JPWO2022010750A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2022010750A5
JPWO2022010750A5 JP2023501118A JP2023501118A JPWO2022010750A5 JP WO2022010750 A5 JPWO2022010750 A5 JP WO2022010750A5 JP 2023501118 A JP2023501118 A JP 2023501118A JP 2023501118 A JP2023501118 A JP 2023501118A JP WO2022010750 A5 JPWO2022010750 A5 JP WO2022010750A5
Authority
JP
Japan
Prior art keywords
pressure
compressor
carbon dioxide
flow
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023501118A
Other languages
Japanese (ja)
Other versions
JP2023533977A (en
Publication date
Priority claimed from US16/926,368 external-priority patent/US11397030B2/en
Application filed filed Critical
Publication of JP2023533977A publication Critical patent/JP2023533977A/en
Publication of JPWO2022010750A5 publication Critical patent/JPWO2022010750A5/ja
Pending legal-status Critical Current

Links

Description

描写された通り、冷凍システム800は、高圧冷媒(例えば二酸化炭素)を循環させるための第1の流体ループ(例えば高圧分岐)804、および高圧分岐804よりも低い圧力で低圧冷媒(例えば二酸化炭素)を循環させるための第2の流体ループ(例えば低圧分岐)806を含む。第1の流体ループ804は、熱交換器808(例えばガス冷却器/凝縮器)および回転圧力交換器802を含む。熱交換器808は、高圧冷媒から周囲環境へ熱を放出する。ガス冷却器は以下では、超臨界高圧冷媒(例えば二酸化炭素)での使用について説明されているものの、いくつかの実施形態では、凝縮器を亜臨界高圧冷媒(例えば二酸化炭素)で使用することができる。冷媒についての亜臨界状態は、臨界点未満(詳細には臨界点と三重点の間)である。第2の流体ループ806は、熱交換器810(例えば蒸発器などの冷却または熱負荷)および回転圧力交換器802を含む。熱交換器810は、周囲環境から低圧冷媒中に熱を吸収する。低圧分岐806内の低圧冷媒は、液体状態、蒸気状態にあるかまたは液体と蒸気の2相混合物であってよい。流体ループ804、806は両方共、圧縮機812(例えばバルクフロー圧縮機)に対して流体結合されている。圧縮機812は(温度および圧力を上昇させることによって)、蒸発器810から受け入れた過熱された気体の二酸化炭素を、ガス冷却器808に供給される超臨界状態の二酸化炭素へと変換する。一部の実施形態においては、以下でさらに詳述するように、圧縮機812は、システム800内部の小さい圧力損失を克服し流体流(fluid flow)を維持するため、1つ以上の低DPの循環圧縮機またはポンプにより置換されてよい。概して、第1の流体ループ804に沿って、ガス冷却器808は、超臨界状態の二酸化炭素を受け入れ、その後、幾分か冷却した後(例えば高圧入口822において)回転圧力交換器802に供給する。第2の流体ループ804に沿って、蒸発器810は、回転圧力交換器802の低圧入口813に対して、過熱された気体の二酸化炭素の第1の部分を供給し、圧縮機812に対して、過熱された気体の二酸化炭素の第2の部分を供給する。回転圧力交換器802は、超臨界状態にある二酸化炭素と過熱された気体の二酸化炭素との間で、圧力を交換する。超臨界状態にある二酸化炭素は、回転圧力交換器802の内部で、2相液体/蒸気混合物へと変換され、低圧出口824から退出して、蒸発器810へと供給される。回転圧力交換器802は同様に、過熱された気体の二酸化炭素の圧力および温度を上昇させて、それを超臨界状態の二酸化炭素に変換し、この二酸化炭素は、それがガス冷却器808へと供給される高圧出口815を介して、回転圧力交換器802から退出する。図2に例示されているように、回転圧力交換器802から退出する超臨界状態にある二酸化炭素は、圧縮機812からガス冷却器808に供給された二酸化炭素と組合わされてよい。 As depicted, the refrigeration system 800 includes a first fluid loop (e.g., a high-pressure branch) 804 for circulating a high-pressure refrigerant (e.g., carbon dioxide) and a second fluid loop (e.g., a low-pressure branch) 806 for circulating a low-pressure refrigerant (e.g., carbon dioxide) at a lower pressure than the high-pressure branch 804. The first fluid loop 804 includes a heat exchanger 808 (e.g., a gas cooler/condenser) and a rotary pressure exchanger 802. The heat exchanger 808 rejects heat from the high-pressure refrigerant to the surrounding environment. Although the gas cooler is described below for use with a supercritical high-pressure refrigerant (e.g., carbon dioxide), in some embodiments, the condenser can be used with a subcritical high-pressure refrigerant (e.g., carbon dioxide). The subcritical state for a refrigerant is below the critical point (specifically between the critical point and the triple point). The second fluid loop 806 includes a heat exchanger 810 (e.g., a cooling or heat load such as an evaporator) and the rotary pressure exchanger 802. The heat exchanger 810 absorbs heat from the surrounding environment into the low pressure refrigerant. The low pressure refrigerant in the low pressure branch 806 may be in a liquid state, a vapor state, or a two-phase mixture of liquid and vapor. Both fluid loops 804, 806 are fluidly coupled to a compressor 812 (e.g., a bulk flow compressor). The compressor 812 converts (by increasing the temperature and pressure) the superheated gaseous carbon dioxide received from the evaporator 810 to carbon dioxide in a supercritical state that is fed to the gas cooler 808. In some embodiments, as described in more detail below, the compressor 812 may be replaced by one or more low DP recycle compressors or pumps to overcome small pressure losses and maintain fluid flow within the system 800. Generally, along the first fluid loop 804, a gas cooler 808 receives carbon dioxide in a supercritical state, which is then cooled somewhat before being fed to the rotary pressure exchanger 802 (e.g., at a high pressure inlet 822). Along the second fluid loop 804, an evaporator 810 feeds a first portion of the superheated gaseous carbon dioxide to a low pressure inlet 813 of the rotary pressure exchanger 802 and a second portion of the superheated gaseous carbon dioxide to a compressor 812. The rotary pressure exchanger 802 exchanges pressure between the carbon dioxide in a supercritical state and the superheated gaseous carbon dioxide. The carbon dioxide in a supercritical state is converted to a two-phase liquid/vapor mixture inside the rotary pressure exchanger 802 and exits at a low pressure outlet 824 to be fed to the evaporator 810. The rotary pressure exchanger 802 similarly increases the pressure and temperature of the superheated gaseous carbon dioxide, converting it to carbon dioxide in a supercritical state, which exits the rotary pressure exchanger 802 via a high pressure outlet 815 where it is fed to a gas cooler 808. As illustrated in Figure 2, the carbon dioxide in a supercritical state exiting the rotary pressure exchanger 802 may be combined with the carbon dioxide fed to the gas cooler 808 from a compressor 812.

(例えば、ジュールトムソン膨張弁を使用する冷凍システムとの関係における)冷凍システム800内で発生する熱力学的プロセスは、図3および4を参照してより詳細に説明される。図3および4は、ジュールトムソン膨張弁を含む冷凍システムに比べた冷凍システム800の4つの主要構成要素で発生する熱力学的プロセスを示すために、それぞれ温度-エントロピ(T-S)線図814および圧力-エントロピ(P-H)線図816を例示する。点1は、圧縮機の入口818を表わす(図2参照)。点2は、圧縮機の出口819およびガス冷却器の入口820を表わす。点3は、ガス冷却器の出口830および膨張弁の入口(ジュールトムソン膨張弁を有する冷凍システム内)または回転液体圧縮機802の高圧入口822を表す。点4は、膨張弁の出口または回転液体圧縮機802の低圧出口824(図3および図4にPXとして標示)および蒸発器の入口826を表わす。図3および4に例示されているように、圧縮機812は、圧力を上昇させ、こうして、冷媒作動流体(例えば二酸化炭素)の温度を、環境よりも高い温度まで上昇させ、そこで外部のより高温の環境へと熱を放出することができる。これは、ガス冷却器808の内部で発生する。二酸化炭素が超臨界状態にあることから、温度が、超臨界二酸化炭素システムのガス冷却器808内でT-S線図上の2相ドームの内側における熱交換プロセスの大部分を通して恒常であり続けている従来の凝縮器とは異なり、相境界は存在せず、二酸化炭素は、2相ドーム828の上方にある。したがって、温度は、二酸化炭素が熱を環境へと放出するときに下降する。環境温度が高くなればなるほど、圧縮機812を横切る圧力比は大きくなり、システムの圧力も大きくなる。点3において、ガス冷却器出口830を離れる二酸化炭素はこのとき、(ジュールトムソン膨張弁を有する冷凍システム内で)膨張弁を通って進み、曲線832によって示されているように、バルブ内の恒常なエンタルピプロセス(3→4h)をたどる。P-H線図816上で、曲線832は、(それが等エンタルピプロセスであるため)真直ぐな垂直ラインである。結果として、二酸化炭素は2相ドーム828に入り、液体と気体の平衡混合物になる。液体の正確な質量分率は、4h(すなわち曲線832)が蒸発器圧力を表わす恒常圧力水平ライン834と交差する点によって決定される。2相混合物は、このとき蒸発器810を通って続き、ここで、液体二酸化炭素がさらに多くの熱を吸収し、蒸発器810の出口836において飽和蒸気となる。したがって、圧縮機812内に入る流体は、純粋な蒸気相(気相)にある。 The thermodynamic processes occurring within the refrigeration system 800 (e.g., in the context of a refrigeration system using a Joule-Thomson expansion valve) are described in more detail with reference to Figures 3 and 4. Figures 3 and 4 illustrate a temperature-entropy (T-S) diagram 814 and a pressure-entropy (P-H) diagram 816, respectively, to show the thermodynamic processes occurring in the four major components of the refrigeration system 800 as compared to a refrigeration system including a Joule-Thomson expansion valve. Point 1 represents the compressor inlet 818 (see Figure 2). Point 2 represents the compressor outlet 819 and the gas cooler inlet 820. Point 3 represents the gas cooler outlet 830 and the expansion valve inlet (in a refrigeration system having a Joule-Thomson expansion valve) or the high pressure inlet 822 of the rotary liquid compressor 802. Point 4 represents the expansion valve outlet or the low pressure outlet 824 (labeled as PX in Figures 3 and 4) of the rotary liquid compressor 802 and the evaporator inlet 826. As illustrated in Figures 3 and 4, the compressor 812 increases the pressure and thus the temperature of the refrigerant working fluid (e.g., carbon dioxide) to a temperature higher than the environment where it can reject heat to the outside, higher temperature environment. This occurs inside the gas cooler 808. Unlike a conventional condenser where the temperature remains constant throughout most of the heat exchange process inside the two-phase dome on the T-S diagram in the gas cooler 808 of a supercritical carbon dioxide system because the carbon dioxide is in a supercritical state, there is no phase boundary and the carbon dioxide is above the two-phase dome 828. Thus, the temperature drops as the carbon dioxide rejects heat to the environment. The higher the environment temperature, the higher the pressure ratio across the compressor 812 and the higher the system pressure. The carbon dioxide leaving the gas cooler outlet 830 at point 3 now goes through the expansion valve (in a refrigeration system with a Joule-Thomson expansion valve) and follows the constant enthalpy process (3 → 4h) in the valve as shown by curve 832. On the P-H diagram 816, curve 832 is a straight vertical line (because it is an isenthalpic process). As a result, the carbon dioxide enters the two-phase dome 828 and becomes an equilibrium mixture of liquid and gas. The exact mass fraction of the liquid is determined by the point where 4h (i.e., curve 832) intersects with the constant pressure horizontal line 834, which represents the evaporator pressure. The two-phase mixture now continues through the evaporator 810, where the liquid carbon dioxide absorbs even more heat and becomes a saturated vapor at the exit 836 of the evaporator 810. Thus, the fluid entering the compressor 812 is in a pure vapor phase.

低圧ループ906内の多相流ポンプ911は、冷媒のこのバルク低圧流量を、蒸発器910を通って循環させて圧力変換器902の低圧入口918に送る。多相流ポンプ911は同様に、それを横切る差圧(すなわち、システム内のあらゆる圧力損失を克服するのに充分なだけのもの)が極めてわずかにしか有さず、したがって、ポンプ911は、従来のバルクフロー高圧圧縮機と比べて極わずかなエネルギしか消費しない。低圧多相流ポンプ911は、蒸発器910を通って流量を循環させ、蒸発器910内で熱を獲得し、それ自体を純粋な蒸気状態またはより高い蒸気含有率の2相液体-蒸気混合物に変換する。この高蒸気含有率の流量は次に、圧力変換器902の低圧入口918に入り、高圧に加圧される。これによって、今度は、熱力学の標準的法則によって流体の温度も同様に上昇する。この高圧でより高温の流体は、その後、圧力変換器902の高圧出口922から退出する。高圧出口922から退出する流体は、超臨界状態にあり得るか、または、システムがどのように最適化されているかに応じて亜臨界状態でまたは、高い蒸気含有量を有する液体と蒸気の混合物として存在し得ると考えられる。この高圧、高温の冷媒は次に、高圧ループ904のガス冷却器/凝縮器908に入り、熱を周囲環境に放出する。熱を放出することによって、冷媒は、冷却する(超臨界状態にある場合)か、または液体状態に相を変化させる。高圧ループ904内の多相流ポンプ909は、このとき、この液体冷媒を受け入れ、それを先に説明した通り、高圧ループ904を通して循環させる。 A multiphase pump 911 in the low pressure loop 906 circulates this bulk low pressure flow of refrigerant through the evaporator 910 to the low pressure inlet 918 of the pressure transducer 902. The multiphase pump 911 likewise has very little differential pressure across it (i.e., only enough to overcome any pressure losses in the system), and therefore the pump 911 consumes very little energy compared to a conventional bulk flow high pressure compressor. The low pressure multiphase pump 911 circulates the flow through the evaporator 910, where it gains heat and converts itself to a pure vapor state or a higher vapor content two-phase liquid-vapor mixture. This high vapor content flow then enters the low pressure inlet 918 of the pressure transducer 902 and is pressurized to a high pressure. This, in turn, causes the temperature of the fluid to increase as well, per the standard laws of thermodynamics. This high pressure, hotter fluid then exits the pressure transducer 902 through the high pressure outlet 922. It is believed that the fluid exiting the high pressure outlet 922 may be in a supercritical state, or may exist in a subcritical state or as a liquid and vapor mixture with a high vapor content depending on how the system is optimized. This high pressure, high temperature refrigerant then enters the gas cooler/condenser 908 of the high pressure loop 904 and rejects heat to the surrounding environment. By rejecting heat, the refrigerant either cools (if in a supercritical state) or changes phase to a liquid state. A multiphase pump 909 in the high pressure loop 904 then accepts this liquid refrigerant and circulates it through the high pressure loop 904 as previously described.

図22Bは、バルク流圧縮機無しの冷凍システム923の別の実施形態を実証している。それは、圧力変換器902の低圧出口920から退出する(圧力変換器902の内部リークに起因するかまたは、先に説明した通り圧力変換器902に入るおよびこれから退出する4つの流れの圧縮可能性および密度差に起因する)あらゆる余剰流量が、バルブ低圧流量と共に蒸発器910を通って圧送され、高圧ループ904内に圧縮し戻される前に蒸気へと変換される、という点を除いて、図22Aに示されたシステム900と類似している。したがって、図22Aの高DPの低流量の多相流リークポンプ913は、図22Bに示されている通りの高DPの低流量のリーク圧縮機925によって置換される。リーク圧縮機(leakage compressor)925は、余剰流量を低圧蒸気状態から高圧蒸気状態へ、または超臨界状態へと圧縮した後で、高圧ループ904内に注入する。余剰流量のこの再注入の場所も同様に、図22A中のものに比べて異なっている。リーク圧縮機925から退出する蒸気状態または超臨界状態の冷媒は、(リーク圧縮機の出口圧力と同じ圧力にある)圧力変換器902の高圧出口922の下流側で注入される。図22Bに示されているように、低圧ループ906内のバルク流量からの余剰流量を、リーク圧縮機925を通って送る前に分割することを可能にするために、蒸発器910の下流側に三方弁927が配置される。同様にして、リーク圧縮機925から退出する高圧のリーク流量と圧力変換器902から退出する高圧のバルク流量との再組合せを可能にするため、圧力変換器902の下流側に三方弁929が配置される。この組合わされた高圧流量は、次に、先に説明した通り、ガス冷却器/凝縮器908へと進む。図22A中のものに比べたこの構成の利点は、それが、蒸発器910を通過する追加の流量(低圧出口920から来る余剰流量)に起因してサイクルに追加の熱吸収能力を提供するという点にある。一方で、このサイクルのエネルギ消費量は、リーク圧縮機925によって消費されるエネルギが多相流リークポンプ913によって消費されるエネルギよりもわずかに高くなるため、図22Aで示されたシステム900のものに比べてわずかに大きいものであると思われる。これは、冷媒が、多相流循環ポンプ913では部分的なまたは完全な液体状態で圧送されるのとは異なり、リーク圧縮機925においては完全に蒸気状態で高圧に圧縮されるからである。 Figure 22B demonstrates another embodiment of a bulk flow compressor-less refrigeration system 923. It is similar to the system 900 shown in Figure 22A, except that any excess flow exiting the low pressure outlet 920 of the pressure transducer 902 (due to internal leaks in the pressure transducer 902 or due to compressibility and density differences of the four flows entering and exiting the pressure transducer 902 as previously explained) is pumped through the evaporator 910 along with the valve low pressure flow and converted to vapor before being compressed back into the high pressure loop 904. Thus, the high DP, low flow, multiphase leakage pump 913 of Figure 22A is replaced by a high DP, low flow, leakage compressor 925 as shown in Figure 22B. The leakage compressor 925 compresses the excess flow from a low pressure vapor state to a high pressure vapor state or to a supercritical state before injecting it into the high pressure loop 904. The location of this reinjection of the excess flow is also different compared to that in Fig. 22A. The refrigerant in vapor or supercritical state exiting the leak compressor 925 is injected downstream of the high pressure outlet 922 of the pressure transducer 902 (at the same pressure as the outlet pressure of the leak compressor). As shown in Fig. 22B, a three-way valve 927 is placed downstream of the evaporator 910 to allow the excess flow from the bulk flow in the low pressure loop 906 to be split before being sent through the leak compressor 925. Similarly, a three-way valve 929 is placed downstream of the pressure transducer 902 to allow the recombination of the high pressure leak flow exiting the leak compressor 925 with the high pressure bulk flow exiting the pressure transducer 902. This combined high pressure flow then goes to the gas cooler/condenser 908 as previously described. The advantage of this configuration compared to that in Fig. 22A is that it provides additional heat absorption capacity to the cycle due to the additional flow through the evaporator 910 (excess flow coming from the low pressure outlet 920). On the other hand, the energy consumption of this cycle is likely to be slightly higher than that of the system 900 shown in Fig. 22A because the energy consumed by the leak compressor 925 is slightly higher than the energy consumed by the multiphase leak pump 913. This is because the refrigerant is compressed to high pressure in a fully vapor state in the leak compressor 925, unlike the multiphase circulation pump 913, where the refrigerant is pumped in a partial or fully liquid state.

冷凍システム923内で発生する熱力学的プロセスは、図23および24を参照してさらに詳細に説明される。図23および24は、冷凍システム900の4つの主要構成要素において発生する熱力学的プロセスを示すため、それぞれ温度-エントロピ(T-S)線図926および圧力-エンタルピ(P-H)線図928を例示している。点1は、リーク圧縮機入口930を表わす(図22B参照)。点2は、リーク圧縮機出口932およびガス冷却器入口934を表わす。点3は、ガス冷却器出口936および回転圧力交換器902の高圧入口914を表わす。点4は、回転圧力交換器902の低圧出口920および蒸発器入口938を表わす。図23および24で例示されているように、リーク圧縮機925は、冷媒作動流体(例えば二酸化炭素)の圧力ひいては温度を環境よりも高い温度まで上昇させ、そこで、より高温の外部環境へと熱を放出することができる。これは、ガス冷却器908の内部で発生する。超臨界二酸化炭素システムのガス冷却器908においては、二酸化炭素が超臨界状態にあることから、相境界は存在せず、二酸化炭素は2相ドーム940の上方にある。したがって、二酸化炭素が熱を環境へと放出した時点で、温度は降下する。図23および24に例示されているように、ガス冷却器出口936における超臨界状態にある二酸化炭素は、高圧入口ポート914において回転圧力交換器902に入り、等エントロピまたは等エントロピに近い(およそ85パーセントの等エントロピ効率)膨張を受け、2相の気体-液体二酸化炭素混合物として回転圧力交換器902の低圧出口ポート920において退出する。点4にある2相の二酸化炭素は次に、蒸発器910内で熱を吸収する(プロセス4→1、恒常エンタルピプロセス)。全体として、線図926、928は、冷却能力の増大および圧縮機仕事負荷の低下に起因するサイクル効率のメリットを例示している。回転圧力交換器902内部の膨張は、等エントロピで発生することから、それは、蒸発器910から来る流体をシステム900内の全圧まで圧縮するために利用可能であるエンタルピ変化を創出する。これにより、バルクフロー圧縮機によって行なわれたはずのあらゆる仕事が著しく削減され、こうして、(著しく少ないエネルギしか消費しない)リーク圧縮機925によるその置換が可能となる。 The thermodynamic processes occurring within the refrigeration system 923 are described in further detail with reference to Figures 23 and 24. Figures 23 and 24 illustrate a temperature-entropy (T-S) diagram 926 and a pressure-enthalpy (P-H) diagram 928, respectively, to show the thermodynamic processes occurring in the four major components of the refrigeration system 900. Point 1 represents the leak compressor inlet 930 (see Figure 22B). Point 2 represents the leak compressor outlet 932 and the gas cooler inlet 934. Point 3 represents the gas cooler outlet 936 and the high pressure inlet 914 of the rotary pressure exchanger 902. Point 4 represents the low pressure outlet 920 of the rotary pressure exchanger 902 and the evaporator inlet 938. As illustrated in Figures 23 and 24, the leak compressor 925 raises the pressure and therefore the temperature of the refrigerant working fluid (e.g., carbon dioxide) to a temperature higher than the environment where it can release heat to the hotter external environment. This occurs inside the gas cooler 908. In the gas cooler 908 of a supercritical carbon dioxide system, since the carbon dioxide is in a supercritical state, there is no phase boundary and the carbon dioxide is above the two-phase dome 940. Thus, the temperature drops when the carbon dioxide releases heat to the environment. As illustrated in Figures 23 and 24, the carbon dioxide in a supercritical state at the gas cooler outlet 936 enters the rotary pressure exchanger 902 at the high pressure inlet port 914, undergoes isentropic or near isentropic (approximately 85 percent isentropic efficiency) expansion, and exits at the low pressure outlet port 920 of the rotary pressure exchanger 902 as a two-phase gas-liquid carbon dioxide mixture. The two-phase carbon dioxide at point 4 then absorbs heat in the evaporator 910 (process 4→1, constant enthalpy process). Overall, diagrams 926, 928 illustrate the cycle efficiency benefits due to increased cooling capacity and reduced compressor workload. Since the expansion inside the rotary pressure exchanger 902 occurs isentropically, it creates an enthalpy change that can be used to compress the fluid coming from the evaporator 910 to the full pressure in the system 900. This significantly reduces any work that would have been done by the bulk flow compressor, thus allowing its replacement by the leak compressor 925 (which consumes significantly less energy).

図25は、循環ポンプの代りに低DPの循環圧縮機を使用する冷凍システム931の概略図である。循環圧縮機は、システム900全体を通して流体流量を維持することによって、システム931内の最小圧力損失を克服する。このシステムと図22Aおよび図22Bに示されたシステム900、923の間の差異は、低圧ループ906および高圧ループ904内のバルク流量の循環が、低DPの多相流循環ポンプを使用する代りに低DPの循環圧縮機を使用して達成されることにある。同様に、これらの循環圧縮機の場所も異なっている。例えば、低圧ループ906内の循環圧縮機941(圧縮機1)は、蒸発器910が蒸気状態で冷媒を循環させるこの蒸発器の下流側に位置付けされている。同様にして、高圧ループ904内の循環圧縮機944(圧縮機2)は、圧力変換器902が超臨界状態または高圧蒸気状態で冷媒を循環させる圧力変換器の高圧出口922の下流側に位置付けされている。圧縮機3は、圧縮機925が蒸気状態で圧力変換器902から低圧ループ904に入る余剰流量(例えば圧力変換器902からのリーク流量)を取り上げ、それを高圧蒸気状態としてかまたは超臨界状態で高圧ループ904内へと圧縮し戻す、図22Bに関連して説明された高DPで低流量のリーク圧縮機925に類似している。この余剰流量は次に、ガス冷却器/凝縮器908へと進む前に、圧縮機944から来た高圧のバルク流量と組合わされる。第2の流体ループ906(例えば低圧流体ループ)に沿って配置された低DPの循環圧縮機941は、(例えば回転圧力交換器902とガス冷却器908の間で)ループ906に沿って流体流量を維持する。さらに、第1の流体ループ904(例えば高圧流体ループ)に沿って配置された低DPの循環圧縮機944は、(例えば蒸発器910と回転圧力交換器902の間で)ループ904に沿って流体流(fluid flow)を維持する。一部の実施形態において、冷凍システム931は、圧縮機925および941のみを含み得る。一部の実施形態において、冷凍システム900は、圧縮機944および941のみを含み得る。一部の実施形態において、圧縮機941、944は各々、以下でさらに詳細に指摘するように、それらを横切って、リーク圧縮機925よりも著しく低い差圧を有する。 FIG. 25 is a schematic diagram of a refrigeration system 931 that uses a low DP recycle compressor instead of a recycle pump. The recycle compressor overcomes the minimum pressure loss in the system 931 by maintaining the fluid flow rate throughout the system 900. The difference between this system and the systems 900, 923 shown in FIG. 22A and FIG. 22B is that the circulation of the bulk flow in the low pressure loop 906 and the high pressure loop 904 is achieved using a low DP recycle compressor instead of using a low DP multiphase flow recycle pump. Similarly, the locations of these recycle compressors are different. For example, the recycle compressor 941 (compressor 1) in the low pressure loop 906 is located downstream of the evaporator 910, which recycles the refrigerant in a vapor state. Similarly, the recycle compressor 944 (compressor 2) in the high pressure loop 904 is located downstream of the high pressure outlet 922 of the pressure transducer, which recycles the refrigerant in a supercritical or high pressure vapor state. Compressor 3 is similar to the high DP, low flow leakage compressor 925 described in connection with FIG. 22B in that the compressor 925 takes the excess flow entering the low pressure loop 904 from the pressure transducer 902 in a vapor state (e.g., leakage flow from the pressure transducer 902) and compresses it back into the high pressure loop 904 as a high pressure vapor state or in a supercritical state. This excess flow is then combined with the high pressure bulk flow from the compressor 944 before proceeding to the gas cooler/condenser 908. A low DP recycle compressor 941 located along the second fluid loop 906 (e.g., the low pressure fluid loop) maintains the fluid flow along the loop 906 (e.g., between the rotary pressure exchanger 902 and the gas cooler 908). Additionally, a low DP recycle compressor 944 disposed along the first fluid loop 904 (e.g., the high pressure fluid loop) maintains fluid flow along the loop 904 (e.g., between the evaporator 910 and the rotary pressure exchanger 902). In some embodiments, the refrigeration system 931 may include only compressors 925 and 941. In some embodiments, the refrigeration system 900 may include only compressors 944 and 941. In some embodiments, the compressors 941, 944 each have a significantly lower differential pressure across them than the leak compressor 925, as noted in more detail below.

JP2023501118A 2020-07-10 2021-07-01 Low energy consumption refrigeration system with rotary pressure exchanger replacing bulk flow compressor and high pressure expansion valve Pending JP2023533977A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/926,368 US11397030B2 (en) 2020-07-10 2020-07-10 Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve
US16/926,368 2020-07-10
PCT/US2021/040201 WO2022010750A1 (en) 2020-07-10 2021-07-01 Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve

Publications (2)

Publication Number Publication Date
JP2023533977A JP2023533977A (en) 2023-08-07
JPWO2022010750A5 true JPWO2022010750A5 (en) 2024-06-11

Family

ID=79173633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023501118A Pending JP2023533977A (en) 2020-07-10 2021-07-01 Low energy consumption refrigeration system with rotary pressure exchanger replacing bulk flow compressor and high pressure expansion valve

Country Status (6)

Country Link
US (2) US11397030B2 (en)
EP (1) EP4179214A4 (en)
JP (1) JP2023533977A (en)
CN (3) CN116659106A (en)
DK (2) DK181605B1 (en)
WO (1) WO2022010750A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397030B2 (en) 2020-07-10 2022-07-26 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve
US11421918B2 (en) 2020-07-10 2022-08-23 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger
US12007154B2 (en) 2021-06-09 2024-06-11 Energy Recovery, Inc. Heat pump systems with pressure exchangers
PL442372A1 (en) * 2022-09-27 2024-04-02 Tomasz Grudniak Method and device for transferring a working medium in a liquid phase from an area of low pressure to an area of high pressure, and system containing the device
WO2024072876A2 (en) * 2022-09-28 2024-04-04 Energy Recovery, Inc. Control of refrigeration and heat pump system architectures that include pressure exchangers
WO2024076637A1 (en) * 2022-10-05 2024-04-11 Energy Recovery, Inc. Thermal energy storage systems including pressure exchangers
WO2024076737A1 (en) * 2022-10-07 2024-04-11 Energy Recovery, Inc. Datacenter cooling systems that include pressure exchangers
EP4354046A1 (en) 2022-10-10 2024-04-17 Epta S.p.A. Vapour compression refrigeration system with rotary pressure exchanger and management method of such a system

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971343A (en) * 1955-03-24 1961-02-14 Spalding Dudley Brian Pressure exchanger apparatus
US2952138A (en) * 1957-09-23 1960-09-13 Jacob B Russell Dual cycle heat powered airconditioning system
US3158007A (en) * 1960-10-14 1964-11-24 Power Jets Res & Dev Ltd Pressure exchangers
CH446410A (en) * 1964-01-22 1967-11-15 Braun Ag Heat pump
US4524587A (en) * 1967-01-10 1985-06-25 Kantor Frederick W Rotary thermodynamic apparatus and method
CH476206A (en) * 1967-07-27 1969-07-31 Sulzer Ag Method for operating a gas turbine system with CO2 as the working medium
CH524116A (en) * 1969-05-30 1972-06-15 Ludin Ludwig Refrigeration machine arranged on both sides of a building wall and in a hole in the same
US3854301A (en) * 1971-06-11 1974-12-17 E Cytryn Cryogenic absorption cycles
US3740966A (en) * 1971-12-17 1973-06-26 Dynatherm Corp Rotary heat pump
US4000778A (en) * 1972-09-05 1977-01-04 Nikolaus Laing Temperature-control system with rotary heat exchangers
US3823573A (en) * 1973-03-16 1974-07-16 V Cassady Automotive air conditioning apparatus
US4051888A (en) * 1973-07-07 1977-10-04 Daikin Kogyo Co., Ltd. Low temperature energy carrying apparatus and method
US4006602A (en) * 1974-08-05 1977-02-08 Fanberg Ralph Z Refrigeration apparatus and method
US3988901A (en) * 1975-02-18 1976-11-02 Scientific-Atlanta, Inc. Dual loop heat pump system
US4512394A (en) * 1980-11-17 1985-04-23 Kenneth W. Kauffman Variable effect absorption machine and process
US4442677A (en) * 1980-11-17 1984-04-17 The Franklin Institute Variable effect absorption machine and process
JP2858121B2 (en) 1987-01-05 1999-02-17 リーフ・ジェー・ハウジー Pressure exchanger for liquid
US4823560A (en) * 1988-05-27 1989-04-25 E Squared Inc. Refrigeration system employing refrigerant operated dual purpose pump
US5503222A (en) * 1989-07-28 1996-04-02 Uop Carousel heat exchanger for sorption cooling process
US5336059A (en) * 1993-06-07 1994-08-09 E Squared Inc. Rotary heat driven compressor
NO180599C (en) * 1994-11-28 1997-05-14 Leif J Hauge Pressure Switches
AU7324496A (en) * 1995-11-10 1997-05-29 University Of Nottingham, The Rotatable heat transfer apparatus
US5802870A (en) * 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
NO306272B1 (en) * 1997-10-01 1999-10-11 Leif J Hauge Pressure Switches
US6178767B1 (en) * 1999-08-05 2001-01-30 Milton F. Pravda Compact rotary evaporative cooler
DE19959439A1 (en) * 1999-12-09 2001-06-21 Bosch Gmbh Robert Air conditioning system for motor vehicles and method for operating an air conditioning system for motor vehicles
US6389818B2 (en) 2000-03-03 2002-05-21 Vortex Aircon, Inc. Method and apparatus for increasing the efficiency of a refrigeration system
US6250086B1 (en) 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
NO312563B1 (en) * 2000-04-11 2002-05-27 Energy Recovery Inc Method of reducing noise and cavitation in a pressure exchanger which increases or decreases the pressure of fluids by the displacement principle, and such a pressure exchanger
US6981377B2 (en) * 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
US6773226B2 (en) * 2002-09-17 2004-08-10 Osamah Mohamed Al-Hawaj Rotary work exchanger and method
US6898941B2 (en) 2003-06-16 2005-05-31 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of expansion machine flowrate
JP2005037093A (en) 2003-07-18 2005-02-10 Tgk Co Ltd Refrigerating cycle
US6923011B2 (en) * 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7661932B2 (en) * 2004-05-05 2010-02-16 Kuwait Institute For Scientific Research Pressure exchange apparatus
JP4179231B2 (en) * 2004-06-09 2008-11-12 株式会社デンソー Pressure control valve and vapor compression refrigeration cycle
JP2008506885A (en) * 2004-07-13 2008-03-06 タイアックス エルエルシー Refrigeration system and refrigeration method
DE102004038440A1 (en) * 2004-08-07 2006-03-16 Ksb Aktiengesellschaft Variable speed pressure exchanger
CA2576580C (en) * 2004-08-10 2013-02-12 Leif Hauge Pressure exchanger for transferring pressure energy from a high-pressure fluid stream to a low-pressure fluid stream
US7600390B2 (en) 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
US20060254308A1 (en) 2005-05-16 2006-11-16 Denso Corporation Ejector cycle device
ATE475849T1 (en) * 2006-06-30 2010-08-15 Arcelik As COOLER
WO2008019689A2 (en) 2006-08-18 2008-02-21 Knudsen Køling A/S A transcritical refrigeration system with a booster
US7647790B2 (en) * 2006-10-02 2010-01-19 Emerson Climate Technologies, Inc. Injection system and method for refrigeration system compressor
JP2010506089A (en) * 2006-10-04 2010-02-25 エナジー リカバリー インコーポレイテッド Rotary pressure transfer device
JP4261620B2 (en) * 2006-10-25 2009-04-30 パナソニック株式会社 Refrigeration cycle equipment
US7685820B2 (en) 2006-12-08 2010-03-30 United Technologies Corporation Supercritical CO2 turbine for use in solar power plants
JP5196452B2 (en) * 2007-04-24 2013-05-15 キャリア コーポレイション Transcritical refrigerant vapor compression system with charge control
CN100575816C (en) 2008-04-30 2009-12-30 大连理工大学 Outer circulation dissipation type air wave refrigerating device
CN102232167B (en) * 2008-10-01 2013-08-14 开利公司 Liquid vapor separation in transcritical refrigerant cycle
GB0909242D0 (en) 2009-05-29 2009-07-15 Al Mayahi Abdulsalam Boiling water reactor
US9897336B2 (en) * 2009-10-30 2018-02-20 Gilbert S. Staffend High efficiency air delivery system and method
IL208881A0 (en) 2010-02-01 2011-02-28 Winpower Inc Working fluid circulation system
CN103282730B (en) * 2011-01-04 2016-03-09 开利公司 Ejector cycle
US9388817B1 (en) 2011-03-24 2016-07-12 Sandia Corporation Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup
US8887503B2 (en) 2011-12-13 2014-11-18 Aerojet Rocketdyne of DE, Inc Recuperative supercritical carbon dioxide cycle
US9695795B2 (en) * 2012-04-19 2017-07-04 Energy Recovery, Inc. Pressure exchange noise reduction
US9435354B2 (en) * 2012-08-16 2016-09-06 Flowserve Management Company Fluid exchanger devices, pressure exchangers, and related methods
JP5983187B2 (en) * 2012-08-28 2016-08-31 株式会社デンソー Thermal management system for vehicles
US9243850B1 (en) * 2013-02-07 2016-01-26 Hy-Tek Manufacturing Company, Inc. Rotary high density heat exchanger
WO2014181399A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Binary refrigeration device
JP2014224626A (en) * 2013-05-15 2014-12-04 株式会社デンソー Ejector
US10041701B1 (en) * 2013-09-24 2018-08-07 National Technology & Engineering Solutions Of Sandia, Llc Heating and cooling devices, systems and related method
EP3058291B1 (en) * 2013-10-17 2020-03-11 Carrier Corporation Motor and drive arrangement for refrigeration system
US9739128B2 (en) * 2013-12-31 2017-08-22 Energy Recovery, Inc. Rotary isobaric pressure exchanger system with flush system
US10047985B2 (en) * 2014-03-10 2018-08-14 Johnson Controls Technology Company Subcooling system with thermal energy storage
EP2937526B1 (en) * 2014-04-04 2017-03-22 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
WO2015157728A1 (en) 2014-04-10 2015-10-15 Energy Recovery, Inc. Pressure exchange system with motor system
US10119379B2 (en) 2014-07-31 2018-11-06 Energy Recovery Pressure exchange system with motor system
US9500185B2 (en) 2014-08-15 2016-11-22 King Fahd University Of Petroleum And Minerals System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles
CN107076055B (en) * 2014-09-25 2018-11-02 帕奇德科尼克斯有限责任公司 Fluid forced feed device, system and method
DK3221592T3 (en) 2014-11-18 2021-10-25 Energy Recovery Inc HYDROSTATIC RENTAL SYSTEM FOR USE WITH HYDRAULIC PRESSURE EXCHANGE SYSTEMS
US9644502B2 (en) 2015-04-09 2017-05-09 General Electric Company Regenerative thermodynamic power generation cycle systems, and methods for operating thereof
US9920774B2 (en) 2015-08-21 2018-03-20 Energy Recovery, Inc. Pressure exchange system with motor system and pressure compensation system
US10557482B2 (en) 2015-11-10 2020-02-11 Energy Recovery, Inc. Pressure exchange system with hydraulic drive system
GB201600904D0 (en) 2016-01-18 2016-03-02 Linde Ag Apparatus and method for compressing evaporated gas
EP3423774B1 (en) * 2016-02-29 2023-07-19 Nativus, Inc. Rotary heat exchanger
US10982568B2 (en) 2016-04-29 2021-04-20 Spirax-Sarco Limited Pumping apparatus
JP6708099B2 (en) * 2016-11-15 2020-06-10 株式会社デンソー Refrigeration cycle equipment
US10766009B2 (en) * 2017-02-10 2020-09-08 Vector Technologies Llc Slurry injection system and method for operating the same
CN107367084B (en) 2017-08-31 2019-07-30 大连理工大学 A kind of wave rotor formula Multi-Stage Refrigerator
DE102018112333A1 (en) 2018-05-23 2019-11-28 Hanon Systems Refrigerant circuit with an expansion-compression device and method for operating the refrigerant circuit
US11073169B2 (en) * 2018-06-26 2021-07-27 Energy Recovery, Inc. Power generation system with rotary liquid piston compressor for transcritical and supercritical compression of fluids
US10933375B1 (en) * 2019-08-30 2021-03-02 Fluid Equipment Development Company, Llc Fluid to fluid pressurizer and method of operating the same
US10989021B1 (en) * 2019-12-05 2021-04-27 Halliburton Energy Services, Inc. Noise, vibration and erosion reduction in valves
US11397030B2 (en) 2020-07-10 2022-07-26 Energy Recovery, Inc. Low energy consumption refrigeration system with a rotary pressure exchanger replacing the bulk flow compressor and the high pressure expansion valve

Similar Documents

Publication Publication Date Title
CN102414522B (en) Transcritical thermally activated cooling, heating and refrigerating system
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20120234026A1 (en) High efficiency refrigeration system and cycle
US20100313582A1 (en) High efficiency r744 refrigeration system and cycle
US20200363101A1 (en) Method and apparatus for isothermal cooling
US20100043475A1 (en) Co2 refrigerant system with booster circuit
WO2010061624A1 (en) Refrigeration system
US7225635B2 (en) Refrigerant cycle apparatus
CN110319612A (en) The carbon dioxide two-stage refrigeration circulatory system and its working method of injector synergy
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
US20080127672A1 (en) Vapour compression device and method of performing an associated transcritical cycle
JP2023533321A (en) Refrigeration system with high speed rotating pressure exchanger
CN109269136B (en) Air conditioning system
FI4107450T3 (en) Dilution refrigeration device and method
CN107965942A (en) Improve the method and system of the refrigeration heat pump system performance of carbon dioxide trans-critical cycle
US11293671B2 (en) Refrigeration cycle for liquid oxygen densification
JPWO2022010749A5 (en)
JPWO2022010750A5 (en)
CN114353366B (en) Efficient precooling and liquefying system for coupling expansion mechanism and regenerative refrigerator
CN105509359A (en) Phase change wave rotor self-cascade refrigeration system and working method thereof
JP2013213605A (en) Refrigeration cycle, and refrigerator-freezer
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP7391811B2 (en) refrigeration machine
JP2007212071A (en) Refrigerating cycle device
GB2438794A (en) Refrigeration plant for transcritical operation with an economiser