KR0125885Y1 - Compensating circuit for dead time with inverter - Google Patents

Compensating circuit for dead time with inverter Download PDF

Info

Publication number
KR0125885Y1
KR0125885Y1 KR2019930004430U KR930004430U KR0125885Y1 KR 0125885 Y1 KR0125885 Y1 KR 0125885Y1 KR 2019930004430 U KR2019930004430 U KR 2019930004430U KR 930004430 U KR930004430 U KR 930004430U KR 0125885 Y1 KR0125885 Y1 KR 0125885Y1
Authority
KR
South Korea
Prior art keywords
dead time
voltage
command
current
time compensation
Prior art date
Application number
KR2019930004430U
Other languages
Korean (ko)
Other versions
KR940023657U (en
Inventor
강준구
Original Assignee
성기설
엘지산전주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성기설, 엘지산전주식회사 filed Critical 성기설
Priority to KR2019930004430U priority Critical patent/KR0125885Y1/en
Publication of KR940023657U publication Critical patent/KR940023657U/en
Application granted granted Critical
Publication of KR0125885Y1 publication Critical patent/KR0125885Y1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53878Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0096Means for increasing hold-up time, i.e. the duration of time that a converter's output will remain within regulated limits following a loss of input power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

본 고안은 인버터의 데드타임 보상에 관한 것으로, 일반적으로 사용되고 있는 데드타임 보상 인버터 회로는 3 상 인가전압의 지령 Vu*,Vv*,Vw* 각각에 데드타임 보상을 해야하므로 복잡하게 되고, 전류의 극성을 판단한 후에 데드타임 보상전압이 결정되므로 예측 방식보다 응답성이 뒤지게 된다.This design is related to the dead time compensation of the inverter. The dead time compensation inverter circuit which is generally used becomes complicated because dead time compensation is required for each of the Vu *, Vv *, and Vw * Since the dead time compensation voltage is determined after the polarity is determined, the responsiveness is lower than the prediction method.

그리고 3상 인가전압 Vu*,Vv*,Vw* 를 계산하지 않고 Vd*,Vq* 만을 이용하여 지령전압을 출력하는 방식에는 적용이 불가능하게 된다.It is not applicable to the method of outputting the command voltage using only Vd * and Vq * without calculating the three-phase applied voltages Vu *, Vv * and Vw *.

이에 따라서 본 고안은 교류 3상 인가전압의 지령에 데드타임 보상전압을 더하는 종래의 방식에서 출력전압 연산기의 직류출력 Vd*, Vq*에 데드타임 보상전압을 더하는 방식으로 보상이 간편하고 특히 데드타임을 미리 예측하여 인가하므로 효과적인 보상이 가능케 하는 인버터의 데드타임 보상회로를 제공하는데 있다.Accordingly, in the present invention, in the conventional method of adding the dead time compensation voltage to the command of the AC three-phase applied voltage, the dead time compensation voltage is added to the DC outputs Vd * and Vq * of the output voltage calculator, The present invention provides a dead time compensation circuit for an inverter which enables effective compensation.

Description

인버터의 데드타임 보상회로The dead time compensation circuit of the inverter

제1도는 종래의 데드타임 보상 인버터 회로도.Figure 1 shows a conventional dead time compensation inverter circuit.

제2도는 제1도의 데드타임 보상기(1)의 상세 회로도.FIG. 2 is a detailed circuit diagram of the dead-time compensator 1 of FIG.

제3도는 본 발명에 따른 인버터의 데드타임 보상회로도.FIG. 3 is a dead time compensation circuit of the inverter according to the present invention; FIG.

제4도는 제3도의 데드타임 보상기(14)의 동작 구성도.FIG. 4 is a block diagram of the operation of the dead-time compensator 14 of FIG.

제5도는 데드타임의 발생에 대한 설명도.FIG. 5 is an explanatory diagram of occurrence of a dead time. FIG.

제6도는 데드타임을 발생시키는 것에 대한 설명도.FIG. 6 is an explanatory diagram for generating a dead time; FIG.

제7도는 출력전류와 데드타임에 의한 3상 왜형전압의 크기에 대한 설명도.7 is an explanatory diagram of the magnitude of the three-phase distortion voltage due to the output current and the dead time.

제8도는 3상 왜형전압을 직류성분으로 연산한 전압의 설명도.FIG. 8 is an explanatory diagram of a voltage obtained by calculating a three-phase distortion voltage as a DC component; FIG.

제9도는 제4도의 연산블록(41,42)에 의해 예측한 왜형전압의 설명도.FIG. 9 is an explanatory diagram of a distortion voltage predicted by the calculation blocks 41 and 42 of FIG. 4;

* 도면의 주요부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS

11 : 유동 전동기 12 : 전류 변환기11: Current transformer 12: Current transformer

13 : 출력전압 14 : 데드타임 보상기13: Output voltage 14: Dead time compensator

15 : 전압 변환기 16 : 인버터15: voltage converter 16: inverter

17 : PWM 제어부 18 : 데드타임 발생부17: PWM control unit 18: Dead time generator

본 고안은 인버터의 데드타임 보상에 관한 것으로, 특히 데드타임 보상이 어려운 공간 벡터 제어방식에서도 간편하게 적용할 수 있도록 하는데 적당하도록 한 인버터의 데드타임 보상회로에 관한 것이다.The present invention relates to dead time compensation of an inverter, and more particularly to a dead time compensation circuit of an inverter adapted to be easily applied to a space vector control method in which dead time compensation is difficult.

인버터는 직류를 교류로 변환하는 전력변환장치로서 파워 트랜지스터, FET, IBGT등의 전력용 반도체를 이용하여 반도체 스위치의 온, 오프 동작을 통해 전력을 변환한다.An inverter is a power conversion device for converting a direct current into an alternating current, and uses power semiconductors such as power transistors, FETs, and IBGTs to convert power through the on / off operation of a semiconductor switch.

이때 반도체 스위치가 이상적이지 못하기 때문에 온과 오프의 동작이 이루어질 때에는 인위적으로 충분히 오프시킨 다음 스위치를 온시켜야 하는 데드타임이 요구되며 이 데드타임은 인버터의 제어에 악영향을 미치므로 적절한 보상이 이루어져야 한다.In this case, since the semiconductor switch is not ideal, a dead time is required to be manually turned off and turned on when the operation of the switch is turned on and off, and the dead time is adversely affected by the control of the inverter. .

제1도는 종래의 전동기 제어회로로서 이에 도시한 바와 같이, 전동기(6)가 필요로 하는 전압(Vd*,Vq*)을 발생시키는 출력전압 연산기(3)와, 상기 출력전압 연산기(3)의 출력(Vd*,Vq*)을 3 상의 정현파 전압지령(Vu*,Vv*,Vw*)으로 변환하는 전압 변환기(4)와, 상기 전압 변환기(4)의 출력신호를 보상하여 최종적인 전동기 전압지령(eu*,ev*,ew*)을 발생시키는 데드타임 보상기(1)를 그 기본 구성으로 되어 있다.1 is a conventional motor control circuit, which includes an output voltage calculator 3 for generating voltages Vd * and Vq * required by the motor 6, A voltage converter 4 for converting the output voltages Vd * and Vq * into three-phase sine wave voltage commands Vu *, Vv * and Vw *; and a voltage converter 4 for compensating the output signal of the voltage converter 4, And a dead time compensator (1) for generating commands (e u *, e v *, e w *).

상기와 같이 구성한 종래의 전동기 제어회로에 대하여 그 동작과 문제점을 상세히 설명하면 다음과 같다.The operation and problems of the conventional motor control circuit constructed as described above will be described in detail as follows.

먼저, 전동기(6)를 제어하기 위하여 출력전압 연산기(3)에서는 전동기(6)가 필요로 하는 전압(Vd*,Vq*)를 연산한다. 이때 출력전압 연산기(3)는 전동기(6)의 입력전류를 변환하여 직류성분으로 변환한와 전동기 속도지령 WR*, 직류전류의 지령 Id*,Iq*를 입력정보로 필요로 한다.First, in order to control the electric motor 6, the output voltage calculator 3 calculates the voltages (Vd *, Vq *) required by the electric motor 6. At this time, the output voltage calculator 3 calculates the output current of the motor 6 Is converted into a DC component The motor speed command W R *, and the direct current commands Id * and Iq * as input information.

출력전압 연산기(3)의 출력 Vd*,Vq*는 다시 전압 변환기(4)를 통하여 3상의 정현파 전압지형 Vu*,Vv*,Vw*로 변환된다. 상기 전압 변환기(4)의 출력은 데드타임 보상기(1)를 통해 보상이 되어 최종적인 전동기 전압지령 eu*,ev*,ew* 로 변환된다.The outputs Vd * and Vq * of the output voltage calculator 3 are again converted into three-phase sine wave voltage terrain types Vu *, Vv * and Vw * through the voltage converter 4. [ The output of the voltage converter 4 is compensated through the dead time compensator 1 and converted into final motor voltage commands e u *, e v * and e w *.

상기 데드타임 보상기(1)는 제2도를 통해 상세히 설명되는데,종래의 데드타임 보상기(1)의 원리는 각 상의 전류 Iu,Iv,Iw의 극성에 따라 양의 부호이면 +Vd 만큼 더하여 최종적인 전압지령 eu*,ev*,ew*을 만들어 낸다.The dead time compensator 1 will be described in detail with reference to FIG. 2. The principle of the conventional dead time compensator 1 is + Vd if it is a positive sign according to the polarities of the currents Iu, Iv and Iw of each phase, Voltage commands e u *, e v *, and e w *.

그러나,이러한 회로는 3상 인가전압의 지령 Vu*,Vv*,Vw* 각각에 데드타임 보상을 해야하므로 복잡하게 되고,전류의 극성을 판단한 후에 데드타임 보상전압이 결정되므로 예측 방식보다 응답성이 뒤지게 된다.However, such a circuit becomes complex because it requires dead time compensation for each of the three-phase applied voltage commands Vu *, Vv *, and Vw *, and since the dead time compensation voltage is determined after determining the polarity of the current, It will fall behind.

그리고 3상 인가전압 Vu*,Vv*,Vw* 를 계산하지 않고 Vd*,Vq* 만을 이용하여 지령전압을 출력하는 방식에는 적용이 불가능하게 된다.It is not applicable to the method of outputting the command voltage using only Vd * and Vq * without calculating the three-phase applied voltages Vu *, Vv * and Vw *.

이에 따라서 본 고안은 교류 3상 인가전압의 지령에 데드타임 보상전압을 더하는 종래의 방식에서 출력전압 연산기의 직류출력 Vd*,Vq*에 데드타임 보상전압을 더하는 방식으로 보상이 간편하고 특히 데드타임을 미리 예측하여 인가하므로 효과적인 보상이 가능케 하는 인버터의 데드타임 보상회로를 제공하는데 있다.Accordingly, in the present invention, in the conventional method of adding the dead time compensation voltage to the command of the AC three-phase applied voltage, the dead time compensation voltage is added to the DC outputs Vd * and Vq * of the output voltage calculator, The present invention provides a dead time compensation circuit for an inverter which enables effective compensation.

제3도는 본 고안의 구성도로서 이에 도시한 바와 같이, 유도 전동기(11)에 흐르는 전류를 검출하여 전류 변환기(12)를 통해 직류성분으로 변환한 다음 전류를 출력하여 출력전압 연산기(13)의 입력으로 하고 상기 출력전압 연산기(13)에서는 지령 주파수(w1), 토크 지령전류(Iq*), 자속지령전류(Id*)를 입력으로 받아 지령전류를 만족시키기 위한 출력전압(Vd*,Vq*)를 연산한다.FIG. 3 is a block diagram of the present invention. As shown in FIG. 3, the current flowing through the induction motor 11 is detected and converted into a direct current component through the current converter 12, And the output voltage calculator 13 receives the command frequency w1, the torque command current Iq * and the magnetic flux command current Id * as input to the output voltage calculator 13 and satisfies the command current The output voltages Vd * and Vq * are calculated.

데드타임 보상기(14)는 제4도에서와 같이 블록(41,42,43)내의 연산과정을 통해 데드타임 보상전압(△Vd, △Vq)를 Vd*와 Vq*에 가산하여 지령전압의 직류치(ed*,eq*)를 연산한다.The dead time compensator 14 adds the dead time compensation voltages Vd and Vq to Vd * and Vq * through the calculation process in the blocks 41, 42 and 43 as shown in FIG. 4, (E d *, e q *).

상기 데드타임 보상기(14)의 출력은 전압 변환기(15)를 거쳐 교류 3상 지령전압(eu*,ev*,ew*)를 연산한다. 이 전압은 PWM 제어부(17)를 통하여 6개의 전력 스위치(SW1∼SW6)의 온,오프 지령신호가 되고 데드타임 발생부(18)를 거쳐 최종 전력 반도체 스위치(SW1∼SW6)의 구동신호가 된다.The output of the dead time compensator 14 computes the AC three-phase command voltages e u *, e v * and e w * via the voltage converter 15. This voltage becomes an ON / OFF command signal of the six power switches SW1 to SW6 through the PWM control unit 17 and becomes the drive signal of the final power semiconductor switches SW1 to SW6 via the dead time generator 18 .

상기와 같이 구성된 본 고안의 인버터의 데드타임 보상회로에 대하여 그 작용과 효과를 상세히 설명하면 다음과 같다.The operation and effect of the dead-time compensation circuit of the inverter according to the present invention will be described in detail as follows.

인버터의 전력 스위치(SW1∼SW6)의 스위칭 동작에는 제5도와 같은 이유로 인하여 데드타임이 발생한다.The switching operation of the power switches SW1 to SW6 of the inverter causes a dead time due to the same reason as the fifth aspect.

즉, 제5도(a)와 같은 구동지령을 전력 스위치(SW1)에 인가할 때 이상적인 경우라면 상기 스위치(SW1)는 지령(g1)에 대하여 응답 지연없이 동작하여 제5도(b)와 같이 온,오프된다.5 (a), the switch SW1 operates without any response delay with respect to the command g1, as shown in FIG. 5 (b), when it is ideal when the drive command is applied to the power switch SW1 On and off.

그러나, 전력 반도체는 오프의 응답성이 매우 느린 편이므로 제5도(c)와 같이 Td 시간정도 지연된 후 오프가 된다. 이런 전력 반도체의 특성때문에 제6도와 같은 배치를 갖는 인버터에서는 제6도(a)와 같이 지령(g1,g4)가 출력되면, 전력 스위치(SW1,SW4)는 제6도(b)와 같은 파형으로 동작하므로 전력 스위치(SW1,SW4)가 동시에 온되는 구간 tx가 발생한다.However, since the response of the power semiconductor is very slow, the power semiconductor is turned off after being delayed by about Td time as shown in FIG. 5 (c). Because of the characteristics of such a power semiconductor, when the inverters having the same layout as the sixth scheme output the commands g1 and g4 as shown in FIG. 6 (a), the power switches SW1 and SW4 are turned on, Since the operation and the period t x the power switch (SW1, SW4) are turned on at the same time occurrence.

이 구간에서는 콘덴서 직류전원(VDC)가 단락상태가 되어 과전류로 인하여 전력소자가 파괴된다.In this section, the capacitor DC power supply (V DC ) is short-circuited and the power supply is destroyed due to the overcurrent.

이를 방지하기 위하여 제6도(c)와 같이 지령(g1,g4)를 모두 오프시키는 구간을 인위적으로 만드는데 이를 데드타임이라고 한다.In order to prevent this, as shown in FIG. 6 (c), a section for turning off all of the commands g1 and g4 is artificially generated, which is referred to as a dead time.

이와 같은 데드타임중에는 원하는 출력전압이 발생되지 못하므로 전체적으로는 전압의 왜형을 가져온다.During such a dead time, the desired output voltage is not generated, resulting in a voltage distortion as a whole.

본 고안은 3상 출력전압에서 발생하는 데드타임에 의한 전압왜형을 예측하여 직류성분으로 보상하는 것을 특징으로 하며, 3상에서 발생하는 전압왜형 성분은 제7도와 같이 발생하고 이를 직류성분 전압으로 계산하면 제8도의 △Vdc, △Vqc만큼의 전압왜형이 발생하므로 왜형전압을 예측하여 미리 보상하면 미리 데드타임에 의한 전압왜형을 빠르게 제거할 수있다.The present invention is characterized in that a voltage distortion due to a dead time occurring at a three-phase output voltage is predicted and compensated with a DC component. The voltage distortion component occurring at the third phase occurs as in the seventh aspect and is calculated as a DC component voltage A voltage distortion of ΔVd c and ΔVq c occurs in FIG. 8, so that it is possible to quickly remove the voltage distortion due to the dead time in advance by predicting and compensating for the distortion voltage.

제9도는 제4도의 연산블록(41,42)과 같은 연산을 통해 예측한 데드타임 전압왜형 △Vd, △Vq이다. 이 전압은 제8도의 △Vdc, △Vq와 완전히 일치한다.FIG. 9 is the dead time voltage distortions .DELTA.Vd and .DELTA.Vq predicted through the same operation as the operation blocks 41 and 42 of FIG. This voltage completely coincides with? Vd c and? Vq in FIG.

따라서 본 고안은 제4도와 같은 데드타임 보상부에 의해 △Vd, △Vq를 연산하고 이를 직류 출력전압(Vd*,Vq*)과 각각 더함으로써 데드타임 보상을 구현한다.Therefore, the present invention implements dead time compensation by calculating ΔVd and ΔVq by the dead time compensation unit of FIG. 4 and adding it to the DC output voltages Vd * and Vq *, respectively.

제4도에서는 출력 주파수(W1), 자속성분 지령전류(Id*), 토크성분 지령전류(Iq*)를 입력으로 받는다. 보상하여야 할 전압의 크기는 제3도의 PWM 제어부(17)의 스위칭 주파수의 한 주기 Tc, 데드타임 발생부(18)의 데드타임 Td에 의해 식(1)과 같이 연산하고, 전류위상의 지연성분(ζ)는 식(2)와 같이 연산한다.In FIG. 4, the output frequency W1, the magnetic flux component command current Id *, and the torque component command current Iq * are input. The magnitude of the voltage to be compensated is calculated by equation (1) by one cycle Tc of the switching frequency of the PWM control unit 17 of FIG. 3 and the dead time Td of the dead time generator 18, (ζ) is calculated as shown in equation (2).

식(3)의 출력(θ)는 제9도(a)와 같이 출력되며, 최종적으로 왜형 보상전압(△Vd)는 제4도의 연산블록(42)과 같이 연산되어 (b)와 같은 전압을 보이며 △Vq는 연산블록(41)과 같이 연산하여 제9도의 (c)와 같은 전압을 보이게 된다.The output of the equation (3) is output as shown in FIG. 9 (a), and finally the distortion compensation voltage? Vd is calculated as in the calculation block 42 of FIG. And? Vq is calculated as in the calculation block 41, and the voltage shown in (c) of FIG. 9 is displayed.

위의 연산을 통하여 출력된 데드타임 왜형 보상전압(△Vd, △Vq)은 지령전압(Vd*,Vq*)에 더해져서 ed*,eq*라는 지령으로 최종 출력된다.The dead-time distortion compensation voltages? Vd and? Vq output through the above operation are added to the command voltages Vd * and Vq * and finally output with commands dd * and eq *.

이상에서와 같이 본 고안은 데드타임의 발생에 의해 생기는 전압의 왜형을 빠르게 보상함으로써 출력전압의 왜형을 제거할 수 있는 효과가 있다.As described above, the present invention has the effect of eliminating the distortion of the output voltage by quickly compensating the distortion of the voltage caused by the occurrence of the dead time.

Claims (1)

유도 전동기(11)에 흐르는 전류를 검출하여 이를 직류성분으로 변환하는 전류 변환기(12)와, 상기 전류 변환기(12)의 출력전류를 입력받고 지령 주파수(w1), 토크 지령전류(Iq*), 자속지령전류(Id*)를 입력으로 받아 지령전류를 만족시키기 위한 출력전압(Vd*,Vq*)를 연산하는 출력전압 연산기(13)와, 데드타임 보상전압(△Vd, △Vq)를 Vd*와 Vq*에 가산하여 지령전압의 직류치(ed*,eq*)를 연산하는 데드타임 보상기(14)와, 상기 데드타임 보상기(14)의 출력을 입력으로 받아 교류 3상 지령전압(eu*,ev*,ew*)을 발생시키는 전압 변환기(15)와, 상기 전압 변환기(15)의 교류 3상 지령전압(eu*,ev*,ew*)에 따라서 전력 스위치(SW1∼SW6)의 온,오프 구동을 위한 지령신호를 발생시키는 PWM 제어부(17)와, 인버터(16)의 스위치(SW1∼SW6)의 구동에 필요한 데드타임을 발생시키는 데드타임 발생부(18)를 포함하여 구성된 것을 특징으로 하는 인버터의 데드타임 보상회로.A current converter (12) for detecting a current flowing in the induction motor (11) and converting the current into a direct current component; And an output voltage calculator (Vd *, Vq *) for receiving the command current (w1), the torque command current (Iq *) and the magnetic flux command current (Id * A dead time compensator 14 for calculating direct current values e d * and e q * of command voltages by adding dead time compensation voltages Vd and Vq to Vd * and Vq * A voltage converter 15 for receiving an output of the dead time compensator 14 as an input and generating an AC three-phase command voltage e u *, e v *, e w * A PWM control section 17 for generating a command signal for on and off driving of the power switches SW1 to SW6 in accordance with command voltages e u *, e v * and e w * And a dead time generator (18) for generating a dead time required for driving the switches (SW1 to SW6).
KR2019930004430U 1993-03-24 1993-03-24 Compensating circuit for dead time with inverter KR0125885Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2019930004430U KR0125885Y1 (en) 1993-03-24 1993-03-24 Compensating circuit for dead time with inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2019930004430U KR0125885Y1 (en) 1993-03-24 1993-03-24 Compensating circuit for dead time with inverter

Publications (2)

Publication Number Publication Date
KR940023657U KR940023657U (en) 1994-10-22
KR0125885Y1 true KR0125885Y1 (en) 1999-04-15

Family

ID=19352573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2019930004430U KR0125885Y1 (en) 1993-03-24 1993-03-24 Compensating circuit for dead time with inverter

Country Status (1)

Country Link
KR (1) KR0125885Y1 (en)

Also Published As

Publication number Publication date
KR940023657U (en) 1994-10-22

Similar Documents

Publication Publication Date Title
US10494017B2 (en) Electric power steering apparatus
Moon et al. A discrete-time predictive current control for PMSM
EP0116706B1 (en) Control system for a voltage-type inverter
EP1858150B1 (en) Modulation methods and apparatus for reducing common mode noise
WO2017221339A1 (en) Power conversion device
EP3460985B1 (en) Electric power steering device
US10427710B2 (en) Electric power steering apparatus
Weber et al. Compensation of switching dead-time effects in voltage-fed PWM inverters using FPGA-based current oversampling
US5623192A (en) Apparatus for carrying out current control for variable speed driver and method for carrying out current control therefor
JPH08289588A (en) Power converter
JP4675573B2 (en) AC motor control device
JPH11262269A (en) Control of pulse width modulated inverter
JP2003309975A (en) Pwm cycloconverter and control method therefor
KR0125885Y1 (en) Compensating circuit for dead time with inverter
JPH1127951A (en) Pwm inverter controller
Oh et al. Dead-time compensation of a current controlled inverter using the space vector modulation method
JP3276135B2 (en) Power converter
JPH10225142A (en) Dead time compensation circuit for inverter
US7049777B2 (en) Motor control device and motor control method
Xie et al. Comparisons of FCS-MPC schemes and conventional PI-based methods for electrical drive systems
JP4877594B2 (en) Matrix converter device and control method thereof
Bahar et al. PERMANENT MAGNET SYNCHRONOUS MOTOR TORQUE RIPPLE REDUCTION USING PREDICTIVE TORQUE CONTROL
Pontt et al. Output sinus filter for medium voltage drive with direct torque control
CN1307779C (en) Conversion device and its idle time compensation method
Lee et al. Model predictive control with space vector modulation based on a voltage angle for driving open-end winding IPMSM

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20030328

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee