KR0130172B1 - Formation method of transistor of semiconductor device - Google Patents

Formation method of transistor of semiconductor device

Info

Publication number
KR0130172B1
KR0130172B1 KR1019940015436A KR19940015436A KR0130172B1 KR 0130172 B1 KR0130172 B1 KR 0130172B1 KR 1019940015436 A KR1019940015436 A KR 1019940015436A KR 19940015436 A KR19940015436 A KR 19940015436A KR 0130172 B1 KR0130172 B1 KR 0130172B1
Authority
KR
South Korea
Prior art keywords
film
gate electrode
transition metal
forming
oxide film
Prior art date
Application number
KR1019940015436A
Other languages
Korean (ko)
Other versions
KR960002697A (en
Inventor
박상훈
Original Assignee
김주용
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업주식회사 filed Critical 김주용
Priority to KR1019940015436A priority Critical patent/KR0130172B1/en
Publication of KR960002697A publication Critical patent/KR960002697A/en
Application granted granted Critical
Publication of KR0130172B1 publication Critical patent/KR0130172B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The transistor manufacturing method is comprised of the step of (a) etching a predetermined portion of a semiconductor substrate(11) to form a trench(20) and forming a thermal oxide film(12) on an upper part of a whole structure, then injecting the first impurity ion(20), the step of (b) removing the thermal oxide film by means of wet-etching and depositing a gate oxide film(13), a polycrystalline silicon film(14) for a gate electrode, an intrinsic polycrystalline silicon film(15) and a transition metal film(16) in succession, the step of (c) etching the transition metal film, the intrinsic polycrystalline silicon film and the polycrystalline silicon film for the gate electrode in succession using a gate electrode mask to form the gate electrode and injecting impurity ion of low density to form an impurity region(17) of low density, the step of (d) forming an oxide film spacer(18) in a side wall of the gate electrode and injecting impurity ion of high density to form an impurity region(19) of high density, the step of (e) performing a thermal treatment process at high temperature to change the transition metal film(16) into silicide.

Description

반도체소자의 트랜지스터 형성방법Transistor Formation Method of Semiconductor Device

제1도는 종래기술에 의해 형성된 반도체소자의 트랜지스터를 도시한 단면도.1 is a cross-sectional view showing a transistor of a semiconductor device formed by the prior art.

제2A도 내지 제2D도는 본 발명의 제1실시예에 의한 반도체소자의 트랜지스터 형성공정을 도시한 단면도.2A to 2D are sectional views showing the transistor forming process of the semiconductor device according to the first embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1,11 : 반도체기판 2,13 : 게이트산화막1,11 semiconductor substrate 2,13 gate oxide film

3 : 게이트전극 4,16 : 전이금속막3: gate electrode 4, 16: transition metal film

5,17 : 저농도의 불순물영역 6,18 : 산화막 스페이서5,17: low concentration impurity region 6,18 oxide film spacer

7,19 : 고농도의 불순물영역 12 : 열 산화막7,19: high concentration impurity region 12: thermal oxide film

14 : 게이트전극용 다결정실리콘막 15 : 진성 다결정실리콘막,14 polycrystalline silicon film for the gate electrode 15 intrinsic polysilicon film,

15' : 비정질 다결정실리콘막 20 : 제1불순물15 ': amorphous polysilicon film 20: first impurity

30 : 제1불순물.30: 1st impurity.

본 발명은 반도체소자의 트랜지스터 형성방법에 관한 것으로써, 특히 자기정렬된 실리사이드(Silicide)구조를 갖는 게이트전극 형성시에 반도체기판에 트렌치를 형성하고 소정의 불순물이 도핑된 다결정실리콘막을 증착한 후 그 상부에 진성 다결정실리콘막 및 전이금속막을 순차적으로 증착하고 신화막 스페이서를 형성하고 전이금속막을 고온열처리 공정으로 산화시켜 실리사이드로 변환시킴으로써 게이트산화막의 막질을 향상시켜 반도체소자의 신뢰성을 향상시킬 수 있는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transistor of a semiconductor device, and in particular, in forming a gate electrode having a self-aligned silicide structure, forming a trench in a semiconductor substrate and depositing a polysilicon film doped with a predetermined impurity. A technology capable of improving the reliability of semiconductor devices by depositing an intrinsic polysilicon film and a transition metal film on top of one another, forming a thin film spacer, oxidizing the transition metal film to a silicide by converting it to silicide, and improving the film quality of the gate oxide film. to be.

최근의 반도체 기억소자가 초고집적화 됨에 따라 상대적으로 저항이 작은 게이트 전극용 물질이 필요하게 되었다.Recently, as semiconductor memory devices have been highly integrated, materials for gate electrodes having a relatively low resistance are needed.

제1도는 종래 기술에 의한 게이트전극을 도시한 단면도로서, 반도체기판(1)상에 소정 패턴의 게이트산화막(2) 및 불순물이 도핑된 다결정 실리콘막, 즉 게이트전극(3)을 형성하고 상기 게이트전극(3)의 상부에만 선택적으로 전이금속막(4)을 증착한 다음, 저농도의 불순물이온을 주입하여 저농도의 불순물영역(5)을 형성하고 상기 게이트전극(3)의 측벽에 산화막 스페이서(6)을 형성한 다음, 고농도의 불순물 이온을 주입하여 고농도의 불순물영역(7)을 형성하고 고온열공정으로 상기 전이금속막(4)을 실리사이드로 변화시킨 엘.디.디(LDD:Lightly Doped Drain, 이하에서 LDD라 함)구조의 트랜지스터를 도시한 것을 도시한 단면도로서, 상기 저농도의 불순물이온인 인(P)을 사용하고 상기 고농도의 불순물이온은 비소(As)를 사용한 것이다. 여기서, 상기 전이금속막은 티타늄으로 형성한 것이며, 전이금속막이 실리사이드(7)로 변환되는 과정에서 상기 전이금속막을 구성하는 티타늄이 상기 게이트전극(3)의 실리콘과 반응하여 형성된 TiSix 화합물이 상기 게이트산화막(2)으로 침투하여 게이트산화막(2)의 막질(Film Quality)을 저하시킴으로써 반도체소자의 신뢰성을 저하시킨다.1 is a cross-sectional view showing a gate electrode according to the prior art, in which a gate oxide film 2 having a predetermined pattern and a polycrystalline silicon film doped with impurities, that is, a gate electrode 3, are formed on a semiconductor substrate 1, and the gate After selectively depositing the transition metal film 4 only on the electrode 3, a low concentration of impurity ions are implanted to form a low concentration of impurity region 5 and an oxide spacer 6 on the sidewall of the gate electrode 3. ), And then implanting a high concentration of impurity ions to form a high concentration of impurity region (7) and to convert the transition metal film (4) to silicide by high temperature heat process (LDD: Lightly Doped Drain) The following figure shows a transistor having an LDD structure, in which phosphorus (P), which is a low concentration of impurity ions, is used, and arsenic (As), which is used for the high concentration of impurity ions. Here, the transition metal film is formed of titanium, and the TiSix compound formed by reacting the silicon of the gate electrode 3 with titanium constituting the transition metal film in the process of converting the transition metal film into silicide (7) is the gate oxide film. It penetrates into (2) and lowers the film quality of the gate oxide film 2, thereby reducing the reliability of the semiconductor device.

따라서, 본 발명은 종래의 문제점을 해결하기 위하여, 게이트전극과 실리사이드 사이에 진성 다결정 실리콘막을 일정두께 증착하여 게이트전극을 형성하는 반도체소자의 트랜지스터 형성방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a transistor of a semiconductor device in which a gate electrode is formed by depositing a thickness of an intrinsic polycrystalline silicon film between a gate electrode and a silicide at a predetermined thickness.

이상의 목적을 달성하기 위한 본 발명의 특징은, 반도체기판의 예정된 부위를 식각하여 트렌치를 형성하고 전체구조상부에 열산화막을 형성한 다음, 제1불순물이온을 주입하는 공정과, 상기 열산화막을 습식방법으로 제거하고 게이트산화막을 증착한 다음, 그 상부에 게이트전극용 다결정실리콘막과 진성 다결정실리콘막 및 전이금속막을 순차적으로 증착하는공정과, 게이트전극 마스크를 이용하여 상기 전이금속막, 진성 다결정실리콘막 및 게이트전극용 다결정실리콘막을 순차적으로 식각함으로써 게이트전극을 형성하고 저농도의 불순물이온을 주입하여 저농도의 불순물영역을 형성하는 공정과, 상기 게이트전극의 측벽과 상기 트렌치 내부의 전이금속막 측벽에 산화막 스페이서를 형성하고 고농도의 불순물이온을 주입하여 고농도의 불순물영역을 형성하는 공정과, 고온 열처리공정을 실시하여 상기 전이금속막을 실리사이드로 변화시켜 트랜지스터를 형성하는 공정을 포함하는데 있다.A feature of the present invention for achieving the above object is a step of etching a predetermined portion of the semiconductor substrate to form a trench, forming a thermal oxide film on the entire structure, and then injecting a first impurity ion, and wet the thermal oxide film And then depositing a gate oxide film, and sequentially depositing a polycrystalline silicon film, an intrinsic polysilicon film, and a transition metal film for the gate electrode thereon, and using the gate electrode mask to form the transition metal film and the intrinsic polycrystalline silicon. Sequentially etching the film and the polysilicon film for the gate electrode to form a gate electrode and injecting a low concentration of impurity ions to form a low concentration of impurity region; and an oxide film on the sidewall of the gate electrode and the sidewall of the transition metal film inside the trench. By forming a spacer and injecting high concentration of impurity ions, To the transition metal in the silicide film is changed by performing the step of high temperature heat treatment step of forming a can comprises the step of forming the transistor.

이하, 첨부된 도면을 참고로하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제 2A도 내지 제 2D도는 본 발명의 제 1실시예로서 반도체소자의 트랜지스터 형성공정을 도시한 단면도이다.2A to 2D are cross-sectional views showing a transistor forming process of a semiconductor device as a first embodiment of the present invention.

제2A도는 반도체기판(11)의 예정된 부위를 식각하여 트렌치(20)을 형성한 다음, 전체구조상부에 열산화막(12)을 성장시킨 다음, 문턱진압(threshold voltage, VT) 조절용 제1불순물(20)을 소정농도로 이온주입한 것을 도시한 단면도로서, 상기 열산화막(12)은 불순물이온 주입시 상기 반도체기판(11)을 보호하기 위한 것이며 상기 제1불순물(20)은 붕소(B)를 사용한 것이다.FIG. 2A illustrates a trench 20 by etching a predetermined portion of the semiconductor substrate 11, growing a thermal oxide film 12 over the entire structure, and then adjusting the threshold voltage (V T ). A cross sectional view showing ion implantation at a predetermined concentration, wherein the thermal oxide film 12 is for protecting the semiconductor substrate 11 during impurity ion implantation and the first impurity 20 is boron (B). Is used.

제2B도는 상기 열산화막(12)을 습식식각으로 제거한 후, 소정두께의 게이트산화막(13)을 형성하고 상기 게이트산화막(13) 상부에 저압 화학기상증착(LPCVD:Low Pressure CVD, 이하에서 LPCVD라함)방법으로 불순물이 도핑된 게이트전극용 다결정실리콘막(14), 진성 다결정실리콘막(15) 및 전이금속막(16)을 소정두께 순차적으로 증착하고 한 것을 도시한 단면도로서, 상기 습식식각은 HF 또는 완충 산화막 식각용액을 사용한 것이다. 여기서, 상기 전이금속막(16)은 Ti, W, Mo 및 Ta으로 형성할 수 있다.FIG. 2B is a view showing that the thermal oxide film 12 is wet-etched, and then a gate oxide film 13 having a predetermined thickness is formed and low pressure chemical vapor deposition (LPCVD) is formed on the gate oxide film 13. Is a cross-sectional view of sequentially depositing a polysilicon film 14, an intrinsic polysilicon film 15, and a transition metal film 16 for a gate electrode doped with impurities by a predetermined thickness, wherein the wet etching is HF. Or a buffer oxide etching solution. Here, the transition metal film 16 may be formed of Ti, W, Mo, and Ta.

제2C도는 게이트전극 마스크(도시안됨)를 이용하여 게이트전극(14,15,16)을 형성한 다음, 저농도의 불순물이온을 주입하여 저농도의 불순물영역(17)을 형성한 것을 도시한 단면도로서, 상기 진성 다결정실리콘막(15)은 이온주입에 의한 손상때문에 비정질 다결정실리콘막(15')으로 변화한다. 여기서, 상기 게이트전극(14,15,16)은 상기 게이트전극용 다결정실리콘막(14)과 진성 다결정실리콘막(15) 그리고 전이금속막(16)으로 형성한 것이며 상기 저농도의 불순물이온은 인(P)을 사용한 것이다.2C is a cross-sectional view of the gate electrodes 14, 15, and 16 formed using a gate electrode mask (not shown), followed by implantation of low concentration of impurity ions to form a low concentration of impurity region 17. The intrinsic polysilicon film 15 is changed to an amorphous polysilicon film 15 'due to damage by ion implantation. Here, the gate electrodes 14, 15, and 16 are formed of the polysilicon film 14, the intrinsic polysilicon film 15, and the transition metal film 16 for the gate electrode, and the low concentration impurity ions are formed of phosphorus ( P) is used.

제2D도는 상기 게이트전극(14,15,16)의 측벽에 산화막 스페이서(18)를 형성한 다음, 상기 산화막 스페이서(18)를 마스크로 하여 고농도의 불순물인 비소(As)를 소정농도로 이온주입하여 고농도의 불순물영역(19)을 형성한 것을 도시한 단면도로서, 상기 산화막 스페이서(18)는 대신에 질화막 스페이서를 사용하여도 동이한 효과를 얻는다. 여기서, 산화가스를 이용한 고온 열처리공정으로 사기 전이금속막(16)을 실리사이드로 변환시킨다. 이때, 고온 열처리에 사용되는 산소가 실리사이드와 비정질 다결정실리콘막(25')의 계면에 유입되어 Ti-O-Si 형태의 TiSix 침투 방지용 경계막을 형성하여 막질 특성 저하를 방지한다.In FIG. 2D, an oxide spacer 18 is formed on the sidewalls of the gate electrodes 14, 15, and 16, and ion implantation is performed at a predetermined concentration using arsenic As as a high concentration of impurities using the oxide spacer 18 as a mask. As a cross-sectional view showing the formation of a high concentration impurity region 19, the oxide film spacer 18 can obtain the same effect even if a nitride film spacer is used instead. Here, the frying transition metal film 16 is converted into silicide by a high temperature heat treatment process using an oxidizing gas. At this time, oxygen used in the high temperature heat treatment flows into the interface between the silicide and the amorphous polysilicon film 25 'to form a Ti-O-Si type TiSix penetration preventing boundary film to prevent degradation of the film quality.

상기한 본 발명에 의하면, 종래에 게이트산화막의 막질 저하로 발생되는 문제점을 해결하기 위하여 진성 다결정실리콘막을 사용함으로써 게이트산화막의 막질 저하를 방지하여 반도체소자의 전기적 특성 및 신뢰성을 향상시킬 수 있다.According to the present invention described above, in order to solve the problems caused by the conventional film quality reduction of the gate oxide film, by using the intrinsic polysilicon film, the film quality of the gate oxide film can be prevented from being lowered, thereby improving the electrical characteristics and reliability of the semiconductor device.

Claims (7)

반도체소자의 트랜지스터를 형성방법에 있어서, 반도체기판의 예정된 부위를 식각하여 트렌치를 형성하고 전체구조상부에 열산화막을 형성한 다음, 제1불순물이온을 주입하는 공정과, 상기 열산화막을 습식방법으로 제거하고 게이트산화막을 증착한 다음, 그 상부에 게이트전극용 다결정실리콘막과 진성 다결정실리콘막 및 전이금속막을 순차적으로 증착하는 공정과, 게이트전극 마스크를 이용하여 상기 전이금속막, 진성 다결정실리콘막 및 게이트전극용 다결정실리콘막을 순차적으로 식각함으로써 게이트 전극을 형성하고 저농도의 불순물이온을 주입하여 저농도의 불순물 영역을 형성하는 공정과, 상기 게이트전극의 측벽과 상기 트렌치 내부의 전이금속과 측벽에 산화막 스페이서를 형성하고 고농도의 불순물 이온을 주입하여 고농도의 불순물영역을 형성하는 공정과, 고온열처리공정을 실시하여 상기 전이금속막을 실리사이드로 변화시켜 트랜지스터를 형성하는 공정을 포함하는 반도체소자의 트랜지스터 형성방법.A method of forming a transistor of a semiconductor device, comprising: forming a trench by etching a predetermined portion of a semiconductor substrate, forming a thermal oxide film on the entire structure, and then implanting first impurity ions; Removing and depositing a gate oxide film, and sequentially depositing a polysilicon film for gate electrode, an intrinsic polysilicon film, and a transition metal film thereon; and using the gate electrode mask, the transition metal film, intrinsic polycrystalline silicon film, and Forming a gate electrode by sequentially etching the polysilicon film for the gate electrode and implanting low concentration impurity ions to form a low concentration impurity region; and forming an oxide spacer on the sidewall of the gate electrode, the transition metal inside the trench, and the sidewall. High concentration impurity by forming and implanting high concentration impurity ions And forming a transistor by performing a region forming step, and performing a high temperature heat treatment step to change the transition metal film to silicide. 상기 제1항에 있어서, 상기 제1불순물 이온주입공정은 붕소를 사용하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the first impurity ion implantation process uses boron. 상기 제1항에 있어서, 상기 열산화막은 HF 또는 완충산화막 식각용액을 사용하여 제거하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the thermal oxide film is removed using an HF or a buffer oxide film etching solution. 상기 제1항에 있어서, 상기 게이트전극용 다결정실리콘막과 진성 다결정실리콘막 그리고 전이금속막은 LPCVD방법으로 형성하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법2. The method of claim 1, wherein the polysilicon film, the intrinsic polysilicon film, and the transition metal film for the gate electrode are formed by LPCVD. 상기 제1항에 있어서, 상기 비정질 다결정실리콘막을 이온주입 공정시 진성 다결정실리콘막이 손상시켜 형성하는 것을 반도체소자의 트랜지스터 형성방법The method of claim 1, wherein the amorphous polysilicon film is formed by damaging the intrinsic polysilicon film during an ion implantation process. 상기 제1항에 있어서, 상기 절연막 스페이서는 산화막 또는 질화막으로 형성하는 것을 특징으로하는 반도체소자의 트랜지스터 형성방법The method of claim 1, wherein the insulating film spacer is formed of an oxide film or a nitride film. 상기 제1항에 있어서, 상기 전이금속막은 Ti, W, Mo 또는 Ta 중의 한가지로 형성하는 것을 특징으로 하는 반도체소자의 트랜지스터 형성방법.The method of claim 1, wherein the transition metal film is formed of one of Ti, W, Mo, or Ta.
KR1019940015436A 1994-06-30 1994-06-30 Formation method of transistor of semiconductor device KR0130172B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940015436A KR0130172B1 (en) 1994-06-30 1994-06-30 Formation method of transistor of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940015436A KR0130172B1 (en) 1994-06-30 1994-06-30 Formation method of transistor of semiconductor device

Publications (2)

Publication Number Publication Date
KR960002697A KR960002697A (en) 1996-01-26
KR0130172B1 true KR0130172B1 (en) 1998-04-06

Family

ID=19386829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940015436A KR0130172B1 (en) 1994-06-30 1994-06-30 Formation method of transistor of semiconductor device

Country Status (1)

Country Link
KR (1) KR0130172B1 (en)

Also Published As

Publication number Publication date
KR960002697A (en) 1996-01-26

Similar Documents

Publication Publication Date Title
KR970002266B1 (en) Semiconductor devices and integrated circuits using sidewall spacer technology
US5920783A (en) Method of fabricating a self-aligned silicide MOSFET
KR100225409B1 (en) Trench dmos and method of manufacturing the same
KR100440840B1 (en) Method of manufacturing semiconductor device and semiconductor device
KR100332106B1 (en) Method of manufacturing a transistor in a semiconductor device
US7485516B2 (en) Method of ion implantation of nitrogen into semiconductor substrate prior to oxidation for offset spacer formation
US6245639B1 (en) Method to reduce a reverse narrow channel effect for MOSFET devices
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
KR100344375B1 (en) Semiconductor device manufacturing method
US6677212B1 (en) Elevated source/drain field effect transistor and method for making the same
JP3657915B2 (en) Semiconductor device and manufacturing method of semiconductor device
US6180543B1 (en) Method of generating two nitrogen concentration peak profiles in gate oxide
US6281085B1 (en) Method of manufacturing a semiconductor device
KR0130172B1 (en) Formation method of transistor of semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
KR100192537B1 (en) Method of manufacturing semiconductor device
KR100734259B1 (en) Method for fabricating semiconductor devices
KR0146242B1 (en) Forming method for transistor of semiconductor device
KR0137538B1 (en) Transistor fabrication method of semiconductor device
KR100607793B1 (en) Ion implantion method of poly silicon gate electrode
KR100756766B1 (en) Method for manufacturing a semiconductor device
KR100268865B1 (en) Method for fabricating semiconductor device
KR100235943B1 (en) Method of manufacturing tansistor of semiconductor device
KR20010098183A (en) Method of forming oxide film for semiconductor device
JPH03188637A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091028

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee