KR0133044B1 - Controlling method and apparatus for cold-cycle of airconditioner - Google Patents

Controlling method and apparatus for cold-cycle of airconditioner

Info

Publication number
KR0133044B1
KR0133044B1 KR1019930000936A KR930000936A KR0133044B1 KR 0133044 B1 KR0133044 B1 KR 0133044B1 KR 1019930000936 A KR1019930000936 A KR 1019930000936A KR 930000936 A KR930000936 A KR 930000936A KR 0133044 B1 KR0133044 B1 KR 0133044B1
Authority
KR
South Korea
Prior art keywords
compressor
refrigerant
solenoid valve
temperature
air conditioner
Prior art date
Application number
KR1019930000936A
Other languages
Korean (ko)
Other versions
KR940018623A (en
Inventor
김종엽
지덕익
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019930000936A priority Critical patent/KR0133044B1/en
Publication of KR940018623A publication Critical patent/KR940018623A/en
Application granted granted Critical
Publication of KR0133044B1 publication Critical patent/KR0133044B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 냉난방 겸용 공기조화기의 초기구동, 저온난방, 제상운전시, 압축기토출구측의 고온개스를 입구측으로 바이패스시켜 압축기입구측으로 유입되는 액냉매를 증발시켜 줌으로써 액냉매 유입 및 액냉매와 오일층 분리를 방지하게 되어 압축기의 운전능력을 향상시켜 줄수 있도록 한 공기조화기의 냉매사이클 제어장치 및 방법에 관한 것으로, 냉매사이클에 있어서, 압축기의 토출구측과 입구측과에 상기 압축기의 토출개스 일부를 바이패스시키는 전자밸브와, 상기 전자밸브에서 바이패스된 개스와 액냉매를 혼합하여 증발기에서 나오는 액냉매를 증발시켜 액냉매 유입 및 액냉매와의 오일의 층분리를 방지 시키는 유량감소장치를 장착하고, 난방, 냉방, 제상운전시 압축기입구측에 과열도를 소정의 값으로 유지시키기 위하여, 감압장치에 전자팽창변을 장착하여 압축기의 손상방지와, 운전능력이 향상되도록 한 것임.The present invention bypasses the high temperature gas of the compressor discharge port to the inlet side during the initial driving, the low temperature heating, and the defrosting operation of the air conditioner combined cooling / heating system to evaporate the liquid refrigerant flowing into the compressor inlet side, and the refrigerant flows into the liquid refrigerant and the oil. An apparatus and method for controlling a refrigerant cycle of an air conditioner which prevents separation of layers and improves the operating capability of the compressor. The refrigerant cycle includes a part of a discharge gas of the compressor at a discharge port side and an inlet side of the compressor. It is equipped with a solenoid valve for bypassing the gas, and a flow reducing device for mixing the gas bypassed by the solenoid valve and the liquid refrigerant to evaporate the liquid refrigerant from the evaporator to prevent liquid refrigerant inflow and separation of oil from the liquid refrigerant. In order to maintain the superheat at a predetermined value on the compressor inlet side during heating, cooling and defrosting operation, Mounting the expansion valve to the will to improve the damage prevention and the operation capacity of the compressor.

Description

공기조화기의 냉매사이클 제어장치 및 방법Refrigerant cycle control device and method of air conditioner

제1도는 일반적인 공기조화기의 냉매사이클.1 is a refrigerant cycle of a general air conditioner.

제2도는 본 발명 공기조화기의 냉매사이클.2 is a refrigerant cycle of the air conditioner of the present invention.

제3도는 본 발명에 이용되는 압력에 대한 엔탈피선도.3 is an enthalpy diagram of the pressure used in the present invention.

제4도는 본 발명에 이용되는 포화온도의 계산 도표.4 is a calculation chart of saturation temperature used in the present invention.

제5도는 본 발명 공기조화기의 요부 제어블럭도.5 is a main control block diagram of the air conditioner of the present invention.

제6도는 본 발명 공기조화기의 냉매사이클의 제어방법.6 is a control method of the refrigerant cycle of the air conditioner of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 압축기 2 : 사방변1: compressor 2: four sides

3 : 실외열교환기 4,6 : 감압장치3: outdoor heat exchanger 4,6: pressure reducing device

7 : 실내열교환기 8 : 어큐뮬레이터7: indoor heat exchanger 8: accumulator

9 : 전자밸브 10 : 유량감지장치9: solenoid valve 10: flow rate detection device

11, 나 : 흡입온도감지부 12, 다 : 흡입압력감지부11, b: suction temperature detector 12, c: suction pressure detector

13 : 전자팽창변 가 : 운전선택부13: electronic expansion variable: operation selection unit

라 : 마이콤 마 : 전자팽창변 구동부Ra: Micom Ma: Electronic expansion valve drive

바 : 전자밸브구동부Bar: Solenoid valve driving part

본 발명은 공기조화기의 냉매사이클 제어장치 및 방법에 관한 것으로, 특히 냉난방 겸용 공기조화기의 초기구동, 저온난방, 제상운전시, 압축기토출구측의 고온개스를 입구측으로 바이패스시켜 압축기입구측으로 유입되는 액냉매를 증발시켜줌으로써 액냉매 유입 및 액냉매와 오일층 분리를 방지하게 되어 압축기의 운전능력을 향상시켜 줄수 있도록 한 공기조화기의 냉매사이클 제어장치 및 방법에 관한 것이다. 일반적으로 공기조화기의 냉매사이클은 제1도에 도시한 바와같이, 난방운전시 압축기(1)에서 나온 고온고압의 냉매는 사방변(2)를 통해서 실내열교환기(7)로 유입되게 되면 상기 실내열교환기(7)에서는 실내로 열을 방출하고 응축이 되게 된다. 상기 실내열교환기(7)에서 응축된 냉매는 감압장치(6)(4)를 통해서 감압되어 실외열교환기(3)로 유입되고 이유입된 냉매는 열원인 외부공기에 의하여 증발이 되어 사방변(2)을 통해서 어큐뮬레이터(8)를 거쳐서 압축기(1)로 유입되는 재순환 과정으로 난방운전을 하게 되고, 냉방운전시에는 상기 과정을 역순환 하여 냉방을 하게 된다. 상기와같은 운전과정에서 난방운전시, 우리나라와 같이 대류성 기후인 경우 외기온도가 급강할때나, 제상운전, 초기운전시, 열원부족으로 인하여 ,냉매사이클을 순환하여 상기 압축기로 유입되는 액냉매와 오일층이 분리되는 현상이 발생되어 오일회수가 불능이 발생되므로 결국 압축기를 파손시키는 결과를 초래하게 되는가 하면, 또한 외기온도의 급강하에 따라 증발압력이 낮아져 결국 응축압력의 감소로 인하여 실내측에서 찬바람이 토출되는 난방이 제대로 이루어지지 않는 문제점을 가지게 되었다. 따라서, 본 발명의 목적은 공기조화기의 난방운전시, 외기온도의 급강하 또는 초기구동, 제상운전등을 할 때, 압축기의 흡입온도를 읽어 소정온도이하 인 경우 압축기의 토출구측의 고온개스를 압축기의 입구측으로 바이패스시켜 유입되는 액냉매를 증발시켜 줌으로써 액냉매와 오일층의 분리 방지는 물론, 압축기를 최대 회전으로 운전시켜 응축압력을 높여 난방능력을 향상시키도록 하는데 있으며, 상기의 목적을 실현하기 위하여, 본 발명은 냉매사이클에 있어서, 압축기의 토출구 측과 입구측과에 상기 압축기의 토출개스 일부를 바이패스시키는 전자밸브와, 상기 전자밸브에서 바이패스된 개스와 액냉매를 혼합하여 증발기에서 나오는 액냉매를 증발시켜 액냉매 유입 및 액냉매와의 오일의 층분리를 방지 시키는 유량감소장치를 장착하고, 난방, 냉방, 제상운전시 압축기입구측에 과열도를 소정의 값으로 유지시키기 위하여, 감압장치에 전자팽창변을 장착하여서 된 것이다. 또한 본 발명은 초기기동 인가를 판단하는 초기구동판단단계와, 상기 초기 기동판단단계에서 기동초기이면 전자밸브를 온 시키는 전자밸브온 단계와, 상기 초기 기동판단단계에서 기동초기가 아니면 압축기의 흡입온도와 압력을 감지 입력하는 압축기의 흡입온도와 압력 감지단계와, 과열도를 계산하는 과열도계산단계와, 상기 과열도계산단계에서 과열도와 소정의 값과의 대소를 판단하는 과열도 판단단계와, 상기 과연도판단단계에서 판단결과 전자팽창변을 열고 닫고하는 전자팽창변 개폐단계와, 상기 전자팽창변 개폐단계에서 흡입온도와 압축기 보호용온도와의 대소를 판단하는 압축기 보호용온도 판단단계와, 상기 압축기 보호용온도 판단단계에서 판단된 상태에 따라 전자 밸브를 온 오프하는 전자밸브온 오프단계로 이루어 지도록 한 것이다. 이하 첨부된 도면에 의거 본 발명을 상세히 설명하면 다음과 같다. 제2도는 본 발명에 적용되는 공기조화기의 냉매사이클로서, 난방운전시 압축기(1)에서 나온 고온고압의 냉매가 사방변(2)를 통해서 실내열교환기(7)로 유입되게 되면 상기 실내열교환기(7)에서는 실내로 열이 방출 및 응축이 되고, 상기 실내열교환기(7)에서 응축된 냉매는 감압장치(6)(4)를 통해서 감압되어 실외열교환기(3)로 유입되며 이유입된 냉매는 열원인 외부공기에 의하여 증발이 되어 사방변(2)을 통해서 어큐뮬레이터(8)를 거쳐서 압축기(1)로 유입되는 재순환 과정으로 난방운전을 하고, 냉방운전시에는 상기 과정을 역순환하여 냉방을 하도록 된 냉난방겸용공기조화기의 냉매사이클에 있어서, 압축기(1)의 토출구와 입구측에 상기 압축기(1)로부터 토출되는 고온개스 일부를 바이패스시키는 전자밸브(9)와, 상기 전자밸브(9)에서 바이패스된 고온개스를 액냉매와 혼합하여 실내열교환기(3)에서 나오는 액냉매를 증발시켜 액냉매 유입 및 액냉매와의 오일의 충분리를 방지 시키는 유량감소장치(10)를 장착하고, 난방, 냉방, 제상운전시 압축기(1) 입구측에 과열도를 소정의 값으로 유지시키기 위하여, 감압장치(4)(6)에 전자팽청변(13)을 장착하여서 된 것이다. 도면중 미설명부호 11은 압축기의 흡입온도를 감지하는 흡임온도감지부이고, 12는 압축기의 흡입압력을 감지하는 흡입압력감지부이다. 제3도는 본 발명에 적용되는 전자팽창변의 흡입압력(Ts)에서의 포화온도와 흡입온도(T2)를 표시한 압력에 대한 엔탈피 선도이고, 제4도는 본 발명에 이용되는 압축기의 흡입압력(P2)을 이용하여 포화온도(Ts)를 계산한 도표이다. 제5도는 본 발명에 적용되는 냉매사이클의 요부 제어블럭도로서, 냉방, 난방, 제상 운전등을 선택하는 운전선택부(가)와, 압축기의 흡입온도를 감지하는 흡입온도감지부(나)와, 압축기의 흡입압력을 감지하는 흡입압력감지부(다)와, 상기 운전선택, 흡입온도, 흡입압력 신호를 받아 소정의 프로그램에 의하여 연산 제어하는 마이콤(라)과, 상기 마이콤(라)에서 연산 제어신호에 따라 전자팽창변을 개폐 구동하는 전자팽창변 구동부(마)와, 전자밸브를 개폐구동하는 전자밸브구동부(바)로 구성 된다. 제6도는 본 발명에 적용되는 냉매사이클의 제어블럭도로서, 초기화 상태에서 초기기동인가를 판단하는 초기기동판단단계(60)와, 상기 초기기동판단단계(60)에서 기동초기이면 전자밸브를 온시키는 전자밸브온 단계(61)와, 상기 초기구동판단단계(60)에서 기동초기가 아니면 압축기의 흡입온도와 압력을 감지 입력하는 압축기의 흡입온도와 압력 감지단계(62)와, 압축기의 과열도를 계산하는 과열도계산단계(63)와, 상기 과열도계산단계(63)에서 과열도와 소정의 값과의 대소를 판단하는 과열도판단단계(64)와, 상기 과열도판단단계(64)에서 과열이면 전자팽창변을 여는 전자팽창변 열음단계(65)와, 상기 과열상태가 아니면 전자팽창변을 닫는 전자팽창변 닫음 단계(66)와, 사익 전자팽창변 열고 닫음단계(65)(66)에서 흡입온도와 압축기 보호용온도와의 대소를 판단하는 압축기 보호용온도판단단계(67)와, 상기 압축기 보호용온도 판단단계(67)에서 판단결과 압축기보호용 온도가 크면 전자밸브를 온 하는 전자밸브온 단계(68)와, 상기 압축기 보호용온도 판단단계(67)에서 압축기보호용 온도가 작으면 전자밸브를 오프하는 전자밸브 오프단계(69)로 이루어지도록 한 것이다. 상기와 같이 구성하여서 된 본 발명의 작용효과를 설명하면 다음과 같다. 먼저 전원이 인가되어 공기조화기가 초기화된 상태에서 상기 마이콤(라)에서는 운전선택부(가)로부터 입력되는 운전상태에 따라 냉매가 냉매사이클을 순환하면서, 난방운전 및 냉방운전을 하게 되는데, 즉 난방운전시 압축기(1)에서 압축되어 토출되는 고온고압의 냉매는 전원이 공급되어 인가된 사방변(2)을 통해서 실내열교환기(7)에 유입되고, 상기 실내열교환기(7)에서는 고온고압의 냉매를 실내로 열방출하고 응축을 하게 된다. 한편 상기 실내열교환기(7)에서 응축된 냉매는 감압장치(4)(6)와, 전자팽창변(13)을 통해서 저압의 포화상태로 실외열교환기(3)로 유입된다. 상기와같이 유입된 냉매는 열원인 외부공기에 의하여 증발이 되어 어큐뮬레이터(8)를 통해서 압축기(1)로 유입되게 되게 되며 이때 상기 압축기(1)로 유입되는 냉매는 흡입온도감지부(11)와 흡입압력감지부(12)를 통해서 흡입온도와 흡입압력이 감지되면서 압축기(1)로 유입되는 재순환 과정으로 난방운전을 하게 되고, 반면에 냉방 운전이나 제상운전이 선택되면, 상기 냉매순환 과정을 역순환 시킴으로써 냉방운전 및 제상운전을 하게 되는데, 이때 상기 냉매를 역순환시키기 위하여는 상기 사방변(2)에 전원을 차단함으로써 냉매가 역순환이 되도록 한다. 상기와 같이 냉,난방운전, 제상운전을 수행도중 이거나, 또는 기동초기시, 상기 마이콤(라)에서는 먼저 초기기동판단단계(60)로 가서, 공기조화기가 초기 기동상태 인가를 판단하게 되고 이때 초기 기동상태이면 상기 마이콤(라)에서는 전자밸브 온 단계(61)로 가서 제5도의 전자밸브 구동부(바)를 제어하여 제2도에 도시한 압축기(1)의 토출구측에 구성된 전자밸브(9)를 열어주고, 마이콤(라)에서는 압축기의 흡입온도 및 압력 감지단계(62)로 가서 상기 전자밸브(9)가 열려진 상태에서 압축기(1)에서 토출되는 고온고압의 개스를 유량감소장치(10)를 통해서 압축기(1)의 입구측으로 바이패스시켜 상기 압축기(1)로 유입되는 액냉매와를 혼합하여 증발시키면서 순환되는 냉매의 흡입온도(T2) 및 압력(P2)을 상기 마이콤(라)에서는 제5도의 흡입온도감지부(나)와 흡입압력 감지부(다)를 통해서 냉매의 흡입온도와 압력을 감지하게 된다. 한편 상기 초기기동판단단계(60)에서 초기기동상태가 아니면 상기 마이콤(라)에서는 냉방 또는 난방, 제상운전 중인 것으로 판단하여 직접 상기 압축기의 흡입온도 및 압력감지단계(62)로 가서 냉매사이클을 순환하여 상기 압축기(1)의 입구측으로 유입되는 냉매의 흡입온도(Ts)와 압력(P)을 상기 흡입온도감지부(나), 흡입압력감지부(다)를 통해서 감지하게 된다. 상기 압축기의 흡입온도 및 압력감지단계(62)에서 흡입온도와 압력이 감지가 되면 상기 마이콤(라)에서는 과열도계산단계(63)로 가서 감지된 흡입온도(T2)와 압력(P2)에 대한 포화온도(Ts)와를 연산하여 과열도(SHs)를 산출 ( Ts-T2=SHs)하게되고, 상기 마이콤(라)에서는 과열도판단단계(64)로 가서 상기 계산된 과열도(SHs)가 소정의 값 이상인가를 판단하게 되고, 상기 과열도를 판단한 결과 과열도가 소정의 값이상이 되면 상기 마이콤(라)에서는 전자팽창변 열음단계(65)로 가서 전자팽창변 구동부(마)를 제어하여 전자팽창변(13)을 약간 열어 냉매의 감압을 저하시켜 순환되는 냉매의 과열도를 소정의 값으로 낮추고, 상기 과열도판단단계(64)로가서 과열도(SHs)가 소정의 값이하이면 상기 마이콤(라)에서는 전자팽창변 닫음단계(66)로 가서 상기 전자팽창변 구동부(마)를 제어하여 전자팽창변(13)을 약간 닫아 줌으로써 순환되는 냉매의 감압을 상승시켜 과열도를 소정의 값으로 높여주면서 운전을 하게 되어 최적의 과열도를 유지하면서 운전능력을 발휘할수 있도록 하고, 이와같이 순환되는 냉매의 과열도를 소정의 값으로 조절한 상태에서 상기 마이콤(라)에서는 압축기보호용 온도판단단계(67)로 가서 상기 흡입온도감지부(11)(나)를 통해서 압축기(1)로 유입되는 냉매의 흡입온도(T2)를 감지하고 이 감지된 흡입온도(T2)가 압축기보호용 온도(T0)보다 작은가를 판단하여, 상기 흡입온도(T2)가 압축기보호용 온도(T0)보다 크면 상기 마이콤(라)에서는 전자밸브 오프 판단단계(69)로 가서 전자밸브 구동부(바)를 제어하여 전자밸브(9)를 오프시키고, 운전을 하고, 상기 압축기보호용 온도판단단계(67)에서 흡입온도(T2)가 압축기보호용 온도(T0)보다 작으면 상기 마이콤(라)에서는 전자밸브구동부(바)를 제어하여 전자밸브(9)를 온 구동시켜 상기 압축기91)에서 토출되는 고온개스의 일부를 상기 전자밸브(9), 유량감소장치(10)를 통해서 바이패스 시켜, 상기 토출되는 고온개스로 상기 냉매사이클의 실외열교환기(3)에서 나오는 냉매와 혼합시킴으로써 액냉매가 증발되어 상기 압축기(1)의 입구측으로 유입되는 액냉매를 방지 및 액냉매와 오일층 분리를 막아 주게 되어 압축기의 손상을 방지를 할수 있게 되는 것이다. 이상에서 설명한 바와같이 본 발명은 냉 난방 겸용 공기조화기의 냉매사이클의 압축기의 토출구와 입구측에 전자밸브와 유량감소장치를 구성하고, 감압장치에 전자팽창변을 구성하여, 초기기동, 난방운전, 제상운전시 냉매사이클을 순환하여 압축기로 유입되는 냉매의 흡입온도를 감지하여 흡입온도가 설정온도보다 낮으면 전자밸브를 열어 토출구의 고온개스를 입구측으로 바이패스시켜 고온개스로 액냉매와 오일의층 분리를 방지시킴으로써 압축기의 손상을 방지 시키고, 또한 압축기로 유입되는 흡입온도와 흡입압력을 감지하여 과열도를 연산하고 이 연산된 과열도에 따라 상기 전자팽창변을 개폐 제어하여 최적의 과열도를 유지하도록 함으로써 운전능력을 크게 향상할수 있는 효과를 제공하도록 한 것이다.The present invention relates to an apparatus and method for controlling a refrigerant cycle of an air conditioner. Particularly, in the initial driving, low temperature heating, and defrosting operation of an air conditioner combined with a heating and cooling system, the high temperature gas of the compressor discharge port is bypassed to the inlet side to enter the compressor inlet side. The present invention relates to a refrigerant cycle control apparatus and method for an air conditioner that prevents liquid refrigerant inflow and liquid refrigerant and oil layer separation by improving evaporation of the refrigerant. In general, the refrigerant cycle of the air conditioner, as shown in Figure 1, when the high temperature and high pressure refrigerant from the compressor (1) during the heating operation is introduced into the indoor heat exchanger (7) through the four sides (2) In the indoor heat exchanger (7), the heat is released to the room and condensation occurs. The refrigerant condensed in the indoor heat exchanger (7) is decompressed through the decompression device (6) (4) and introduced into the outdoor heat exchanger (3). 2) through the accumulator (8) through the recirculation process flowing into the compressor (1), the heating operation, and during the cooling operation by the reverse cycle of the process to the cooling. During the heating operation in the above operation process, in the case of convective climate as in Korea, when the outside temperature sharply, defrosting operation, initial operation, due to lack of heat source, circulating the refrigerant cycle liquid refrigerant flowing into the compressor The oil and oil layers are separated and oil recovery is impossible, resulting in damage to the compressor. In addition, the evaporation pressure is lowered due to the drastic drop in the outside air temperature. The cold wind discharged has a problem that is not properly made. Accordingly, an object of the present invention is to read the suction temperature of the compressor during the heating operation of the air conditioner, during the sudden drop in the outside temperature or during the initial driving, the defrosting operation, and the like. By bypassing the inlet side of the liquid refrigerant to evaporate the liquid refrigerant and oil layer separation as well as operating the compressor at maximum rotation to increase the condensation pressure to improve the heating capacity. In order to solve the problem, the present invention provides a refrigerant cycle in which a discharge valve side and an inlet side of a compressor bypass a part of a discharge gas of the compressor, and a gas and a liquid refrigerant bypassed from the solenoid valve are mixed in an evaporator. Equipped with a flow rate reducing device that prevents liquid refrigerant from entering and liquid layer separation from liquid refrigerant by evaporating the liquid refrigerant. In order to maintain the degree of superheat at a predetermined value on the compressor inlet side during the cooling and defrosting operation, an electronic expansion valve is attached to the decompression device. In addition, the present invention is the initial drive determination step for determining the initial start-up application, the solenoid valve on step of turning on the solenoid valve if the initial start-up in the initial start-up determination stage, and the suction temperature of the compressor is not the start-up initial stage And a suction temperature and pressure sensing step of the compressor for sensing and inputting pressure, a superheat degree calculating step for calculating a degree of superheat, and a superheat degree determining step for determining the magnitude of the superheat degree and a predetermined value in the superheat degree calculating step; Judgment result in the determination step of the opening and closing step of the electronic expansion valve opening and closing the electronic expansion valve, the compressor protection temperature determination step of determining the magnitude of the suction temperature and the compressor protection temperature in the electronic expansion valve opening and closing step, and the compressor protection temperature judgment The solenoid valve on-off step of turning on and off the solenoid valve in accordance with the state determined in step . Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 2 is a refrigerant cycle of an air conditioner applied to the present invention, when the high temperature and high pressure refrigerant from the compressor 1 is introduced into the indoor heat exchanger 7 through the four sides 2 during the heating operation, the indoor heat exchange. In the gas (7), heat is released and condensed into the room, and the refrigerant condensed in the indoor heat exchanger (7) is decompressed through the pressure reducing device (6) (4) and flows into the outdoor heat exchanger (3). The refrigerant is evaporated by external air, which is a heat source, is heated by a recirculation process introduced into the compressor 1 through the accumulator 8 through the four-sided sides, and reversely circulated during the cooling operation. In the refrigerant cycle of the combined air-conditioning and air conditioner, the solenoid valve 9 for bypassing a part of the hot gas discharged from the compressor 1 to the discharge port and the inlet side of the compressor 1, and the solenoid valve. High temperature bypassed at (9) Equipped with a flow rate reducing device (10) for mixing the gas with the liquid refrigerant to evaporate the liquid refrigerant from the indoor heat exchanger (3) to prevent the liquid refrigerant from entering and sufficient oil from the liquid refrigerant, and heating, cooling, defrosting In order to maintain the superheat degree at a predetermined value at the inlet side of the compressor 1 during operation, the electron swelling valve 13 is attached to the pressure reducing device 4, 6. In the drawing, reference numeral 11 denotes a suction temperature detector for detecting a suction temperature of the compressor, and 12 denotes a suction pressure detector for detecting a suction pressure of the compressor. FIG. 3 is an enthalpy diagram for the pressures indicating the saturation temperature and the suction temperature T2 at the suction pressure Ts of the electromagnetic expansion valve applied to the present invention, and FIG. 4 is the suction pressure P2 of the compressor used in the present invention. This chart shows the saturation temperature (Ts) using 5 is a main control block diagram of the refrigerant cycle according to the present invention, the operation selection unit for selecting the cooling, heating, defrost operation, etc. (A), and the suction temperature detection unit (B) for detecting the suction temperature of the compressor and And a suction pressure detecting unit (C) for detecting a suction pressure of the compressor, a microcomputer (D) for receiving and controlling the operation selection, suction temperature, and suction pressure signals by a predetermined program, and the microcomputer (D). And an electromagnetic expansion valve driver (e) for opening and closing the electromagnetic expansion valve according to the control signal, and a solenoid valve driver (bar) for opening and closing the solenoid valve. 6 is a control block diagram of a refrigerant cycle according to the present invention, the initial start determination step 60 to determine whether the initial startup in the initial state and the initial start-up determination step 60, if the initial start in the solenoid valve is turned on The solenoid valve on step 61 and the suction temperature and pressure detection step 62 of the compressor for detecting and inputting the suction temperature and the pressure of the compressor, which are not the starting initial stage in the initial driving determination step 60, and the superheat degree of the compressor. In the superheat calculation step 63 of calculating the superheat degree, the superheat degree determination step 64 of determining the magnitude of the superheat degree and the predetermined value in the superheat degree calculation step 63, and the superheat degree determination step 64 The inlet temperature and the compressor in the electron expansion valve opening step (65), which opens the electron expansion valve if it is overheated, the electron expansion valve closing step (66), which closes the electron expansion valve if it is not in the superheated state, and the suction and expansion temperature (65) (66). Large or small with protective temperature The step of determining the compressor protection temperature (67), the solenoid valve on step 68 of turning on the solenoid valve when the compressor protection temperature is large as a result of the determination in the compressor protection temperature determination step 67, and the compressor protection temperature determination step ( At 67), the compressor protection temperature is small, so that the solenoid valve off step 69 is performed to turn off the solenoid valve. Referring to the effects of the present invention configured as described above are as follows. First, when the air conditioner is initialized and the air conditioner is initialized, the microcomputer (d) performs the heating operation and the cooling operation while circulating the refrigerant cycle according to the operation state input from the operation selection unit (i). During operation, the high temperature and high pressure refrigerant compressed and discharged from the compressor (1) flows into the indoor heat exchanger (7) through the four-sided side (2) to which power is supplied, and the high temperature and high pressure of the indoor heat exchanger (7). The refrigerant is released into the room and condensed. On the other hand, the refrigerant condensed in the indoor heat exchanger (7) is introduced into the outdoor heat exchanger (3) in a low pressure saturation state through the pressure reducing device (4) (6) and the electronic expansion valve (13). The refrigerant introduced as described above is evaporated by external air, which is a heat source, to be introduced into the compressor 1 through the accumulator 8, and the refrigerant introduced into the compressor 1 is suction temperature sensing unit 11. While the suction temperature and the suction pressure are sensed through the suction pressure detection unit 12, the heating operation is performed by the recirculation process flowing into the compressor 1, while if the cooling operation or the defrosting operation is selected, the refrigerant circulation process is reversed. Cooling operation and defrosting operation are performed by circulating, and in this case, in order to reversely circulate the refrigerant, the refrigerant is reversely circulated by shutting off power to the four sides. During the cooling, heating, and defrosting operations as described above, or during initial startup, the microcomputer (d) first goes to the initial startup determination step 60 to determine whether the air conditioner is in an initial startup state. In the starting state, the microcomputer (d) goes to the solenoid valve on step 61 and controls the solenoid valve driving part (bar) of FIG. 5 to control the solenoid valve 9 formed on the discharge port side of the compressor 1 shown in FIG. And the microcomputer (d) moves to the suction temperature and pressure sensing step 62 of the compressor and flows the high temperature and high pressure gas discharged from the compressor 1 while the solenoid valve 9 is opened. The suction temperature (T2) and the pressure (P2) of the refrigerant circulated while mixing and evaporating the liquid refrigerant flowing into the compressor (1) by bypassing the inlet side of the compressor (1) through the Suction temperature detection part (b) with 5 degrees Through a pressure sensing unit (C) it is to detect the inlet temperature and pressure of the refrigerant. On the other hand, if it is not the initial startup state in the initial start-up determination step 60, the microcomputer (D) determines that the cooling, heating, or defrosting operation is performed, and then goes directly to the suction temperature and pressure sensing step 62 of the compressor to circulate the refrigerant cycle. Thus, the suction temperature Ts and the pressure P of the refrigerant flowing into the inlet side of the compressor 1 are detected through the suction temperature detecting unit B and the suction pressure detecting unit C. When the suction temperature and pressure is detected in the suction temperature and pressure detection step 62 of the compressor, the microcomputer (d) goes to the superheat calculation step 63 for the detected suction temperature T2 and pressure P2. The superheat degree (SHs) is calculated by calculating the saturation temperature (Ts) and (Ts-T2 = SHs), and the microcomputer (d) goes to the superheat determination step 64 to determine the calculated superheat degree SHs. When the degree of superheat reaches a predetermined value or more, the microcomputer (d) goes to the electron expansion valve cracking step (65) and controls the electron expansion valve driving unit (e). (13) is slightly opened to lower the pressure of the refrigerant to lower the superheat degree of the circulating refrigerant to a predetermined value, and if the superheat degree (SHs) is less than the predetermined value, the microcom In step (1), the electronic expansion valve closing step (66) By controlling), the electronic expansion valve (13) is closed slightly to increase the decompression of the circulating refrigerant to operate while increasing the superheat degree to a predetermined value so that the driving ability can be maintained while maintaining the optimum superheat degree. In the state where the superheat degree of the circulating refrigerant is adjusted to a predetermined value, the microcomputer (d) goes to the temperature determining step 67 for protecting the compressor and flows into the compressor 1 through the suction temperature detecting unit 11 (b). Detects the suction temperature (T2) of the refrigerant to be detected and determines whether the detected suction temperature (T2) is smaller than the compressor protection temperature (T0), if the suction temperature (T2) is greater than the compressor protection temperature (T0). D) In the solenoid valve off determination step 69, the solenoid valve driving unit (bar) is controlled to turn off the solenoid valve 9 and operate, and the suction temperature T2 in the compressor protection temperature determination step 67 is performed. Autumn compressor If the temperature is less than the favorable temperature T0, the microcomputer (D) controls the solenoid valve driving unit (bar) to drive the solenoid valve 9 on, thereby discharging a part of the high temperature gas discharged from the compressor 91 to the solenoid valve 9. Bypassing through the flow reduction device 10, and mixed with the refrigerant from the outdoor heat exchanger 3 of the refrigerant cycle by the discharged high-temperature gas is the liquid refrigerant is evaporated to flow into the inlet side of the compressor (1) It prevents the liquid refrigerant and prevents the liquid refrigerant and the oil layer separation to prevent damage to the compressor. As described above, the present invention configures the solenoid valve and the flow rate reducing device at the discharge port and the inlet side of the compressor of the refrigerant cycle of the air conditioner for both cold and heating, and the electronic expansion valve at the depressurizing device, thereby providing initial start-up, heating operation, During the defrosting operation, the refrigerant cycle is sensed to detect the suction temperature of the refrigerant flowing into the compressor.If the suction temperature is lower than the set temperature, the solenoid valve is opened to bypass the hot gas at the discharge port to the inlet side. By preventing the separation, the damage of the compressor is prevented, and the suction temperature and the suction pressure which are introduced into the compressor are sensed to calculate the degree of superheat, and according to the calculated degree of superheat, the electronic expansion valve is opened and closed to maintain the optimum degree of superheat. By doing so, the driving ability is greatly improved.

Claims (4)

냉매사이클을 정/역순환하면서 냉/난방을 하도록 된 냉/난방 겸용 공기조화기에 있어서, 상기 냉매사이클의 압축기(1)의 토출구와 입구측에 상기 압축기(1)로부터 토출되는 고온개스 일부를 바이패스시키는 전자밸브(9)와 ; 상기 전자밸브(9)에서 바이패스된 고온개스를 액냉매와 혼합하여 실내열교환기(3)에서 나오는 액냉매를 증발시켜 액냉매 유입 및 액냉매와의 오일의 층분리를 방지시키는 유량감소장치(10)와 ; 난방,냉방,제상운전시 압축기(1) 입구측에 과열도를 소정의 값으로 유지시키기 위하여, 감압장치(4)(6)에 전자팽창변(13)을 장착하여서 된 것을 특징으로 하는 공기조화기의 냉매사이클 제어장치.In a cooling / heating combined air conditioner, which cools / heats while forward / reverse circulation of a refrigerant cycle, a portion of the high-temperature gas discharged from the compressor (1) is supplied to the discharge port and the inlet of the compressor (1) of the refrigerant cycle. A solenoid valve 9 for passing; A flow rate reducing device for preventing the inflow of liquid refrigerant and the separation of oil from the liquid refrigerant by evaporating the liquid refrigerant from the indoor heat exchanger 3 by mixing the high temperature gas bypassed by the solenoid valve 9 with the liquid refrigerant ( 10) and; Air conditioner characterized in that the electronic expansion valve (13) is attached to the pressure reducing device (4) (6) in order to maintain the superheat degree at the predetermined value at the inlet side of the compressor (1) during heating, cooling and defrosting operation. Refrigerant cycle control device. 제1항에 있어서, 상기 공기조화기의 초기기동, 난방운전, 제상운전시, 냉매사이클을 순환하면서 압축기(1)로 유입되는 냉매의 흡입온도(T2)에 따라 상기 전자밸브(9)를 개폐하면서 압축기의 토출 고온개스를 압축기의 입구측으로 바이패스시키고, 상기 압축기의 입구측 흡입온도(T2)와 흡입압력(P2)을 연산하여 연산된 과열도에 따라 전자팽창변을 개폐하면서 최적의 과열도를 유지하도록 하여서 된 공기조화기의 냉매사이클 제어장치.2. The solenoid valve (9) according to claim 1, wherein the solenoid valve (9) is opened and closed according to the suction temperature (T2) of the refrigerant flowing into the compressor (1) while circulating the refrigerant cycle during the initial startup, heating operation, and defrost operation of the air conditioner. While bypassing the discharged high-temperature gas of the compressor to the inlet side of the compressor, calculating the inlet side suction temperature (T2) and the suction pressure (P2) of the compressor to open and close the electronic expansion valve according to the calculated degree of superheat while Refrigerant cycle control device of the air conditioner to maintain. 제2항에 있어서, 상기 압축기(1)의 냉매 흡입온도(T2)가 소정의 온도(T0)이하일 때 압축기(1)의 토출고온개스가 바이패스되도록 하고, 상기 압축기(1)의 과열도가 소정의 과열도이상일 때 전자팽창변을 열어 과열도가 제어되도록 하여서된 것을 특징으로 하는 공기조화기의 냉매사이클 제어장치.The discharge high temperature gas of the compressor (1) is bypassed when the refrigerant suction temperature (T2) of the compressor (1) is less than or equal to a predetermined temperature (T0). A refrigerant cycle control device for an air conditioner, characterized in that the superheat is controlled by opening the electronic expansion edge when the degree of superheat is above a predetermined degree. 공기조화기의 냉매사이클 제어방법에 있어서, 공기조화기의 운전개시에 의한 초기기동 인가를 판단하는 초기기동판단단계(60) ; 상기 초기기동판단단계(60)에서 기동초기이면 압축기의 토출구측에 연결된 전자밸브를 '온'시키는 전자밸브온단계(61); 상기 초기기동판단단계(60)에서 기동초기가 아니면 전자밸브를 열어 압축기의 고온고압의 개스를 압축기의 입구측으로 바이패스시키고, 유입되는 액냉매와 혼합후 증발시키면서 냉매의 흡입온도(T2) 및 압력(P2)을 감지하는 흡입온도/압력감지단계(62); 감지된 흡입온도(T2)와 압력(P2)에 대한 포화온도(Ts)에 의해 결정되는 과열도(SHs)를 산출하는 과열도계산단계(63)와 ; 상기 과열도계산단계(63)에서 산출된 과열도(SHs)와 설정값을 비교하고, 상기 과열도(SHs)가 설정값이상이면 전자팽창변을 미소간격 열고, 상기 과열도(SHs)가 설정값 미만이면 전자팽창변을 미소간격만큼 닫는 전자팽창변개폐단계(65)(66) ; 상기 전자팽창변개폐단계(65)(66)를 수행후 흡입온도(T2)가 압축기보호용온도(T0)이하이면 전자밸브를 '오프'시키는 전자밸브오프단계(87) ; 및 상기 전자팽창변개폐단계(65)(66)를 수행후 흡입온도(T2)가 압축기보호용온도(T0) 초과하면 전자밸브를 '온'시키는 전자밸브온단계(68)를 포함하는 것을 특징으로 하는 공기조화기의 냉매사이클 제어방법.A refrigerant cycle control method of an air conditioner, comprising: an initial start determination step (60) for determining an initial start application by starting operation of an air conditioner; A solenoid valve on step 61 of 'on' the solenoid valve connected to the discharge port side of the compressor when the initial start is determined in the initial startup determination step 60; In the initial start-up determination step 60, the solenoid valve is opened to bypass the high temperature and high pressure gas of the compressor to the inlet side of the compressor, and the suction temperature (T2) and pressure of the refrigerant are mixed with the incoming liquid refrigerant and evaporated. Suction temperature / pressure sensing step 62 for detecting P2; An overheat calculation step 63 for calculating a superheat degree SHs determined by the detected suction temperature T2 and the saturation temperature Ts for the pressure P2; The superheat degree SHs calculated in the superheat degree calculation step 63 is compared with the set value. When the superheat degree SHs is equal to or greater than the set value, the electronic expansion edge is opened at a small interval, and the superheat degree SHs is the set value. An electron-expansion opening / closing step (65) (66) of closing the electron-expansion edge by a small interval if less than; A solenoid valve off step 87 of turning off the solenoid valve when the suction temperature T2 is less than or equal to the compressor protection temperature T0 after the solenoid expansion and closing steps 65 and 66 are performed; And an solenoid valve on step 68 for turning on the solenoid valve when the suction temperature T2 exceeds the compressor protection temperature T0 after the solenoid expansion and closing steps 65 and 66 are performed. Refrigerant cycle control method of air conditioner.
KR1019930000936A 1993-01-26 1993-01-26 Controlling method and apparatus for cold-cycle of airconditioner KR0133044B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930000936A KR0133044B1 (en) 1993-01-26 1993-01-26 Controlling method and apparatus for cold-cycle of airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930000936A KR0133044B1 (en) 1993-01-26 1993-01-26 Controlling method and apparatus for cold-cycle of airconditioner

Publications (2)

Publication Number Publication Date
KR940018623A KR940018623A (en) 1994-08-18
KR0133044B1 true KR0133044B1 (en) 1998-04-21

Family

ID=19349978

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930000936A KR0133044B1 (en) 1993-01-26 1993-01-26 Controlling method and apparatus for cold-cycle of airconditioner

Country Status (1)

Country Link
KR (1) KR0133044B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626696B1 (en) * 2005-07-25 2006-09-22 삼성전자주식회사 A multi air conditioner system
US7617694B2 (en) 2003-10-17 2009-11-17 Lg Electronics Inc. Apparatus and method for controlling super-heating degree in heat pump system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574447B2 (en) 2000-06-07 2004-10-06 サムスン エレクトロニクス カンパニー リミテッド Startup control system for air conditioner and control method thereof
US6637222B2 (en) 2000-06-07 2003-10-28 Samsung Electronics Co., Ltd. System for controlling starting of air conditioner and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617694B2 (en) 2003-10-17 2009-11-17 Lg Electronics Inc. Apparatus and method for controlling super-heating degree in heat pump system
KR100626696B1 (en) * 2005-07-25 2006-09-22 삼성전자주식회사 A multi air conditioner system

Also Published As

Publication number Publication date
KR940018623A (en) 1994-08-18

Similar Documents

Publication Publication Date Title
US6966197B2 (en) Air conditioner with dehumidifying and heating operation
KR100755160B1 (en) Control of refrigeration system
US4901534A (en) Defrosting control of air-conditioning apparatus
US20070068178A1 (en) Heat pump
KR0152286B1 (en) Cooling/heating airconditioner and its control method
JPH11257762A (en) Refrigeration cycle system
JP2001012830A (en) Refrigeration cycle device
JP2004245479A (en) Frost formation detecting method for refrigerating cycle using supercritical refrigerant and defrosting method using the same
KR0133044B1 (en) Controlling method and apparatus for cold-cycle of airconditioner
JP2964705B2 (en) Air conditioner
JP3430639B2 (en) Heat pump system
JP3410583B2 (en) Defrost prevention device for gas engine driven heat pump with engine waste heat recovery
JP4211122B2 (en) Air conditioner
JP2001241779A (en) Refrigerant flow rate controller for air conditioner
JP3303689B2 (en) Binary refrigeration equipment
JP3804712B2 (en) Air conditioner
JPH07132729A (en) Air conditioner
JP2004061071A (en) Heat pump system
JP2912811B2 (en) Air conditioner
EP3693686B1 (en) Air conditioner system including refrigerant cycle circuit for oil flow blocking
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
EP2318782B1 (en) Refrigeration circuit
KR100917173B1 (en) Cooling and heating system for vehicle
JPH1137571A (en) Air conditioner
JPH0833242B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041129

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee