removal and separation ability of the organophosphorus compound in the aqueous solution applied in the present invention is very poor.

활성탄과는 달리 본 발명에서 제시되는 흡착제, 즉, 다공성 폴리머 화합물의 분쇄 후 열가공에 의해 제조된 흡착제는 상술된 활성탄과는 달리 수용액 상에서의 유기인 화합물의 분리/제거능이 기존의 활성탄에 비해 크게 향상됨(2-3배)은 물론 흡착제 분말의 경도가 비교적 높고 아룰러 재생시에도 극소량의 흡착능 소시만을 보여준다는 특징이 있다.Unlike activated carbon, the adsorbent presented in the present invention, that is, the adsorbent prepared by the pulverization after thermal processing of the porous polymer compound, has a greater separation / removal ability of the organophosphorus compound in aqueous solution than the activated carbon. As well as improved (2-3 times), the adsorbent powder has a relatively high hardness and shows only a very small amount of adsorption capacity at all during regeneration.

흡착제 제조용 원료로 사용될 수 있는 유기폴리머 화합물로는 다공성 호모폴리머 또는 코폴리머를 포함한 다양한 종류가 있으나, 본 발명에서의 용도에 가장 적합한 폴리머로는 시판되고 있는 이온교환수지들 중의 다공성 폴리머들을 들 수 있다.Organic polymer compounds that can be used as raw materials for the preparation of adsorbents include various types of porous homopolymers or copolymers, but most suitable polymers for use in the present invention include porous polymers in commercially available ion exchange resins. .

다공성 폴리머의 열가공시에는 일정크기의 과립(직경 0.5 - 1 mm 정도)을 사용하는 것이 보편적이다. 그러나, 본 발명에서는 제조된 흡착제들의 수용액상에서의 고른 분산과, 흡착속도의 증가는 물론 흡착량의 증대를 위해 필히 분쇄 후 열가공 과정을 적용하는 것이 주요한 특징이다. 이때 과립 상태로 열가공된 흡착제를 본 발명에 사용하기 위해 분쇄할 경우에는, 상당한 압력이 요구되어 제조된 흡착제의 물리적 성상이 변하게 되므로 흡착능에도 큰 손실을 줄 수 있다.In thermal processing of porous polymers, it is common to use granules of a certain size (about 0.5-1 mm in diameter). However, in the present invention, in order to evenly disperse the prepared adsorbents in the aqueous solution, and to increase the adsorption rate as well as to increase the amount of adsorption, it is essential to apply a thermal processing after grinding. At this time, in the case of milling the adsorbent heat-processed in the granular state for use in the present invention, considerable pressure is required, so that the physical properties of the manufactured adsorbent are changed, which can cause a great loss in adsorption capacity.

분쇄된 이온교환 수지는 그 크기가 매우 다양하나(직경 0.2-200㎛), 본 발명에 따라, 전기한 수용액상의 고른 분산과 최대 흡착량부여는 물론 흡착제의 용이한 회수를 위해 직경 10-30㎛ 범위의 입자가 선정된다.The pulverized ion exchange resins vary greatly in size (0.2-200 μm in diameter), but according to the invention, 10-30 μm in diameter for even dispersion of the aqueous solution phase and the best adsorption amount as well as easy recovery of the adsorbent. Particles in the range are selected.

분쇄된 이온교한 수지 (직경 10-30㎛ 크기의 입자)를 열가공하여 흡착제를 제조하는 방법에는 수지의 종류에 따라 다양한 열가공 방법을 적용할 수 있으나 본 발명에서 제시되는 수용액 상에서의 유기인 화합물 제거용 흡착제의 최대 흡착능 부여를 위해서는 필히 저온(400℃) 또는 고온(750℃) 가공법 중의 한가지를 선정하여야 한다. 본 발명에서는 수용액 상의 유기인 화합물 제거용 흡착제 제조를 위한 최적 열가공온도는 750℃이다.In the method of preparing the adsorbent by thermally processing the pulverized ion-crosslinked resin (particles having a diameter of 10-30 μm), various thermal processing methods may be applied according to the type of resin, but the organic phosphorus in the aqueous solution proposed in the present invention. In order to provide the maximum adsorption capacity of the adsorbent for removing compounds, one of low temperature (400 ℃) or high temperature (750 ℃) processing method should be selected. In the present invention, the optimum thermal processing temperature for preparing the adsorbent for removing the organic phosphorus compound in the aqueous solution is 750 ° C.

상술한 2가지 온도 조건 하에서의 열가공 시간은 10분 내지 2시간의 범위에서 각각 다양하게 적용할 수 있으나, 본 발명에서 제시되는 용도의 흡착제 제조에는 2가지 조건 모두 온도상승률과 온도하강율에는 큰 영향을 받지 않는 것이 특징이다. 그러나 본 발명에서의 열가공 시간에 대해서는 두 경우 모두 최고 온도에 도달할 경우(400℃, 750℃) 1시간 유지가 요구되며 그 이하나 이상에서 유지될 경우에는 본 발명에서와 같은 수용액상에서의 유기인 화합물의 제거능이 크게 떨어져 사용이 거의 불가능함이 특징이다.The thermal processing time under the two temperature conditions described above can be applied in various ways in the range of 10 minutes to 2 hours, respectively, but in the preparation of the adsorbent for the use proposed in the present invention, both conditions have a great effect on the temperature rise rate and the temperature drop rate. It is characterized by not receiving. However, the thermal processing time in the present invention requires a one-hour hold when the maximum temperature is reached (400 ° C., 750 ° C.) in both cases. It is characterized by the large removal ability of the phosphorus compound, making it almost impossible to use.

흡착제의 제조시 사용되는 불활성 가스로는 헬륨, 아르곤, 질소등을 들 수 있으나 본 발명에서는 질소가스를 포화상태로 주입하는 방법을 선택하였다.Inert gas used in the preparation of the adsorbent may be helium, argon, nitrogen, etc. In the present invention, a method of injecting nitrogen gas in a saturated state was selected.

일반적으로 다공성 폴리머의 열가공에 의한 흡착제의 기공 크기 분포는 가공조건 즉 온도에 따라 크게 좌우되며 흡착대상 물질에 따라서 다소의 차이는 있으나 현재까지 알려진 대부분의 경우 기공 크기 분포의 범위가 4-50Å 및 50-100Å의 전역에 걸쳐 있거나 또는 두 영역에 주로 존재하는 것들이 알려지고 있다. 그러나 본 발명에서와 같이 수용액 상에서 유기인 화합물 제거용 흡착제 제조에 있어서는 제조된 흡착제의 기공크기 분포가 극히 협소한 2.5-10Å의 소형기공이 약 90%에 해당하는 것이 그 특징이다. 그리고 흡착제의 비표면적에 있어서는 대부분의 흡착제의 경우 비표면적이 클수록 흡착능이 좋은 것으로 나타나나 본 발명에서와 같은 수용액상에서 유기인 화합물을 효율적으로 제거할 수 있는 흡착제의 비표면적은 500-700㎡/g으로서 이 범위를 넘어설 경우 유기인 화합물 흡착능의 급격한 저하 및 수용액 상에서 흡착 후 심한 탈착 현상을 초래하여 본 발명에서 목적하는 용도에는 사용이 거의 불가능해진다.In general, the pore size distribution of the adsorbent by the thermal processing of the porous polymer is highly dependent on the processing conditions, that is, the temperature, and there are some differences depending on the material to be adsorbed, but in most cases, the pore size distribution ranges from 4-50Å and It is known to exist throughout the range of 50-100 microns or predominantly in both regions. However, in the preparation of the adsorbent for removing an organic phosphorus compound in an aqueous solution as in the present invention, the small pore size of 2.5-10 mm having an extremely narrow pore size distribution of the prepared adsorbent corresponds to about 90%. In terms of the specific surface area of the adsorbent, the larger the specific surface area of the adsorbent, the better the adsorption capacity, but the specific surface area of the adsorbent capable of efficiently removing the organic compound in the aqueous solution as in the present invention is 500-700㎡ / g As a result of exceeding this range, the organic phosphorus compound adsorption capacity is drastically lowered and severe desorption phenomenon after adsorption in an aqueous solution is almost impossible to use for the intended use of the present invention.

이상 설명한 바와 같이 본 발명에서 제시되는 다공성 폴리머 분말입자(10-30㎛)의 특수 열가공 조건 적용에 의해 제조된 흡착제는 기존의 활성탄과 유사한 흡착제에 비해 수용액상 및 증기상/액상의 육인 화합물의 제거에 매우 효과적이며, 수분에 의한 흡착량 저하율이 적고 탈착량이 낮으며 회수 후 재사용이 가능하다는 등 다양한 장점을 갖고 있다. 이하 본 발명에서의 다공성 폴리머의 열가공 시험 및 제조된 흡착제들의 특성을 다음 실시에에 상세히 설명하였으나 본 발명이 이들 실시예로 한정되는 것은 아니다.As described above, the adsorbent prepared by applying the special thermal processing conditions of the porous polymer powder particles (10-30 μm) presented in the present invention is a solution of the organic phase in the aqueous phase and the vapor phase / liquid phase compared to the conventional adsorbent similar to the activated carbon. It is very effective for removal, and has a variety of advantages such as low rate of adsorption decrease by moisture, low desorption amount and reuse after recovery. Hereinafter, the thermal processing test of the porous polymer in the present invention and the properties of the prepared adsorbents are described in detail in the following examples, but the present invention is not limited to these examples.

[실시예 1] 흡착제의 제조 및 특성분석.Example 1 Preparation and Characterization of Adsorbents.

원료물질로서 상용 이온교환수지인 Amverlyst XN-1010 또는 Amberlite 200 (Sigma Chemical Company, St. Sousi, USA) 20g을 사용하여 이를 수세한 후 충분히 건조시킨 다음 블렌더로 분쇄하였다. 분쇄된 원료 분말을 다시 60℃, 2일간 건조한 후 표준체를 이용하여 10-30㎛ 직경의 분말을 선별하였다. 분체된 원료분말 10g을 적정용기에 넣고 질소가스로 과포화된 고온 화로(furnace)에 넣어 200℃까지 온도를 상승시킨 후 30분간 유지시켰다. 이후 화로의 온도를 최고 열가공 온도까지 상승시킨 후 정확히 1 시간을 유지하며 질소가스로 실온에서 충분히 식힌 다음(약 2시간) 제조된 흡착제를 밀폐용기에 모았다.As a raw material, 20 g of a commercial ion exchange resin, Amverlyst XN-1010 or Amberlite 200 (Sigma Chemical Company, St. Sousi, USA), was washed with water, sufficiently dried and ground in a blender. The ground raw powder was dried again at 60 ° C. for 2 days, and then powders of 10-30 μm diameter were selected using a standard body. 10 g of the powdered raw material powder was placed in a suitable container and placed in a high temperature furnace (furnace) supersaturated with nitrogen gas, and the temperature was raised to 200 ° C. and maintained for 30 minutes. After raising the temperature of the furnace to the maximum heat processing temperature and maintained for exactly 1 hour and cooled sufficiently at room temperature with nitrogen gas (about 2 hours), the prepared adsorbent was collected in a sealed container.

이와 같이 제조된 흡착제들의 물리적 특성은 표 1 에서 보는 바와 같으며 기공 크기 분포, 비표면적, 및 총 흡착면적의 측정은 질소가스와 함께 Sorptomatic 1900(Carlo-erba, 1900)으로 분석하였다.The physical properties of the adsorbents thus prepared are shown in Table 1, and the pore size distribution, specific surface area, and total adsorption area were measured by Sorptomatic 1900 (Carlo-erba, 1900) with nitrogen gas.

표 1에 나타난 바와 같이 본 발명에서 제시된 흡착제는 일반적인 활성탄과 비교할 때 기공 크기 분포는 물론 비표면적에 있어서도 큰 차이를 나타냄을 알 수 있다. 특히 기공크기 분포에 있어서 본 발명에서의 흡착제는 모두 소형(2-10Å)이 대부분을 차지하는 특징을 보였으며 이는 본 발명에서 제시되는 열가공법을 적용한 결과이다.As shown in Table 1, it can be seen that the adsorbents presented in the present invention show a large difference in pore size distribution as well as specific surface area when compared with general activated carbon. In particular, in the pore size distribution, all of the adsorbents in the present invention were characterized by small size (2-10 kPa), which is a result of applying the thermal processing method proposed in the present invention.

[실시예 2] 열가공 흡착제의 수용액상 유기인 화합물 제거능 시험.[Example 2] A test for removing an organophosphorus compound in an aqueous solution of a thermally processed adsorbent.

일반적으로 알려진 유기인 화합물로는 디이소플로필 포스포플루오리데이트(DFP), 에틸 N-디메틸포스포라미도시아니데이트(Tabun), 디에틸4-니트로페닐 포스페이트(Paraoxon), 디에틸 S-(1,2-디카르베톡시에틸) 포스포로디티오에이트(Malathion)등을 포함한 수십종 이상이 알려지고 있으나 본 발명에서는 DFP와 DMMP(디메틸메틸포스포네이트)를 대표적으로 선정하여 제조된 흡착제들의 흡착능 시험에 사용하였다. 수용액상 흡착제의 DFP흡착능 시험방법은 다음과 같다.Commonly known organophosphorus compounds include diisoflophyll phosphofluoride (DFP), ethyl N-dimethylphosphoramidocyanidate (Tabun), diethyl4-nitrophenyl phosphate (Paraoxon), diethyl S- Dozens or more of them are known, including (1,2-dicarbutyloxyethyl) phosphorodithioate (Malathion), but in the present invention, DFP and DMMP (dimethylmethylphosphonate) are representatively selected. Used for adsorption capacity test. DFP adsorption capacity test method of the aqueous phase adsorbent is as follows.

DFP를 핵산에 녹인 후 가스 크로마토그래피법으로 표준검정선을 구하였다. Varian사의 가스 크로마토그래피(Model 3700)를 사용하였으며 컬럼은 3% OV-17로서 컬럼 온도는 156℃, 주입온도 220℃, 이온 검색기 온도 240℃로 조정하였고, 이동상으로는 헬륨가스를 사용하였다.After dissolving the DFP in the nucleic acid, the standard calibration curve was determined by gas chromatography. Varian gas chromatography (Model 3700) was used, and the column was 3% OV-17. The column temperature was adjusted to 156 ° C, injection temperature 220 ° C, ion detector temperature 240 ° C, and helium gas was used as the mobile phase.

본 발명에 따른 열가공 흡착제의 DFP 흡착능을 분석할 때에는 10 몰 농도 DFP 수용액 10ml에 흡착제 분말을 각각 5mg 씩 첨가 하여 실온에서 2분간 진탕하였다. 흡착이 종료된 용액은 유리섬유 필터로 여과한 후, 여과액 3ml에 과포화농도의 NaCl과 5ml핵산을 첨가 추출하여, 핵산층의 DFP농도를 분석하였으며 그 결과는 표 2에서 보는 바와 같다.When analyzing the DFP adsorption capacity of the thermal processing adsorbent according to the present invention 10 5 mg of adsorbent powder was added to 10 ml of a molar concentration of DFP aqueous solution, and the mixture was shaken at room temperature for 2 minutes. After the adsorption was completed, the solution was filtered through a glass fiber filter, and extracted with 3 ml of filtrate, NaCl and 5 ml of nucleic acid were added to the supersaturated concentration, and the DFP concentration of the nucleic acid layer was analyzed. The results are shown in Table 2.

DMMP의 경우도 DFP 실험과 유사하게 DMMP를 디클로로메탄에 용해시킨 후 가스 크로마토그래피를 이용하여 DMMP농도에 따른 표준검정선을 구하였다. 열가공된 흡착제들의 DMMP 흡착능 분석시에는 2×10-4몰 농도의 DMMP 수용액 10ml에 각종 흡착제 5mg을 첨가하여 실온에서 2분간 진탕한 후 유리섬유 필터로 여과하였다. 여과액 5ml에 디클로로메탄 5ml와 과포화농도의 NaCl을 첨가하여 잔존 DMMP를 추출, 정량하였다. 이때 가스 크로마토그래피 및 그 분석조건은 앞 실험에서와 동일하게 적용하였다. 단 DMMP분석시에는 컬럼 온도를 168℃로 조정하였으며 그 결과는 표 3 에서 보는 바와 같다.In the case of DMMP, DMMP was dissolved in dichloromethane similarly to the DFP experiment, and the standard calibration curve according to DMMP concentration was obtained by gas chromatography. In analyzing the DMMP adsorption capacity of the heat-treated adsorbents, 5 mg of various adsorbents were added to 10 ml of a 2 × 10 -4 molar concentration of DMMP aqueous solution, followed by shaking at room temperature for 2 minutes, followed by filtration through a glass fiber filter. The remaining DMMP was extracted and quantified by adding 5 ml of dichloromethane and NaCl of supersaturated concentration to 5 ml of the filtrate. At this time, gas chromatography and the analysis conditions were applied in the same manner as in the previous experiment. However, in the DMMP analysis, the column temperature was adjusted to 168 ° C. and the results are shown in Table 3.

[실시예 3] 열가공 흡착제의 증기상 유기인 화합물의 흡착량 분석Example 3 Analysis of Adsorption Amount of Vapor-Organic Phosphorus Compound of Thermal Processing Adsorbent

본 발명에서 제조된 열가공 흡착제들의 증기상 유기인 화합물에 대한 흡착능을 분석하였다. 시험대상 유기인 화합물은 실시예 2 에서 선정 사용된 DFP 및 DMMP로 하였으며 시험방법은 다음과 같다.The adsorption capacity for the vapor phase organophosphorus compounds of the thermally processed adsorbents prepared in the present invention was analyzed. The organophosphorus compound to be tested was used as DFP and DMMP selected in Example 2. The test method was as follows.

열가공 흡착제 50mg이 함유된 천칭접시를 1ml DFP 가 들어있는 소형(200ml)진공 데시케이터에 넣고 감압 후 25℃에서 24시간 유지시켰다. 24시간 후 흡착제의 무게 증가량을 측정하여 열가공 흡착제들의 증기상 DFP 흡착능을 비교하였다. DMMP에 대한 증기상 흡착능 시험도 DFP와 동일하게 실시되었으며 시험결과는 표 4에서 보는 바와 같다.The balance plate containing 50 mg of the heat absorbent was placed in a small (200 ml) vacuum desiccator containing 1 ml DFP and maintained at 25 ° C. for 24 hours after depressurization. After 24 hours, the weight increase of the adsorbent was measured to compare the vapor phase DFP adsorption capacity of the thermally processed adsorbents. Vapor phase adsorption capacity test for DMMP was performed in the same manner as DFP, and the test results are shown in Table 4.

[실시예 4] 열가공 흡착제의 액상 유기인 화합물의 흡착량 분석Example 4 Analysis of Adsorption Amounts of Liquid Organic Phosphorus Compounds in a Heat Treated Adsorbent

유기인 화합물이 흡착능에 있어서 증기상과 액상은 흡착 메카니즘상 차이가 있을 수 있으므로 액상의 유기인 화합물이 흡착능을 별도로 평가하였다. 평가 방법은 일정량의 흡착제에 액상의 충분한 양의 유기인 화합물(DMMP 원액)을 가하고 충분히 흡착 시킨 후 흡착되지 않고 남아 있는 DMMP를 여과장치가 부착된 원심분리 튜브에서 약 10,000 × g로 원심분리하여 완전히 제거하고 남아 있는 흡착제의 무게 증가분을 측정하여 실시하였으며 그 결과는 제 1 도에서 보는 바와 같다.Since the organophosphorus compound may have a difference in adsorption mechanism in the vapor phase and the liquid phase, the organophosphorus compound in the liquid phase was evaluated separately. The evaluation method is to add a sufficient amount of organophosphorus compound (DMMP stock solution) in a liquid to a predetermined amount of adsorbent, and after sufficiently adsorbing, centrifuge the remaining DMMP without adsorption at about 10,000 × g in a centrifuge tube equipped with a filtration device. The weight increase of the adsorbent removed and measured was measured and the result is as shown in FIG.

또한 수분 존재 하에서 흡착능이 저하되는 것이 일반적인 흡착제의 특성이므로 수분에 의한 영향을 함께 조사하였다. 실시방법은 흡착제를 30℃, 80% 상대 습도 조건에서 48시간 저장하여 수분을 흡착시키고 저장 전후의 시료 DMMP흡착량을 앞에서와 동일하게 시험하였으며 그 결과는 제 2 도에서 보는 바와 같다.In addition, since the adsorption capacity was decreased in the presence of water, the effects of water were investigated together with the characteristics of general adsorbents. In the method, the adsorbent was stored at 30 ° C. and 80% relative humidity for 48 hours to adsorb moisture, and the sample DMMP adsorption amount before and after storage was tested in the same manner as before.

Claims (5)

다공성 폴리머를 직경 10 -30㎛ 크기로 분쇄한 후 불활성 가스 분위기 하, 400℃ 또는 750℃의 온도에서 10분 내지 2시간 동안 열가공하는 것으로 되는 유기인 화합물 제거용 흡착제의 제조방법.A method for producing an organophosphorus compound removal adsorbent, wherein the porous polymer is pulverized to a diameter of 10-30 μm and then thermally processed at an inert gas atmosphere at a temperature of 400 ° C. or 750 ° C. for 10 minutes to 2 hours. 제 1 항에 있어서, 다공성 폴리머가 이온교환수지인 것이 특징인 유기인 화합물 제거용 흡착제의 제조방법.The method for producing an adsorbent for removing an organic compound according to claim 1, wherein the porous polymer is an ion exchange resin. 제 1 항 또는 2 항에 있어서, 열가공 온도가 750℃이고, 열가공 시간은 1시간인 유기인 화합물 제거용 흡착제의 제조방법.The method for producing an adsorbent for removing compounds according to claim 1 or 2, wherein the thermal processing temperature is 750 ° C. and the thermal processing time is 1 hour. 제 1 항 또는 2 항에 있어서, 불활성 가스가 헬륨, 아르곤 및 질소 중에서 선택되는 유기인 화합물 제거용 흡착제의 제조방법.The method for producing an adsorbent for removing compounds according to claim 1 or 2, wherein the inert gas is organic selected from helium, argon and nitrogen. 직경 2.5-10Å의 기공이 약 90%에 달하고, 비표면적이 500 - 700 ㎡/g 인 제 1 항 또는 2 항의 방법에 따라 제조되는 유기인 화합물 제거용 흡착제.An adsorbent for removing an organic phosphorus compound prepared according to the method according to claim 1 or 2, wherein the pore diameter of 2.5-10 mm is about 90% and the specific surface area is 500 to 700 m 2 / g.
KR1019950029200A 1995-09-06 1995-09-06 Absorbent for removing organo phosphorous compounds and the preparing method thereof KR0147202B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950029200A KR0147202B1 (en) 1995-09-06 1995-09-06 Absorbent for removing organo phosphorous compounds and the preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950029200A KR0147202B1 (en) 1995-09-06 1995-09-06 Absorbent for removing organo phosphorous compounds and the preparing method thereof

Publications (2)

Publication Number Publication Date
KR970014829A KR970014829A (en) 1997-04-28
KR0147202B1 true KR0147202B1 (en) 1998-08-17

Family

ID=19426267

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950029200A KR0147202B1 (en) 1995-09-06 1995-09-06 Absorbent for removing organo phosphorous compounds and the preparing method thereof

Country Status (1)

Country Link
KR (1) KR0147202B1 (en)

Also Published As

Publication number Publication date
KR970014829A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
US5162286A (en) Method of producing granular activated carbon
Streat et al. Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
EP2960207A1 (en) Granular activated carbon, and manufacturing method for same
US20040089608A1 (en) Adsorbents for removing heavy metals and methods for producing and using the same
EP0481218B1 (en) A process for making modified carbon molecular sieve adsorbents
EP2960206A1 (en) Granular activated carbon having many mesopores, and manufacturing method for same
BRPI0807184A2 (en) METHODS AND APPARATUS FOR SELECTIVE REMOVAL OF WATER EXTRACTS FROM TOXIC TOBACCO.
US4458022A (en) Process for manufacturing molecular sieving carbon
US5880061A (en) Active carbon and method for its production
US20200368724A1 (en) Superior carbon adsorbents
CN1008507B (en) Process for decaffeination of tea
CA2114358C (en) Method for stripping contaminants from wastewater
US5238888A (en) Carbon molecular sieve
Nandi et al. Adsorption of dyes from aqueous solution by coals, chars, and active carbons
US5290342A (en) Silane compositions and process
KR0147202B1 (en) Absorbent for removing organo phosphorous compounds and the preparing method thereof
Rodriguez-Reinoso Preparation and characterization of activated carbons
JP2950666B2 (en) Activated carbon water purifier
CN111247097B (en) Activated carbon and preparation method thereof
JP2902032B2 (en) Spherical porous carbon particles and method for producing the same
Benaddi et al. Adsorption and desorption studies of phenolic compounds on hydroxyapatite-sodium alginate composite
EP0831058B1 (en) Shaped lignocellulosic-based activated carbon
RU2224714C2 (en) Method of preparing fulleren c60
Sousan et al. Fabrication of activated carbon from pomegranate husk by dual consecutive chemical activation for 4-chlorophenol adsorption

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20150504

Year of fee payment: 18

EXPY Expiration of term