KR0122753B1 - Method of heavy metal absorbent from microorganism culture - Google Patents

Method of heavy metal absorbent from microorganism culture

Info

Publication number
KR0122753B1
KR0122753B1 KR1019940009212A KR19940009212A KR0122753B1 KR 0122753 B1 KR0122753 B1 KR 0122753B1 KR 1019940009212 A KR1019940009212 A KR 1019940009212A KR 19940009212 A KR19940009212 A KR 19940009212A KR 0122753 B1 KR0122753 B1 KR 0122753B1
Authority
KR
South Korea
Prior art keywords
adsorption
heavy metal
biopolymers
adsorbent
culture
Prior art date
Application number
KR1019940009212A
Other languages
Korean (ko)
Other versions
KR950029345A (en
Inventor
정윤철
안대희
박대원
Original Assignee
김은영
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김은영, 한국과학기술연구원 filed Critical 김은영
Priority to KR1019940009212A priority Critical patent/KR0122753B1/en
Publication of KR950029345A publication Critical patent/KR950029345A/en
Application granted granted Critical
Publication of KR0122753B1 publication Critical patent/KR0122753B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof

Abstract

Absorbent for heavy metals is manufactured by fixing biopolymer extracted from microbial culture broth to sodium alginate and odium metasilicate. Sodium metasilicate is added to optimum culture broth of Zoogloea ramigera at the concentration of 10 g/l. with stirring at 40 C for 1 hr. 2% Sodium alginate is added to above mixture at the ratio of 1:1 and stirred for 10 min. Then saturated solution of calcium chloride is droped to the mixture with stirring to give the bead type of absorbent with the constant size. absorbent obtained can be used for the treatment of heavy metals in waste water, underground water, soil and wastes.

Description

미생물 배양액으로 중금속 흡착제를 제조하는 방법Method for preparing heavy metal adsorbent with microbial culture

본 발명은 주그리아 라미제라의 배양액과 여기에서 추출한 생물고분자 소디움메타실리케이트와 소디움알지네이트를 이용하여 고정화시킨 중금속 흡착제 제조방법에 관한 것이다.The present invention relates to a method for producing a heavy metal adsorbent immobilized using a culture solution of Zugria ramizera and a biopolymer sodium metasilicate and sodium alginate extracted therefrom.

본 발명은 주그리아 라미제라(Zoogloea ramigera)를 최적 배양한 후, 이 배양액 및 여기에서 추출한 생물고분자를 소디움메타실리케이트와 소디움알지네이트를 이용하여 고정화시킨 중금속 흡착제 및 이의 제조방법에 관한 것이다.The present invention relates to a heavy metal adsorbent obtained by optimally cultivating Zoogloea ramigera and immobilizing the culture medium and the biopolymers extracted therein using sodium metasilicate and sodium alginate, and a method for preparing the same.

현재 각국에서는 유가(有價) 자원으로서의 금속의 가치가 증가할 뿐만 아니라 자연환경에 방출되는 유독성 금속들의 생태학적 영향에 대한 우려가 커짐에 따라 폐수, 지하수, 토양 또는 폐기물에서 금속을 제거, 회수하는 연구가 활발히 수행되고 있다.In each country, research on the removal and recovery of metals from wastewater, groundwater, soil, or wastes has not only increased the value of metals as oil resources but also increased concern about the ecological effects of toxic metals released into the natural environment. Is being actively performed.

기존 중금속 폐수의 처리방법으로는 산화/환원법, 응집침전법, 흡착, 이온교환법, 전기분해법, 중화법, 추출법 등이 있는데 응집침전법과 이온교환수지법이 가장 많이 쓰여지고 있다. 이들 공정들은 특히 용액내에 1∼100㎎/L 정도의 금속들이 함유되어 있을 때에는 비효율적이거나 비용이 아주 비싼 단점이 있다.(Water Treatment Principles and Design, John Wiley and Sons, 1985) 응집침전법은 설치가 용이하고 유지비용과 에너지 소비가 상대적으로 낮은 장점을 가지고 있기 때문에 가장 보편적으로 사용되고 있는 방법이나, 중금속 제거율이 낮고 많은 양의 화학응집제가 사용되어 침전되는 슬러지 처리등의 큰 문제점을 지니고 있다. 이온교환수지법은 침전법에 비하여 제거율이 높고 저농도의 중금속 이온을 선택적으로 제거할 수 있는 장점이 있으나, 고가의 수지를 사용하여야 하기 때문에 금속의 회수 및 재사용이 병행되지 않을 경우 다른 처리법에 비하여 비경제적이라 할 수 있다.Conventional methods of treating heavy metal wastewater include oxidation / reduction method, flocculation sedimentation method, adsorption, ion exchange method, electrolysis method, neutralization method, extraction method, etc. The flocculation sedimentation method and ion exchange resin method are most commonly used. These processes have the disadvantage of being inefficient or very expensive, especially when the solution contains 1-100 mg / L of metal (Water Treatment Principles and Design, John Wiley and Sons, 1985). It has the advantages of being the most commonly used method because of the easy and maintenance costs and relatively low energy consumption, but has a big problem, such as sludge treatment is a low heavy metal removal rate and a large amount of chemical coagulant is used. The ion exchange resin method has the advantage of higher removal rate and selective removal of heavy metal ions compared to the precipitation method. However, since expensive resin must be used, the recovery and reuse of metals are not performed in comparison with other treatment methods. It can be called economic.

활성슬러지 중에 자연적으로 서식하는 주요 응집성 미생물인 주그리아 라미제라는 여러종류의 탄소원과 질소원에서 다당류를 생산한다. 생성된 다당류는 세포의 응집과 중금속 흡착능력 등 슬러지의 물성에 영향을 미쳐, 슬러지의 분리 및 궁극적으로 폐수중의 생물학적 산소요구량(BOD) 저감에 주요한 역할을 한다.Zugria lamize, a major cohesive microorganism that naturally lives in activated sludge, produces polysaccharides from several carbon and nitrogen sources. The produced polysaccharides affect the sludge properties such as cell aggregation and heavy metal adsorption capacity, and play a major role in the sludge separation and ultimately reducing the biological oxygen demand (BOD) in the wastewater.

본 발명자들은 폐수처리시 생물고분자로서 사용되는 등 그 수요가 크게 증대되고 있는 다당류를 주그리아 라미제라의 순수배양을 통해 대량 생산하는 방법에 관하여 예의 연구를 거듭합 결과, 주그리아 라미제라의 최적 배양조건과 생물고분자의 생산을 위한 배지 조성물 및 이를 사용한 생물고분자의 생산방법에 관한 발명을 완성하여 특허출원(제92-638호)을 하였다. 이후 주그리아 라미제라 배양액과 여기에서 추출한 생물고분자의 중금속 흡착성능에 관한 연구를 계속, 수행하여, 배양액 및 여기에서 추출한 생물고분자가 우수한 중금속 흡착성능을 나타냄을 발견하였다. 그러나 중금속 흡착공정에서 원래의 생물흡착제를 고정화시키지 않고 사용하는 것은 실제적인 면에서 여러가지 어려운 점이 있다. 즉 건조미생물, 미세한 가루 또는 입상 또는 덩어리등은 물에 젖으면 부풀기 쉽고, 깨어지는 등 취급이 용이하지 않은 어려움이 있으므로 이들 물질들은 실제 공정에 적용하기 위해서는 원래의 물질을 일정한 경도를 갖는 적당한 담체를 이용하여 고정화시켜 사용하여야 한다. 알려진 고정화방법으로는 아크릴아마이드를 담체로 이용하는 방법, 폴리비닐알콜과 보릭산을 이용하는 방법, 소디움알지네이트를 이용하는 방법 등이 있다. 그러나 이들 방법에 의해 만들어진 비드(bead)들은 장기간의 운전시 비드가 부풀게 되고 깨지게 되는 등의 단점이 있어 장기간의 운전에는 적합하지 못하다. 본 발명은 이와 같은 결점을 해소키 위한 것으로 효과적인 중금속 흡착제로서의 특성을 갖는 적당한 담체를 이용하여 배양액과 추출한 생물고분자를 담체에 고정화시키는 방법을 발명하고, 이를 이용하여 중금속의 연속적인 흡착과 탈착 및 재흡착의 실험을 통하여 우수한 중금속 흡착제 제조방법을 발명하였다.The present inventors have conducted extensive research on the method of mass-producing polysaccharides, which are used as biopolymers in wastewater treatment, through the pure culture of Zugria ramizera. The patent application (No. 92-638) was completed by completing an invention relating to an optimum culture condition and a medium composition for producing biopolymers and a method for producing biopolymers using the same. Subsequently, studies on the adsorption performance of heavy metals of the Zugria ramizera culture medium and the biopolymers extracted therefrom were continued, and it was found that the culture medium and the biopolymers extracted therefrom exhibited excellent heavy metal adsorption performance. However, in the heavy metal adsorption process, using the original biosorbent without immobilization has several difficulties in practical terms. In other words, dry microorganisms, fine powders or granules or lumps are easily swelled when wet, and are difficult to handle, such as being broken. Therefore, these materials are suitable carriers having a certain hardness in order to be applied to an actual process. It should be fixed by using. Known immobilization methods include acrylamide as a carrier, polyvinyl alcohol and boric acid, sodium alginate, and the like. However, the beads made by these methods have disadvantages such as swelling and breaking of beads during long-term operation, which is not suitable for long-term operation. The present invention has been made to solve the above-mentioned drawbacks, and invents a method of immobilizing the culture medium and the extracted biopolymer onto the carrier using a suitable carrier having the characteristics of an effective heavy metal adsorbent. Through experiments of adsorption, an excellent method for preparing a heavy metal adsorbent was invented.

본 발명의 주목적은 주그리아 라미제라를 최적 배양하여 여기에서 생물고분자를 추출하고 추출한 생물 고분자를 고정화시킨 중금속 흡착제를 제공하는 것이다. 본 발명의 기타 목적 및 잇점은 이하의 본 발명의 상세한 설명으로부터 명백히 알 수 있다. 본 발명자들은 주그리아 라미제라를 최적배양하여 여기서 생물고분자를 추출하고 추출한 생물고분자의 중금속 흡착 특성을 조사하기 위하여 배양액, 건조세포와 추출하지 않은 생물고분자, 활성슬러지, 주정폐수, 혐기성 입상슬러지를 흡착제로 선택하여 중금속 흡착실험을 수행한 결과, 주그리아 라미제라 배양액 및 건조세포와 추출하지 않은 생물고분자 및 추출한 생물고분자가 흡착제로 비교선택된 다른 물질들 보다 우수한 중금속 흡착성능을 나타낸다는 사실을 발견하고, 이를 적당한 담체에 고정화시키는 새로운 고정화방법을 발명하여, 고정화된 배양액과 생물고분자가 연속적인 중금속 흡착과 탈착 및 재흡착실험에 있어서도 안정하게 효과적으로 중금속 흡착을 한다는 사실을 확인하므로서 본 발명을 완성하였다.An object of the present invention is to provide a heavy metal adsorbent in which the optimal culture of the Zugria ramizera is extracted and the biopolymers are extracted and the extracted biopolymers are immobilized. Other objects and advantages of the present invention are apparent from the following detailed description of the present invention. The present inventors have optimally cultured Zugria ramizera to extract the biopolymers and to investigate the adsorption characteristics of the extracted biopolymers in the culture medium, dry cells and unextracted biopolymers, activated sludge, alcoholic wastewater, anaerobic granular sludge. As a result of the heavy metal adsorption experiment by selecting as an adsorbent, it was found that the culturing of Zugria ramizera culture and dried cells, unextracted biopolymers and extracted biopolymers showed better heavy metal adsorption performance than other materials selected as adsorbents. The present invention was completed by confirming that the immobilized culture medium and the biopolymers stably and effectively adsorb heavy metals even in continuous heavy metal adsorption, desorption and resorption experiments. .

본 발명은 주그리아 라미제라의 배양액과 여기에서 추출한 생물고분자를 소디움메타실리케이트와 소디움알지네이트를 이용하여 고정화시킨 중금속 흡착제 제조방법에 관한 것이다.The present invention relates to a method for producing a heavy metal adsorbent in which a culture solution of Zugria ramizera and a biopolymer extracted therefrom are immobilized using sodium metasilicate and sodium alginate.

본 발명에 의한 고정화방법을 이용하여 주그리아 라미제라의 배양액과 생물고분자를 고정화시키면 기존의 일반적인 고정화방법인 소디움알지네이트만으로 고정화시킨 것에 비하여 경도가 강한 안정된 물진을 얻게 되어 장기간의 운전 및 연속적인 중금속 흡착과 탈착 및 재흡착실험을 수행하여도 형태가 변하지 않고 안정된 흡착성능을 갖는 흡착제로서의 기능을 수행할 수 있다.The immobilization method according to the present invention immobilizes the culture medium and the biopolymers of Zugria ramizera to obtain a stable hardness which is harder than the immobilization using only sodium alginate, which is a conventional general immobilization method. Even if the adsorption, desorption and resorption experiments are carried out, the function of the adsorbent having a stable adsorption performance without changing the shape can be performed.

이하, 본 발명을 실시예에 의하여 더욱 구체적으로 설명한다. 하기 실시예에서는 대표적 플록(floc) 생성균인 주그리아 라미제라 115(ATCC 25935)를 미국 ATCC로부터 구입하여 사용하였고, 이 균주의 보관을 위하여는 아르기닌 배지를 사용하였다. 배지의 조성은 다음과 같다. 아르기닌 하이드로클로라이드 0.5g/L, 알라닌 1.0g/L, 황산마그네슘칠수화물 0.2g/L, 인산수소2칼륨 2.0g/L, 인산2수소칼륨 0.5g/L, 포도당 25g/L, 비타민 B121.5×10-6g/L(Applied Microbiology, 1971 참조).Hereinafter, the present invention will be described in more detail with reference to Examples. In the following example, a representative floc producing bacterium Juglia Ramizera 115 (ATCC 25935) was purchased from the US ATCC and used for storage of this strain, and arginine medium was used. The composition of the medium is as follows. Arginine Hydrochloride 0.5g / L, Alanine 1.0g / L, Magnesium Sulfate Heptahydrate 0.2g / L, Dipotassium Hydrogen Phosphate 2.0g / L, Potassium Dihydrogen Phosphate 0.5g / L, Glucose 25g / L, Vitamin B 12 1.5 10-6 g / L (see Applied Microbiology, 1971).

[실시예1]Example 1

주그리아 라미제라 배양액 및 추출한 생물고분자의 흡착특성Adsorption Characteristics of Zugria Ramizera Culture and Extracted Biopolymers

주그리아 라미제라를 최적 배양하여 여기에서 생물고분자를 추출하고, 추출한 생물고분자의 중금속 흡착 특성을 조사하기 위하여 배양액, 건조세포와 추출하지 않은 생물고분자, 추출한 생물고분자, 활성슬러지, 주정폐수, 혐기성 입상슬러지를 흡착제로 선택하여 중금속 흡착실험을 수행하였다. 카드뮴 인공폐수를 시료로 사용했을 때, 각 흡착물질의 흡착평형은 pH 7, 온도 25℃의 조건에서 반응시간 1시간∼1시간 20분 사이에서 이루어졌다. 위의 실험조건에서의 각각의 흡착제의 흡착실험결과는 다음과 같다. 흡착량은 발효조 배양액이 그램당 200밀리그램의 카드뮴을 흡착하였으며, 건조세포와 추출하지 않은 생물고분자는 170, 추출한 생물고분자는 140, 혐기성 입상슬러지는 80, 주정폐수는 60, 활성슬러지는 40밀리그램의 카드뮴을 흡착하였다. 실험결과, 생물고분자가 함유된 발효조 배양액의 경우 중금속 흡착능력이 있는 것으로 알려진 활성슬러지에 비하여 5배의 흡착능력을 보여주었다.In order to optimize the culturing of Zugria ramizera and extract biopolymers from them, to investigate the adsorption characteristics of the extracted biopolymers, the culture medium, dry cells and unextracted biopolymers, extracted biopolymers, activated sludge, alcoholic wastewater, anaerobic Granular sludge was selected as an adsorbent and heavy metal adsorption experiments were performed. When the cadmium artificial wastewater was used as a sample, the adsorption equilibrium of each adsorbent was performed between 1 hour and 1 hour and 20 minutes under the conditions of pH 7, temperature 25 ° C. The adsorption test results of each adsorbent under the above test conditions are as follows. Adsorption amount of fermenter broth adsorbed 200 milligrams of cadmium per gram, dry cells and unextracted biopolymers were 170, extracted biopolymers were 140, anaerobic granular sludge was 80, alcoholic wastewater was 60 and activated sludge was 40 milligrams. Cadmium was adsorbed. As a result, the fermenter culture broth containing biopolymer showed 5 times adsorption capacity compared to activated sludge known to have heavy metal adsorption capacity.

[실시예2]Example 2

주그리아 라미제라 배양액 및 추출한 생물고분자의 고정화에 의한 중금속 흡착제의 제조Preparation of Heavy Metal Adsorbents by Immobilization of Zugria Ramizera Culture and Extracted Biopolymers

주그리아 라미제라를 최적 배양한 후, 그 배양액 1리터당 10그램의 소디움메타실리케이트를 넣은 후 온도를 40℃로 유지하면서 1시간 동안 격렬하게 교반하면 배양액속의 미생물 세포와 생물고분자가 소디움메타실리케이트와 격자를 형성하면서 용액 자체의 점도가 급격히 증가한다. 점도가 증가된 용액에 2%의 소디움알지네이트 용액을 1:1의 비율로 섞은 후, 10분 동안 격렬하게 교반시킨다. 이렇게 만들어진 혼합액을 고정화장치를 이용하여 칼슘클로라이드 포화용액에 일정속도로 떨어뜨리면서 교반하면 본 발명 중금속 흡착제인 일정크기의 비드입자가 형성된다. 이와 같은 비드입자가 형성되는 이유는 혼합액속의 소디움메타실리케이트와 소디움알지네이트의 소디움이온과 칼슘클로라이드의 칼슘이온간의 치환이 이루어지기 때문이다. 이렇게 고정화된 비드 자체는 칼슘메타실리케이트와 칼슘알지네이트의 격자를 담체로 하고 그 속에 미생물 세포와 생물고분자가 안정하게 갇혀 있게 된다. 이와 같은 구조는 주사형 전자현미경을 통하여 확인되었다.After optimal cultivation of Zugria ramizera, 10 grams of sodium metasilicate per liter of the culture medium was added and vigorously stirred for 1 hour while maintaining the temperature at 40 ° C. The microbial cells and biopolymers in the culture medium were mixed with sodium metasilicate. The viscosity of the solution itself sharply increases while forming a lattice. 2% sodium alginate solution is mixed in a 1: 1 ratio to the solution with increased viscosity, followed by vigorous stirring for 10 minutes. When the mixed solution is agitated while falling to a saturated solution of calcium chloride at a fixed rate using an immobilization device, beads of a certain size, which are heavy metal adsorbents of the present invention, are formed. Such bead particles are formed because the substitution between sodium methsilicate in the mixed liquid and sodium ions of sodium alginate and calcium ions of calcium chloride is performed. The immobilized beads themselves are based on a lattice of calcium metasilicate and calcium alginate, and microbial cells and biopolymers are stably trapped therein. Such a structure was confirmed through a scanning electron microscope.

[실시예3]Example 3

고정화된 주그리아 라미제라 배양액의 중금속 흡착특성Adsorption Characteristics of Heavy Metals in Immobilized Zugria Lamigera Cultures

실시예 2에서 제조한 흡착제의 각 중금속에 대한 흡착성능을 살펴보기 위하여 흡착등온선을 작성하였다. 실험한 대상중금속은 Cd, Cr, Cu, Mn, Zn이며, 중금속 농도범위는 최대 6400ppm까지로 하였고, 유가금속으로는 Au, Ag를 대상으로 하여 실험하였다. 실험결과 실시예 2에서 제조한 흡착제의 경우 Cd 480㎎/g, Cu 360.4㎎/g, Zn 140.8㎎/g, Mn 115㎎/g, Cr 26.6㎎/g, Ag 45.5㎎/g, Au 9.8㎎/g의 순서로 최대 흡착성능을 나타냈다. 비교실험으로써 상업적으로 판매되고 있는 이온교환수지인 CR20(상품명)의 중금속 흡착실험도 수행한 결과, Cd 40㎎/g, Mn 107㎎/g, Zn 140㎎/g, Cu 600㎎/g의 최대흡착성능을 나타냈다. 위의 결과를 비교하여 보면 Cd의 경우에는 실시예 2에서 제조한 흡착제가 이온교환수지보다 우수한 흡착능력을 보임을 알 수 있으며, Cu의 경우는 이온교환수지가 흡착능력이 더 우수하며, Mn과 Zn의 경우에는 비슷한 흡착성능을 나타냈다. 또한 지하수내에 있는 중금속의 흡착을 고려하는 실험으로써 Ca, Mg의 존재하에서의 Cu에 대한 흡착실험을 수행하였다. 실시예 2에서 제조한 흡착제의 경우는 Ca, Mg은 흡착하지 않고 Cu만을 선택적으로 흡착한 반면, 상업적으로 판매되고 있는 이온교환수지인 SKIB는 Ca, Mg으로 인하여 Cu에 대한 흡착성능이 현저하게 저하하고 Ca도 다량 흡착하는 것으로 나타났다. 위의 결과로부터 지하수등에 함유되어 있는 중금속의 선택적인 흡착에 실시예 2에서 제조판 흡착제의 사용이 적합함을 알 수 있다.Adsorption isotherms were prepared to examine the adsorption performance of each heavy metal of the adsorbent prepared in Example 2. The tested heavy metals were Cd, Cr, Cu, Mn, and Zn. The heavy metal concentration range was up to 6400 ppm, and valuable metals were tested with Au and Ag. Experimental results For the adsorbent prepared in Example 2, Cd 480 mg / g, Cu 360.4 mg / g, Zn 140.8 mg / g, Mn 115 mg / g, Cr 26.6 mg / g, Ag 45.5 mg / g, Au 9.8 mg Maximum adsorption performance was shown in the order of / g. As a comparative experiment, heavy metal adsorption experiment of CR20 (trade name), which is a commercially available ion exchange resin, was also performed. As a result, Cd 40 mg / g, Mn 107 mg / g, Zn 140 mg / g, Cu 600 mg / g Adsorption performance was shown. Comparing the above results, it can be seen that in the case of Cd, the adsorbent prepared in Example 2 showed better adsorption capacity than the ion exchange resin, and in the case of Cu, the ion exchange resin had better adsorption capacity, and Mn and Zn showed similar adsorption performance. In addition, adsorption experiments for Cu in the presence of Ca and Mg were carried out to consider adsorption of heavy metals in groundwater. In the case of the adsorbent prepared in Example 2, only Ca and Mg were selectively adsorbed without adsorption, whereas SKIB, a commercially available ion exchange resin, significantly reduced the adsorption performance to Cu due to Ca and Mg. And Ca was also adsorbed in large quantities. From the above results, it can be seen that the use of a plate adsorbent in Example 2 is suitable for the selective adsorption of heavy metals contained in groundwater and the like.

[실시예4]Example 4

고정화된 주그리아 라미제라 배양액의 충전충 반응기에서의 흡착실험Adsorption Experiment of Packed Reactor with Immobilized Zugria Ramizera Culture

본 발명 흡착제의 연속적인 중금속 흡착실험을 위하여 충전탑에 실시예 2에서 제조한 흡착제를 충전시켜 Cr, Zn, Mn, Cu, Cd 중금속에 대한 연속적인 흡착실험을 수행하였다. 이와 비교실험으로써 시판중인 이온교환수지인 CR20 수지도 충전탑에 충전시켜 위의 중금속에 대한 흡착실험을 수행하였다. 대상중금속의 농도는 각각 100ppm으로 하였으며 충전탑내에서의 체류시간은 30분으로 하였다. 실험결과 실시예 2에서 제조한 흡착제의 경우, 파과(breakthrough)되어 나오는 중금속의 순서는 Cr, Mn, Zn, Cd, Cu의 순서로 나타났으며, 파과점에서의 중금속 흡착량은 Cr 0.4g, Mn 2.03g, Zn 2.52g, Cd 3.21g, Cu 5.44g으로 흡착성능은 Cu가 가장 우수하게 나타났다. CR20의 경우는 파과점에서의 중금속 흡착량은 Mn 03.g, Zn 0.42g, Cd 0.43g, Cu 4.2g으로 나타났다. 위의 결과로부터 실시예 2에서 제조한 흡착제의 중금속 흡착능력이 우수함을 알 수 있다.For continuous heavy metal adsorption experiment of the adsorbent of the present invention, a packed column was packed with the adsorbent prepared in Example 2 to carry out continuous adsorption experiments on Cr, Zn, Mn, Cu, Cd heavy metals. As a comparative experiment, CR20 resin, which is a commercial ion exchange resin, was also packed into a packed column, and adsorption experiment was carried out on the heavy metals. The concentration of the heavy metals was 100 ppm and the residence time in the packed column was 30 minutes. Experimental results In the case of the adsorbent prepared in Example 2, the breakthrough of heavy metals appeared in the order of Cr, Mn, Zn, Cd, Cu, and the adsorption amount of heavy metals at the breakthrough point was 0.4 g of Cr, Cu showed the best adsorption performance with Mn 2.03g, Zn 2.52g, Cd 3.21g and Cu 5.44g. In the case of CR20, the amount of heavy metal adsorption at breakthrough was found to be Mn 03.g, Zn 0.42g, Cd 0.43g, and Cu 4.2g. From the above results it can be seen that the heavy metal adsorption capacity of the adsorbent prepared in Example 2.

[실시예5]Example 5

실시예 2에서 제조한 흡착제의 연속적인 흡착-탈착-재흡착실험Continuous adsorption-desorption-resorption experiment of the adsorbent prepared in Example 2

본 발명 흡착제에 흡착된 중금속의 회수를 목적으로 하는 탈착실험은 1N의 황산을 사용하였다. 1N 이하의 황산농도에서도 중금속이 탈착되는 것을 확인하였으나, 1N 황산의 경우 5초 이내에 완전한 탈착이 이루어지며 비드의 형태도 원래의 모양으로 유지되는 등 안정성 및 탈착반응성이 우수함을 확인하고, 탈착실험에서는 1N의 황산을 사용하여 실험하였다. 탈착후의 연속적인 흡착-탈착-재흡착실험에서는 흡착실험에 사용했던 중금속과 동일한 조건하에서 실험을 수행하였다. 각각의 중금속에 대한 흡착-탈착-재흡착시의 처리량을 표 1에 나타냈다. 흡착-탈착-재흡착을 1뱃치라고 정의할 때, 5뱃치까지의 처리효율에 거의 변화가 없음을 알 수 있었다.In the desorption experiment for the purpose of recovering the heavy metal adsorbed to the adsorbent of the present invention, 1 N sulfuric acid was used. In the sulfuric acid concentration of 1N or less, it was confirmed that the heavy metal is desorbed, but in the case of 1N sulfuric acid, complete desorption is performed within 5 seconds, and the form of beads is also maintained in its original shape. Experiment with 1N sulfuric acid. In the subsequent adsorption-desorption-resorption experiment after desorption, the experiment was performed under the same conditions as the heavy metals used in the adsorption experiment. The throughput at the time of adsorption-desorption-resorption for each heavy metal is shown in Table 1. When defining adsorption-desorption-resorption as one batch, it can be seen that there is almost no change in treatment efficiency up to five batches.

Claims (1)

주그리아 라미제라를 최적배양한 후 배양액 1리터당 10그램의 소디움메타실리케이트를 넣고 40℃에서 1시간 동안 격렬하게 교반한 다음 이 액에 2% 소디움알지네이트 용액을 1 : 1의 비로 혼합하여 10분간 격렬하게 교반하고 여기에 칼슘클로라이드 포화용액을 적하하면서 교반하는 미생물 배양액으로 중금속 흡착제를 제조하는 방법.After optimally incubating Zugria ramizera, add 10 grams of sodium metasilicate per liter of culture and vigorously stir at 40 ° C for 1 hour, then mix 2% sodium alginate solution in this solution at a ratio of 1: 1 for 10 minutes. A method for producing a heavy metal adsorbent with a microbial culture solution, which is stirred vigorously and stirred with a saturated calcium chloride solution.
KR1019940009212A 1994-04-29 1994-04-29 Method of heavy metal absorbent from microorganism culture KR0122753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940009212A KR0122753B1 (en) 1994-04-29 1994-04-29 Method of heavy metal absorbent from microorganism culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940009212A KR0122753B1 (en) 1994-04-29 1994-04-29 Method of heavy metal absorbent from microorganism culture

Publications (2)

Publication Number Publication Date
KR950029345A KR950029345A (en) 1995-11-22
KR0122753B1 true KR0122753B1 (en) 1997-11-24

Family

ID=19382052

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940009212A KR0122753B1 (en) 1994-04-29 1994-04-29 Method of heavy metal absorbent from microorganism culture

Country Status (1)

Country Link
KR (1) KR0122753B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226273A (en) * 2014-04-28 2014-12-24 杭州师范大学 Microspheres for adsorbing heavy-metal cadmium in soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226273A (en) * 2014-04-28 2014-12-24 杭州师范大学 Microspheres for adsorbing heavy-metal cadmium in soil

Also Published As

Publication number Publication date
KR950029345A (en) 1995-11-22

Similar Documents

Publication Publication Date Title
Sag̃ et al. Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics
CN101531970B (en) Pseudomonas and application thereof in biological reduction and biological adsorption
CN109956563B (en) Preparation method and application of efficient aerobic denitrification phosphorus-accumulating bacteria immobilized pellet
CN107473404B (en) Water purifying agent with self-formed block-shaped carbon carrier for fixing microorganisms and preparation method thereof
El-Sheekh et al. Effect of algal cell immobilization technique on sequencing batch reactors for sewage wastewater treatment
Aksu et al. A comparative study for the biosorption characteristics of chromium (VI) on ca‐alginate, agarose and immobilized c vulgaris in a continuous packed bed column
JPH0759197B2 (en) Method for treating aqueous solution containing heavy metal cation
Parameswari et al. Biosorption of chromium (VI) and nickel (II) by bacterial isolates from an aqueous solution
KR0122753B1 (en) Method of heavy metal absorbent from microorganism culture
CN111909885A (en) Salt-tolerant COD-reducing strain, culture method and application
JP5236389B2 (en) Wastewater treatment method using microorganisms
CN110964713A (en) Preparation method of immobilized microorganism particles for removing ammonia nitrogen from black and odorous water
CN115403229A (en) Method for treating aquaculture wastewater
CN112266074B (en) Method for enhancing denitrification of heterotrophic nitrification-aerobic denitrification strain by magnesium salt modified biomass charcoal
Huang et al. Nitrate and phosphate removal by co-immobilized Chlorella pyrenoidosa and activated sludge at different pH values
Shrivastava et al. Bioabsorption potential of Acinetobacter sp. strain IST 103 of bacterial consortium for removal of chromium from tannery effluent
CN110818180A (en) Method for digesting black and odorous river channel by using microbial preparation
CN109896703B (en) Light-enzyme composite catalytic function microorganism water purifying agent for culturing anaerobic sewage
CN111573831A (en) Preparation method of denitrifying embedded bacteria particles for sewage treatment
Al-Hakawati et al. Copper removal by polymer immobilised Rhizopus oryzae
CN110451634A (en) A kind of amphiphilic silicon substrate bio-carrier and preparation method and application
CN109928516B (en) Efficient wetting purifying agent and application thereof in environmental purification
CN114149946B (en) Klebsiella and application thereof
CN115557653B (en) Method for removing nitrogen and phosphorus elements in cultivation wastewater
JP2001025786A (en) Surface modified porous ceramic and concentration method for concentrating heavy metal using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020813

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee