JPWO2021252433A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021252433A5
JPWO2021252433A5 JP2022552648A JP2022552648A JPWO2021252433A5 JP WO2021252433 A5 JPWO2021252433 A5 JP WO2021252433A5 JP 2022552648 A JP2022552648 A JP 2022552648A JP 2022552648 A JP2022552648 A JP 2022552648A JP WO2021252433 A5 JPWO2021252433 A5 JP WO2021252433A5
Authority
JP
Japan
Prior art keywords
acid
regeneration stream
graphite
strong
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022552648A
Other languages
Japanese (ja)
Other versions
JP2023529249A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2021/036313 external-priority patent/WO2021252433A1/en
Publication of JP2023529249A publication Critical patent/JP2023529249A/en
Publication of JPWO2021252433A5 publication Critical patent/JPWO2021252433A5/ja
Pending legal-status Critical Current

Links

Claims (10)

リチウムliイオン電池の再生の流れからの充電材料の酸浸出から生じる析出物を洗浄することと、
残留カソード及びセパレータ材料を除去するために前記析出物に強酸を添加することと、
前記強酸と前記残留カソードと前記セパレータ材料との混合物を、得られるアノード材料の予想される純度に基づく温度まで加熱することと、
前記析出物を洗浄して水溶性汚染物質を除去して前記予想される純度の黒鉛を生成することと、
を含む、消耗したLiイオン電池の混合された再生の流れからアノード材料を再生する方法。
Cleaning deposits resulting from acid leaching of charge material from the regeneration stream of a lithium li-ion battery;
adding a strong acid to the deposit to remove residual cathode and separator material;
heating the mixture of strong acid, residual cathode and separator material to a temperature based on the expected purity of the resulting anode material;
washing said precipitate to remove water soluble contaminants to produce graphite of said expected purity;
A method for regenerating anode material from a mixed regeneration stream of a depleted Li-ion battery, comprising:
泡立て浮遊工程を経由して前記黒鉛よりも低い密度を有するルミナに基づいてルミナを分離することを更に含む、請求項に記載の方法。 10. The method of claim 1 further comprising separating alumina based on said alumina having a lower density than said graphite via a froth flotation process. 前記析出物は、NMC(ニッケル、マンガン、コバルト)の再生の流れから供給された前に浸出された充電材料である、請求項に記載の方法。 2. The method of claim 1 , wherein the precipitate is a previously leached charge material sourced from a regeneration stream of NMC (nickel, manganese, cobalt). 前記強酸は、前記再生の流れからの前記析出物の前記酸浸出に用いられるよりも低いpHを有する、請求項1に記載の方法。 2. The method of claim 1, wherein the strong acid has a lower pH than the acid used in the acid leaching of the precipitate from the regeneration stream. 前記強酸は、少なくとも98%の濃度での硫酸である、請求項に記載の方法。 5. The method of claim 4 , wherein the strong acid is sulfuric acid at a concentration of at least 98%. 前記リチウム電池の再生の流れから得られる天然黒鉛と合成黒鉛の組成比を特定することと、
生成された実質的に純粋なアノード材料において前記組成比を維持することと、
を更に含む、請求項1に記載の方法。
Identifying a composition ratio of natural graphite and synthetic graphite obtained from the regeneration stream of the lithium battery;
maintaining said composition ratio in the produced substantially pure anode material; and
The method of claim 1 further comprising:
加熱の前記工程に続いて、前記生成された黒鉛の純度を高めるために二次浸出を行うことを更に含む、請求項1に記載の方法。 The method of claim 1, further comprising performing a secondary leaching following the step of heating to increase the purity of the produced graphite. 前記二次浸出は、希塩酸又は希硫酸のうちの1つを用いて行われる、請求項に記載の方法。 8. The method of claim 7 , wherein the secondary leaching is carried out with one of dilute hydrochloric acid or dilute sulfuric acid. 約80%の硫酸と20%の硝酸の混合物から前記強酸を形成することを更に含む、請求項1に記載の方法。 The method of claim 1, further comprising forming the strong acid from a mixture of about 80% sulfuric acid and 20% nitric acid. 前記強酸は、硫酸、硝酸、塩酸、リン酸、ホウ酸、フッ化水素酸、臭化水素酸、過塩素酸、及びヨウ化水素酸からなる群から選択される酸を含む鉱酸又は鉱酸混合物である、請求項1に記載の方法。 The method of claim 1, wherein the strong acid is a mineral acid or mixture of mineral acids comprising an acid selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, hydrofluoric acid, hydrobromic acid, perchloric acid, and hydroiodic acid.
JP2022552648A 2020-06-08 2021-06-08 Anode recovery in regenerated batteries Pending JP2023529249A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063036066P 2020-06-08 2020-06-08
US63/036,066 2020-06-08
PCT/US2021/036313 WO2021252433A1 (en) 2020-06-08 2021-06-08 Anode recovery in recycled batteries

Publications (2)

Publication Number Publication Date
JP2023529249A JP2023529249A (en) 2023-07-10
JPWO2021252433A5 true JPWO2021252433A5 (en) 2024-06-12

Family

ID=78818404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022552648A Pending JP2023529249A (en) 2020-06-08 2021-06-08 Anode recovery in regenerated batteries

Country Status (6)

Country Link
US (1) US20210384563A1 (en)
EP (1) EP4107810A4 (en)
JP (1) JP2023529249A (en)
KR (1) KR20230021639A (en)
CN (1) CN115715435A (en)
WO (1) WO2021252433A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3188399A1 (en) 2020-08-24 2022-03-03 Reza KATAL Process for removing impurities in the recycling of lithium-ion batteries
US11682801B1 (en) 2022-06-08 2023-06-20 Aleon Renewable Metals, Llc. Processes for recycling spent catalysts, recycling rechargeable batteries, and integrated processes thereof
WO2024079705A1 (en) * 2022-10-15 2024-04-18 Attero Recycling Pvt. Ltd. A method to obtain pure graphite from leach residue of spent lithium-ion batteries
CN116496110A (en) * 2023-04-10 2023-07-28 广西强强碳素股份有限公司 Method for improving stability of prebaked anode

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619394B (en) * 2009-06-23 2011-04-06 四川师范大学 Method for leaching anode and cathode mixed material of waste lithium nickel manganese cobalt battery
RU2479078C2 (en) * 2011-02-22 2013-04-10 Владимир Фёдорович Воржев Method to recycle nickel-zinc alkaline batteries
US9834827B2 (en) * 2012-04-04 2017-12-05 Worcester Polytechnic Institute Method and apparatus for recycling lithium-ion batteries
EP4050701A1 (en) * 2017-05-30 2022-08-31 Li-Cycle Corp. A process, apparatus, and system for recovering materials from batteries
CN107464963B (en) * 2017-07-27 2019-08-09 合肥国轩高科动力能源有限公司 A method of efficiently separating valuable material from waste lithium cell
US11631909B2 (en) * 2018-11-28 2023-04-18 Li Industries, Inc. Methods and systems for scalable direct recycling of batteries
CN109678144B (en) * 2019-01-30 2020-11-13 广东光华科技股份有限公司 Method for recycling silicon-containing waste graphite of lithium battery
EP4004242A1 (en) * 2019-07-26 2022-06-01 Duesenfeld GmbH Method for recycling lithium batteries
CN110828926B (en) * 2019-09-26 2022-05-17 矿冶科技集团有限公司 Method for cooperatively recovering metal and graphite from anode and cathode materials of waste lithium ion battery
CN111072023B (en) * 2019-12-27 2022-02-08 北京蒙京石墨新材料科技研究院有限公司 Method for recycling graphite from scrapped lithium ion battery
CN111204757B (en) * 2020-01-15 2022-01-07 广东邦普循环科技有限公司 Method for purifying, repairing and regenerating graphite in retired power battery

Similar Documents

Publication Publication Date Title
CN105206889B (en) A kind of processing method of waste and old nickle cobalt lithium manganate ternary cell positive material
CN107267759B (en) A kind of comprehensive recovering process of anode material for lithium-ion batteries
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN110066925A (en) The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium battery
CN104659438B (en) A kind of method that utilization refuse battery prepares ternary anode material precursor
EP4372112A2 (en) Process for the recovery of cathode materials in the recycling of batteries
CN107069132A (en) A kind of method for reclaiming waste lithium iron phosphate positive electrode
CN105483382B (en) The separation and recovery method of the refuse battery material extract of nickel and cobalt containing manganese
CN112117507B (en) Method for efficiently recycling and regenerating waste lithium ion battery anode material
CN107017444A (en) A kind of method of metal recovery in waste lithium iron phosphate battery
KR20230021639A (en) Recovery of anodes from recycled batteries
BR112016011396B1 (en) DEVICES AND METHOD FOR RECYCLING WITHOUT FUSER OF LEAD ACID BATTERIES.
KR20170061206A (en) Collection method of precursor material using disposed lithum-ion battery
CN108172925A (en) A kind of nickle cobalt lithium manganate ter-polymers cell anode waste recovery method
CN112510280B (en) Physical method based on hash of feature elements in foil of power battery
CN113802017A (en) Method for separating and recovering aluminum in acid leachate of waste lithium iron phosphate battery positive electrode material by extraction method
CN111180819B (en) Preparation method of battery-grade Ni-Co-Mn mixed solution and battery-grade Mn solution
KR20220092515A (en) Method for extracting Li and Ni from solution
CN109825846A (en) A kind of method of molten caustic soda electrolytic regeneration waste lithium ion cell anode material
CN108910965B (en) Method for preparing ternary hydroxide precursor
CN109524735B (en) Recovery method of waste lithium iron phosphate-lithium titanate battery
JPWO2021252433A5 (en)
CN112064062B (en) Method for preparing crude lead by waste lead plaster without pre-desulfurization combined electrolysis
WO2024066184A1 (en) Method for recycling lithium iron phosphate battery
JP2005526680A (en) Method for surface purification of graphite containing impurities using dilute aqueous solution of NH4F and H2SO4