KR0135037B1 - Method of flip chip bonding using si v-groove and method of packaging thereof - Google Patents
Method of flip chip bonding using si v-groove and method of packaging thereofInfo
- Publication number
- KR0135037B1 KR0135037B1 KR1019940019495A KR19940019495A KR0135037B1 KR 0135037 B1 KR0135037 B1 KR 0135037B1 KR 1019940019495 A KR1019940019495 A KR 1019940019495A KR 19940019495 A KR19940019495 A KR 19940019495A KR 0135037 B1 KR0135037 B1 KR 0135037B1
- Authority
- KR
- South Korea
- Prior art keywords
- groove
- substrate
- chip
- forming
- flip
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 14
- 229910000679 solder Inorganic materials 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000013307 optical fiber Substances 0.000 claims abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 16
- 239000010703 silicon Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 7
- 239000004593 Epoxy Substances 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract 3
- 238000003825 pressing Methods 0.000 claims abstract 2
- 238000004891 communication Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 238000012536 packaging technology Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
- H01L31/02366—Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/047—PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 광의 생성, 검출, 변조 및 분배기능을 수행하는 각종의 광소자의 플립-칩(flip-chip bonding) 방법과 이 방법에 의해 플립-칩 본딩된 광소자와 광섬유를 패키징하는 방법에 관한 것으로서, 특히 실리콘 V-홈(groove)을 이용하여 기판과 칩 사이의 간격을 최소화시킬 수 있는 플립-칩 본딩방법 및 그를 사용한 패키징방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip bonding method of various optical devices for generating, detecting, modulating, and distributing light, and to packaging optical devices and optical fibers flip-chip bonded by the method. In particular, the present invention relates to a flip-chip bonding method capable of minimizing a gap between a substrate and a chip by using a silicon V-groove, and a packaging method using the same.
본 발명은 실리콘기판내에 소정의 V-홈(groove)을 형성하는 단계와, 상기 기판의 V-홈 내부에 솔더범프용 금속패드를 형성하는 단계와, 상기 금속 패드상부에 솔더 범프를 형성하는 단계와, 절연막, 금속패드 및 광소자 등을 구비한 소정 칩을 뒤집어서 상기 기판과 정렬시킨 후, 상기 솔더범프를 용융점 이상의 온도로 가열하여 리플로우(reflow)시킨 상태에서 칩에 압력을 가하여 상기 기판과 칩을 밀착, 고정시키는 단계와, 상기 기판위에 광섬유가 고정될 별도의 V-홈을 형성한 후, 광섬유를 상기 별도의 V-홈에 정렬시키고, 에폭시를 이용하여 고정시키는 단계를 포함한다.The present invention provides a method of forming a predetermined V-groove in a silicon substrate, forming a metal pad for solder bumps in the V-groove of the substrate, and forming solder bumps on the metal pad. And inverting a predetermined chip including an insulating film, a metal pad, and an optical device with the substrate, and applying pressure to the chip while heating the solder bump to a temperature above the melting point and reflowing. Bonding and fixing the chip; and forming a separate V-groove to which the optical fiber is to be fixed on the substrate, and then aligning the optical fiber to the separate V-groove and fixing it with an epoxy.
Description
제1도는 종래의 방법에 의해 플립-칩 본딩된 광통신 소자의 개략적인 단면도.1 is a schematic cross-sectional view of an optical communication device flip-chip bonded by a conventional method.
제2도는 본 발명의 플립-칩 본딩방법을 도시한 공정단면도.2 is a process cross-sectional view showing a flip-chip bonding method of the present invention.
제3도는 본 발명의 패키징방법에 의해 패키징된 광통신 소자의 개략적인 단면도.3 is a schematic cross-sectional view of an optical communication device packaged by the packaging method of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
10 : 실리콘기판 12,22 : 절연막10 silicon substrate 12,22 insulating film
14 : V-홈(groove) 16,26 : 금속패드14: V-groove 16, 26: metal pad
18 : 솔더범프 20 : 광소자 칩18 solder bump 20 optical element chip
25 : 광도 파로 30 : 광섬유25: light waveguide 30: optical fiber
31 : 광섬유 코아31: fiber core
[기술분야][Technical Field]
본 발명은 광의 생성, 검출, 변조 및 분배기능을 수행하는 각종의 광소자의 플립-칩 본딩(flip-chip bonding) 방법과 이 방법에 의해 플립-칩 본딩된 광소자와 광섬유를 패키징하는 방법에 관한 것으로서, 특히 실리콘 V-홈(groove)을 이용하여 기판과 칩 사이의 간격을 최소화시킬 수 있는 플립-칩 본딩방법 및 그를 사용한 패키징방법에 관한 것이다.The present invention relates to a flip-chip bonding method of various optical elements for generating, detecting, modulating, and distributing light, and to packaging optical elements and optical fibers flip-chip bonded by the method. In particular, the present invention relates to a flip-chip bonding method capable of minimizing a gap between a substrate and a chip by using a silicon V-groove and a packaging method using the same.
[발명의 배경][Background of invention]
각종의 광소자에 외부 광통신 시스템과의 접속을 위해 광섬유를 패키징하는 기술은 모든 통신용 광소자를 제품화하는데 필수적인 기술이다.The technology of packaging optical fibers in various optical devices for connection with an external optical communication system is an essential technology for commercializing all communication optical devices.
이 패키징 기술은 광통신용 모듈의 가격설정에 결정적인 영향을 끼치게 된다.This packaging technology has a decisive influence on the pricing of optical communication modules.
최근에는 이와같은 패키징기술의 높은 제조원가와 낮은 수율(yield) 등의 문제를 해결하기 위해, Si 기판을 이용하여 칩을 자동정렬고정시키는 패키징 기술이 연구되고 있다.Recently, in order to solve problems such as high manufacturing cost and low yield of such packaging technology, a packaging technology for automatically sorting chips using a Si substrate has been studied.
이러한 Si 기판을 이용한 패키징 기술은 반도체 공정을 이용하기 때문에 대량 생산에 적합하고 아울러 제조원가를 절하시킬 수 있을 뿐만아니라 Si 기판 자체에 유리 광도파로 등을 형성시켜 다양한 기능을 갖는 광모듈을 제조할 수 있는 장점이 있다.Since the packaging technology using the Si substrate uses a semiconductor process, it is suitable for mass production and can reduce manufacturing costs, and can also manufacture optical modules having various functions by forming glass optical waveguides on the Si substrate itself. There is an advantage.
또한, 반도체레이저 및 광스위치 등과 같은 광소자와 광섬유를 패키징시, 고려되어야 할 점은 접속손실을 최소화하기 위하여 X, Y, Z 세 방향에서의 정렬 정밀도가 약 1㎛이하가 되어야 한다.In addition, when packaging optical devices such as semiconductor lasers and optical switches and optical fibers, consideration should be given that alignment precision in three directions of X, Y, and Z should be about 1 μm or less in order to minimize connection loss.
이러한 요구사항을 만족시키기 위하여 현재는 레이저로 국부조사하여 웰딩시키는 레이저웰딩(laser welding) 방법이 사용되어 지고 있으나, 제조공정이 복잡하고 단가가 비싸 널리 이용되지 못하고 있는 실정이다.In order to satisfy these requirements, a laser welding method of locally irradiating and welding with a laser has been used, but the manufacturing process is complicated and the unit price is not widely used.
이에 반하여, 최근에 관심이 집중되고 잇는 플립-칩 본딩방법은 제작공정이 비교적 간단하고 단가가 저렴하면서 정밀도를 유지할 수 있는 방법으로 제시되어지고 있다.On the contrary, the flip-chip bonding method, which has recently been attracting attention, has been proposed as a method for maintaining the precision while maintaining a relatively simple manufacturing process and low cost.
종래 실리콘기판을 이용한 플립-칩 본딩방법은 제1도에 도시된 바와 같이, 실리콘기판(1)과 광소자 칩(2)의 본딩영역에 본딩용 솔더가 흡착가능한 금속패드(3)를 증착하고, 상기 금속패드(3)가 증착된 실리콘기판(1) 위에 일정 두께 이상의 솔더범프(4)를 증착한 후에 상기 칩(2)을 뒤집어서 양쪽 패트(3)가 겹쳐지도록 정렬시킨다.In a flip-chip bonding method using a conventional silicon substrate, as shown in FIG. 1, a metal pad 3 capable of absorbing bonding solder is deposited on a bonding region of a silicon substrate 1 and an optical device chip 2, After depositing the solder bumps 4 having a predetermined thickness or more on the silicon substrate 1 on which the metal pads 3 are deposited, the chips 2 are turned upside down so that the two pads 3 are aligned.
이어, 솔더범프(4)를 용융점 이상의 온도로 가열시켜 리플로우(reflow)시키면 용융된 솔더범프(4)의 표면장력에 의해 자기 정렬된다.Subsequently, when the solder bumps 4 are heated to a temperature above the melting point and reflowed, the solder bumps 4 are self-aligned by the surface tension of the molten solder bumps 4.
즉, 상기 솔더범프(4)가 형성되어 있는 평면방향으로는 용융된 솔더범프(4)의 표면장력에 의해 약 1㎛ 이내의 정밀도로 자기정렬(self-aligning) 되어져 광소자와 광섬유의 정렬 허용오차 수준과 비슷하여 충분한 용융이 가능하다.That is, in the planar direction in which the solder bumps 4 are formed, they are self-aligned with precision within about 1 μm by the surface tension of the molten solder bumps 4 to allow alignment between the optical device and the optical fiber. Similar to the error level, sufficient melting is possible.
그러나, 상술한 플립-칩 본딩방법은 기판(1)과 칩(2) 사이의 횡축에 대한 정렬은 1㎛ 이하가 가능한 반면, 종방향에 대한 기판(1)과 칩(2) 사이의 간격에 대한 정렬은 솔더가 굳은 후에 솔더범프(4)의 높이를 정확하게 조절하는 것이 어렵기 때문에 상기 허용오차 수준 이하로 낮추기가 어려운 문제점이 있었다.However, in the above-described flip-chip bonding method, the alignment with respect to the horizontal axis between the substrate 1 and the chip 2 may be 1 μm or less, while the gap between the substrate 1 and the chip 2 in the longitudinal direction may be different. The alignment is difficult because it is difficult to accurately adjust the height of the solder bumps 4 after the solder is hardened.
[발명의 목적][Purpose of invention]
본 발명은 상기 문제점을 해소하기 위해 안출된 것으로서, 그 목적은 Si V-홈(groove)을 이용하여 종방향 및 횡방향에서 1㎛ 이하의 정밀도를 유지하면서 기판과 칩 사이의 간격을 1㎛ 이하의 정밀도를 갖도록 밀착시켜 정렬 오차를 최소화한 플립-칩 본딩방법 및 그를 사용한 패키징방법을 제공하는 것이다.The present invention has been made to solve the above problems, the object is to use a Si V-groove (groove) to maintain the precision of 1㎛ or less in the longitudinal and transverse direction while maintaining a precision between the substrate and the chip 1㎛ or less The present invention provides a flip-chip bonding method and a packaging method using the same, in which the alignment error is minimized by close contact with precision.
[발명의 요약][Summary of invention]
상기 목적 달성을 위해, 본 발명의 Si V-홈을 이용한 플립-칩 본딩방법은 실리콘기판상의 소정패턴의 절연막을 마스크로 이용하여 기판내에 소정의 V-홈(groove)을 형성하는 단계와, 상기 기판의 V-홈 내부에 솔더범프용 금속패드를 형성하는 단계와, 상기 금속패드 상부에 솔더 범프를 형성하는 단계와, 절연막, 금속패드 및 광소자 등을 구비한 소정 칩을 뒤집어서 상기 기판과 정렬시킨 후, 상기 솔더범프를 용융점 이상의 온도로 가열하여 리플로우(reflow)시킨 상태에서 칩에 압력을 가하여 상기 기판과 칩을 밀착, 고정시키는 단계들로 이루어진 것을 특징으로 한다. 본 발명의 다른 특징은 상기 플립-칩 본딩방법을 사용하여 상기 기판위에 광섬유가 고정될 별도의 V-홈을 형성한 후, 상기 광섬유의 코아의 중심축과 상기 칩에 형성된 광소자의 수광 또는 발광부의 중심축이 자기정렬되도록 광섬유를 상기 V-홈에 정렬시키고, 에폭시를 이용하여 고정시키는 광통신 소자의 패키징방법을 제공한다.In order to achieve the above object, the flip-chip bonding method using the Si V-groove of the present invention comprises forming a predetermined V-groove in a substrate using an insulating film of a predetermined pattern on a silicon substrate as a mask, and Forming a metal pad for solder bumps in the V-groove of the substrate, forming a solder bump on the metal pad, and inverting a predetermined chip including an insulating film, a metal pad, and an optical device to align the substrate with the substrate. After the step, the solder bump is heated to a temperature above the melting point to reflow (pressure) in the state of applying a pressure to the chip, characterized in that consisting of the step of contacting and fixing the substrate and the chip. According to another aspect of the present invention, after forming a separate V-groove to which an optical fiber is fixed on the substrate by using the flip-chip bonding method, the central axis of the core of the optical fiber and the light receiving or emitting portion of the optical element formed on the chip A method of packaging an optical communication device in which an optical fiber is aligned with the V-groove so that a central axis is self-aligned and fixed using an epoxy is provided.
[실시예]EXAMPLE
이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 보다 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
제2(a)-(1)도는 본 발명의 Si V-홈을 이용한 플립-칩 본딩방법을 나타내는 공정단면도이다.2 (a)-(1) are process cross-sectional views showing a flip-chip bonding method using the Si V-groove of the present invention.
먼저, 제2(a)도에 의거하여, 실리콘기판(10) 위에 소정 두께의 절연막을 증착한 후, 통상의 사진식각 공정을 이용하여 상기 절연막을 오프닝(opening)하여 소정 패턴의 절연막(12)을 형성한다.First, an insulating film having a predetermined thickness is deposited on the silicon substrate 10 based on FIG. 2 (a), and then the insulating film 12 is opened by opening the insulating film using a conventional photolithography process. To form.
이 절연막(12) 물질은 특별히 한정되지 않으며, SiO2또는 SiNx가 바람직하다.The material of the insulating film 12 is not particularly limited, and SiO 2 or SiNx is preferable.
제2(b)도에 의거하여, 상기 소정패턴의 절연막(12)을 마스크로 이용하여 상기 Si 기판(10)을 소정깊이로 에칭한다.Based on FIG. 2 (b), the Si substrate 10 is etched to a predetermined depth using the insulating film 12 of the predetermined pattern as a mask.
이때, 상기 에칭 폭, 에칭 각도 및 에칭 깊이는 후속공정의 정렬 오차에 직접적인 영향을 주기 때문에 정밀한 에칭제어가 필요하다.At this time, since the etching width, the etching angle and the etching depth directly affect the alignment error of the subsequent process, precise etching control is required.
정밀한 V-홈(14) 형성을 위해 실리콘의 (111)면이 나타나도록 이방성(anisotropic)에칭을 사용한다. 바람직한 식각용액으로 KOH 용액을 사용한다.Anisotropic etching is used to reveal the (111) plane of silicon for precise V-groove 14 formation. KOH solution is used as a preferred etching solution.
제2(c)도에 의거, 상기 절연막(12)과 V-홈(14)을 포함하는 기판(10)의 전표면 위에 감광막(PR)을 도포한 후, 노광 및 현상 공정을 통하여 제 2(d) 도에 도시된 바와 같은 감광막패턴(6)을 형성한다.According to FIG. 2 (c), after the photoresist film PR is applied onto the entire surface of the substrate 10 including the insulating film 12 and the V-groove 14, the photoresist film PR is subjected to exposure and development processes. d) A photosensitive film pattern 6 is formed as shown in FIG.
제2(e)도에 의거하여, 소정 두께의 금속(7)을 증착한 후, 리프트-오프(lift-off) 공정을 이용하여 상기 V-홈(14) 이외의 감광막패턴(6)과 금속(7)을 제거하여 제 2(f) 도에 도시된 바와 같이, V-홈(14)내에 본딩용 솔더가 흡착 가능한 소정의 금속패드(16)를 형성한다.Based on FIG. 2 (e), after depositing the metal 7 having a predetermined thickness, the photoresist pattern 6 and the metal other than the V-groove 14 are subjected to a lift-off process. (7) is removed to form a predetermined metal pad 16 into which the bonding solder can be adsorbed in the V-groove 14 as shown in FIG.
다음은 솔더범프 형성을 위한 공정으로서, 제2(g)도에 도시한 바와 같이, 후막의 포토레지스트(PR)를 도포한 후, 노광 및 현상을 하여 제2(h)도에 도시한 바와 같이, 솔더 증착을 위한 패턴(8)을 정의한다.Next, as a process for forming solder bumps, as shown in FIG. 2 (g), the photoresist PR of the thick film is applied, followed by exposure and development, as shown in FIG. 2 (h). The pattern 8 for solder deposition is defined.
이어 기판 전면에 솔더금속(9)을 증착한 후(제2(i)도), 아세톤 용액중에서 상기 후막패턴(8)을 리프트-오프 공정으로 제거하여 금속패드(16) 상부에만 솔더범프(18)을 형성한다(제 2(j) 도).Subsequently, after the solder metal 9 is deposited on the entire surface of the substrate (FIG. 2 (i)), the thick film pattern 8 is removed by a lift-off process in an acetone solution, so that the solder bumps 18 are formed only on the metal pad 16. ) (Second (j) diagram).
상기 공정에서 고려되어야 할 중요한 사항은 상기 증착된 솔더범프(18)의 부피가 상기 V-홈(14)의 부피보다는 더 작아야 하며, 후속 공정을 통하여 리플로우(reflow)된 상태에서의 솔더범프(18)의 높이는 상기 V-홈(14)의 깊이보다 더 클 수 있도록 제어해야 한다는 조건이다.Important matters to be considered in the process is that the volume of the deposited solder bump 18 should be smaller than the volume of the V-groove 14, the solder bump in the reflow (reflow) state through a subsequent process ( The height of 18 is a condition to be controlled to be larger than the depth of the V-groove (14).
첫 번째 조건에 대한 이유는 후속의 리플로우 공정에서 솔더범프(18)가 녹았을 때 솔더의 일부가 실리콘 V-홈(14)을 넘쳐 흘러서 기판(10)과 칩 사이로 번지는 것을 방지하기 위함이고, 두 번째 조건에 대한 이유는 본딩시 상기 솔더범프(18)와 칩의 패드가 전면 접착을 이루어 자기정렬에 대한 평면방향 정렬을 용이하게 하고자 함이다.The reason for the first condition is to prevent part of the solder from overflowing the silicon V-groove 14 and spreading between the substrate 10 and the chip when the solder bumps 18 are melted in a subsequent reflow process. The reason for the second condition is that the solder bumps 18 and the pad of the chip are bonded to each other during bonding to facilitate the planar alignment with respect to self alignment.
또한, 상기 솔더범프(18) 형성을 위해 통상의 증착방법 대신에 전기도금법을 사용할 수도 있다.In addition, an electroplating method may be used instead of the conventional deposition method for forming the solder bumps 18.
상기 솔더범프(18)는 통상 기판(10) 또는 후술될 칩의 한쪽에 형성하지만, 필요에 따라 기판(10)과 칩의 양쪽 모두에 형성할 수도 있다.The solder bumps 18 are usually formed on one side of the substrate 10 or a chip to be described later, but may be formed on both the substrate 10 and the chip as necessary.
이어지는 공정은 상기 공정을 통하여 금속패드(16), 솔더범프(18) 및 절연막(2) 등을 구비한 실리콘기판(10)과 광통신용 칩(20)을 정렬시키는 공정이다. 이때, 상기 칩(20)에는 제2(k)도에 도시된 바와 같이, 소정의 절연막(22)과 금속패드(26) 또는 광도파로를 구비한 각종 광소자(도시안됨)들이 별도의 공정을 통해 형성되어 있다.The subsequent process is to align the silicon substrate 10 having the metal pad 16, the solder bumps 18, the insulating film 2, and the like and the optical communication chip 20 through the above process. In this case, as shown in FIG. 2 (k), various optical devices (not shown) having a predetermined insulating film 22, a metal pad 26, or an optical waveguide may have a separate process. Formed through.
상기 본딩하고자 하는 칩(20)을 뒤집어 칩(20) 상부의 금속패드(26)와 Si 기판(10)의 솔더범프(18)가 서로 근접하여 마주보게 정렬시킨다.The chip 20 to be bonded is turned upside down so that the metal pad 26 on the chip 20 and the solder bumps 18 of the Si substrate 10 are closely aligned to face each other.
이어, 상기 증착된 솔더의 조성균일화를 위하여 질소 또는 수소 분위기의 오븐에서 리플로우(reflow) 공정을 진행한다.Subsequently, a reflow process is performed in an oven of nitrogen or hydrogen atmosphere for uniform composition of the deposited solder.
이때, 솔더를 용융점 이상의 온도로 가열하면, 용융된 솔더의 표면장력으로 인하여 제2(k)도에 도시된 바와 같이, 리플로우된 솔더범프(18)의 끝이 칩(20)쪽의 금속패드(26)에 흡착된다.At this time, when the solder is heated to a temperature above the melting point, as shown in FIG. 2 (k) due to the surface tension of the molten solder, the end of the reflowed solder bumps 18 is the metal pad on the chip 20 side. Adsorbed to 26.
상기 공정을 통하여 솔더가 용융되어 수평방향의 정렬이 이루어진 상태에서, 제2(1)도에 도시한 바와 같이, 솔더가 칩(20)의 금속패드(26)에 전면 흡착될 수 있도록 칩(20)을 수직방향으로 소정의 압력을 가하여 기판(10)과 칩(20)을 밀착시킨 후, 솔더범프(18)를 냉각하여 고정시키면 본 발명의 Si V-홈을 이용한 플립-칩 본딩공정이 완료된다.In the state where the solder is melted through the above process and aligned in the horizontal direction, as shown in FIG. 2 (1), the chip 20 can be completely adsorbed onto the metal pad 26 of the chip 20. ) By applying a predetermined pressure in the vertical direction to close the substrate 10 and the chip 20, and cooling and fixing the solder bumps 18 to complete the flip-chip bonding process using the Si V-groove according to the present invention. do.
제3도는 본 발명에 의해 플립-칩 본딩된 광소자에 외부 통신시스템과 접속을 위하여 광섬유를 패키징하는 방법을 설명하기 위한 단면도를 도시한 것으로서, 상기 기판위에 광섬유가 고정될 별도의 V-홈을 형성시킨 후, 상기 V-홈 내에 광섬유(30)을 끼워 넣고 에폭시 등을 사용하여 고정시킨다.FIG. 3 is a cross-sectional view illustrating a method of packaging an optical fiber for connection with an external communication system to a flip-chip bonded optical device according to the present invention, and a separate V-groove for fixing the optical fiber on the substrate is shown. After forming, the optical fiber 30 is inserted into the V-groove and fixed using epoxy or the like.
이때, 상기 광섬유(30)의 코아(31)의 중심측과 상기 칩(20)에 형성된 수광 또는 발광부, 예를 들어 광도파로(25)의 중심축이 자기정렬될 수 있도록 상기 솔더범프(18)가 형성된 Si 기판(10)의 V-홈(14)과 상기 광섬유(30)가 고정될 V-홈의 깊이와 폭을 각각 조절함으로써 정렬 오차를 최소화 할 수 있다.At this time, the solder bump 18 so that the central side of the core 31 of the optical fiber 30 and the light receiving or light emitting portion formed in the chip 20, for example, the central axis of the optical waveguide 25 can be self-aligned. The alignment error can be minimized by adjusting the depth and width of the V-groove 14 of the Si substrate 10 and the V-groove to which the optical fiber 30 is fixed.
이상 설명한 바와 같이 본 발명의 Si V-홈을 이용한 플립-칩 본딩방법과 이를 사용한 패키징방법에 의하면, 범용성을 갖는 비교적 간단한 공정과 저렴한 단가로 X, Y, Z 축의 모든 방향에서 정렬 정밀도를 1㎛ 이하로 제어함으로써, 광통신 소자의 패키징시 접속 손실을 최소화할 수 있다.As described above, according to the flip-chip bonding method using the Si V-groove and the packaging method using the same according to the present invention, the alignment accuracy is 1 μm in all directions of the X, Y, and Z axes with a relatively simple process and low cost. By controlling below, the connection loss at the time of packaging an optical communication element can be minimized.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940019495A KR0135037B1 (en) | 1994-08-08 | 1994-08-08 | Method of flip chip bonding using si v-groove and method of packaging thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940019495A KR0135037B1 (en) | 1994-08-08 | 1994-08-08 | Method of flip chip bonding using si v-groove and method of packaging thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960009245A KR960009245A (en) | 1996-03-22 |
KR0135037B1 true KR0135037B1 (en) | 1998-04-20 |
Family
ID=19389968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940019495A KR0135037B1 (en) | 1994-08-08 | 1994-08-08 | Method of flip chip bonding using si v-groove and method of packaging thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0135037B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661955B1 (en) * | 1998-10-27 | 2006-12-28 | 소니 가부시끼 가이샤 | Light guide apparatus and method of manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10163211A (en) * | 1996-12-02 | 1998-06-19 | Fujitsu Ltd | Manufacture of bump forming plate member and bump formation |
KR100724880B1 (en) * | 2005-03-25 | 2007-06-04 | 삼성전자주식회사 | Optical module package and fabrication method thereof |
-
1994
- 1994-08-08 KR KR1019940019495A patent/KR0135037B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661955B1 (en) * | 1998-10-27 | 2006-12-28 | 소니 가부시끼 가이샤 | Light guide apparatus and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR960009245A (en) | 1996-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7303339B2 (en) | Optical beam transformer module for light coupling between a fiber array and a photonic chip and the method of making the same | |
JP3028791B2 (en) | How to mount chip components | |
JP2664214B2 (en) | Fiber array matching method. | |
US5412748A (en) | Optical semiconductor module | |
KR100442609B1 (en) | Structure of flip chip bonding and method for bonding | |
JP2813109B2 (en) | Automatic solder matching method | |
EP0462742B1 (en) | Photonics module and alignment method | |
JPH06120225A (en) | Manufacture of optical module | |
EP0718653B1 (en) | Selfaligned optical element and optical wave-guide by means of solder bumps on rectangular pads | |
JP4429564B2 (en) | Mounting structure and method of optical component and electric component | |
KR0135037B1 (en) | Method of flip chip bonding using si v-groove and method of packaging thereof | |
US20020028046A1 (en) | Self aligned optical component in line connection | |
JPH05114800A (en) | Electronic component mounting method and device | |
JPH095586A (en) | Optical device | |
US6459158B1 (en) | Vertically-tolerant alignment using slanted wall pedestal | |
KR100211039B1 (en) | Optical switch-optical fiber optical coupler | |
JP2534263B2 (en) | Optical element mounting method | |
KR0150020B1 (en) | Apparatus for alignment and fixing of optical fiber | |
JP2000056189A (en) | Optical coupling structure for optical module | |
KR0150238B1 (en) | The arrangement fixing method of optical fiber | |
JP2000323649A (en) | Hybrid integrated element and manufacture thereof | |
JP2000249876A (en) | Optical module, packaging substrate and optical waveguide element | |
KR0142524B1 (en) | Height Control and Thermal Characteristics Improvement Method of Flip Chip Bonded Optical Device | |
JP2002156561A (en) | Optical integrated module | |
KR0169838B1 (en) | Optical coupling device having self-aligned alignment marks and its fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20011228 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |