JPWO2021252319A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021252319A5
JPWO2021252319A5 JP2022571788A JP2022571788A JPWO2021252319A5 JP WO2021252319 A5 JPWO2021252319 A5 JP WO2021252319A5 JP 2022571788 A JP2022571788 A JP 2022571788A JP 2022571788 A JP2022571788 A JP 2022571788A JP WO2021252319 A5 JPWO2021252319 A5 JP WO2021252319A5
Authority
JP
Japan
Prior art keywords
stimuli
optionally
eye
range
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022571788A
Other languages
Japanese (ja)
Other versions
JP2023528301A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2021/036100 external-priority patent/WO2021252319A1/en
Publication of JP2023528301A publication Critical patent/JP2023528301A/en
Publication of JPWO2021252319A5 publication Critical patent/JPWO2021252319A5/ja
Pending legal-status Critical Current

Links

Description

屈折異常を治療するための装置は、焦点から外れた画像を備える、刺激を、黄斑の外側の周辺網膜上に投影するように構成される、1つまたはそれを上回る光学系を備える。刺激は、多くの方法で構成されることができるが、いくつかの実施形態では、刺激は、黄斑視等の中心視への干渉を減少させるように配列される。刺激は、約2ジオプタ(「D」)~約6Dの範囲内の脱焦点化の量を備え得る、焦点から外れた画像であることができ、範囲は、約3D~約6Dであることができる。いくつかの実施形態では、刺激の明度は、背景明度の少なくとも3倍等、適切な量だけ背景照明の明度を上回る。いくつかの実施形態では、複数の刺激はそれぞれ、約1X10-1~1X10サイクル/度の範囲内の実質的空間周波数を有する、振幅プロファイルを伴う、空間周波数分布を備える。いくつかの実施形態では、刺激はそれぞれ、刺激に対する応答を助長するための空間周波数を提供するような強度プロファイル分布を伴って、定寸および成形される。刺激はそれぞれ、減少された照明の領域に近接して、1つまたはそれを上回る局在化された強度ピークを備えてもよい。いくつかの実施形態では、減少された照明の領域は、複数のピーク間に位置するが、減少された照明の領域は、環状ピークによって境界されてもよい。
本発明は、例えば、以下を提供する。
(項目1)
眼の屈折異常を治療するための装置であって、前記装置は、
複数の刺激と、
1つまたはそれを上回る光学系であって、前記1つまたはそれを上回る光学系は、前記複数の刺激を網膜の周辺部分の前方または後方に結像し、複数の脱焦点化された画像を前記網膜の周辺部分上に形成する、1つまたはそれを上回る光学系と
を備え、前記複数の刺激および前記1つまたはそれを上回る光学系は、前記眼の中心視への干渉を低減させるように配列される、装置。
(項目2)
前記複数の画像は、3.0D~6.0Dの範囲内の量だけ脱焦点化される、随意に、近視眼的に、随意に、3.5D~5.0Dの範囲内で脱焦点化される、項目1に記載の装置。
(項目3)
前記複数の脱焦点化された画像の明度は、背景照明の明度の少なくとも3倍、随意に、背景照明の明度の少なくとも5倍、随意に、背景照明の明度の3~20倍の範囲内、さらに随意に、背景照明の明度の5~15倍の範囲内でより高い、項目1に記載の装置。
(項目4)
前記複数の脱焦点化された画像はそれぞれ、強度プロファイル分布を備え、前記強度プロファイル分布は、1つまたはそれを上回るピークに対して減少された強度を伴う内側部分の周囲に分散された1つまたはそれを上回るピークを備える、項目1に記載の装置。
(項目5)
前記1つまたはそれを上回るピークは、複数のピークを備え、前記内側部分は、前記複数のピーク間に位置する、項目4に記載の装置。
(項目6)
前記複数のピークは、4つのピークを備え、前記内側部分は、前記4つのピーク間に位置する、項目5に記載の装置。
(項目7)
前記内側部分は、前記4つのピーク間に延在する十字を備える、項目6に記載の装置。
(項目8)
前記1つまたはそれを上回るピークは、環状ピークを備え、前記内側部分は、前記環状ピーク内に位置する、項目4に記載の装置。
(項目9)
前記複数の脱焦点化された画像はそれぞれ、多色性アイコンをより暗い背景上に備え、コントラストを提供し、随意に、前記多色性アイコンは、白色アイコンを備え、前記より暗い背景は、実質的に黒色背景を備える、項目1に記載の装置。
(項目10)
前記複数の刺激はそれぞれ、長さ、縁、および強度プロファイル分布を備え、前記網膜の前方または後方において前記眼の中に結像される際に、1X10 -1 ~2.5X10 サイクル/度の範囲内、随意に、1X10 -1 ~1X10 サイクル/度の範囲内の空間周波数を生成する、項目1に記載の装置。
(項目11)
前記眼内に結像される際の前記複数の刺激は、約1X10 -1 ~約2.5X10 サイクル/度、随意に、1X10 -1 ~約5X10 サイクル/度の空間周波数の範囲にわたって、空間周波数の増加に伴って空間周波数振幅の減少を提供する空間周波数分布を備える、項目1に記載の装置。
(項目12)
前記空間周波数強度の減少は、任意単位における前記空間周波数振幅にわたって、1/(空間周波数) 0.5 ~1/(空間周波数) 、随意に、任意単位における前記空間周波数振幅にわたって、1/(空間周波数)~1/(空間周波数) の範囲内である、項目11に記載の装置。
(項目13)
前記空間周波数の範囲は、約3X10 -1 ~約1.0X10 サイクル/度、随意に、約3X10 -1 ~約2.0X10 の範囲内、さらに随意に、約3X10 -1 ~約1.0X10 である、項目11に記載の装置。
(項目14)
前記装置は、患者の眼の単眼刺激のために構成される、項目1に記載の装置。
(項目15)
前記装置は、前記患者の両眼刺激のために構成される、項目1に記載の装置。
(項目16)
前記患者の僚眼を刺激する第2の複数の刺激と、
第2の1つまたはそれを上回る光学系であって、前記第2の1つまたはそれを上回る光学系は、前記第2の複数の刺激を前記僚眼の網膜の周辺部分の前方または後方に結像し、第2の複数の脱焦点化された画像を前記第2の網膜の周辺部分上に形成する、第2の1つまたはそれを上回る光学系と
をさらに備え、
前記第2の複数の刺激および前記第2の1つまたはそれを上回る光学系は、前記僚眼の中心視への干渉を低減させるように配列される、項目15に記載の装置。
(項目17)
前記複数の刺激および前記1つまたはそれを上回る光学系は、10度~30度の範囲内、随意に、10度~20度、随意に、12度~18度の範囲内の実質的に中断されない視野を提供するように配列される、随意に、前記複数の脱焦点化された画像はそれぞれ、前記視野の外側の前記網膜上に投影される、項目1に記載の装置。
(項目18)
前記眼内に結像される際の前記複数の刺激はそれぞれ、略均一灰色背景上にオーバーレイされ、前記複数の刺激はそれぞれ、白色アイコンを備え、したがって、前記アイコンは、主に、1X10 -1 サイクル/度~2.5X10 サイクル/度の範囲内、随意に、1X10 -1 サイクル/度~1X10 サイクル/度の範囲内の空間周波数の特徴を生成する縁の全長を有する、項目1に記載の装置。
(項目19)
前記眼内に結像される際の前記複数の刺激はそれぞれ、主に、1X10 -1 サイクル/度~2.5X10 サイクル/度の範囲内、随意に、1X10 -1 サイクル/度~1X10 サイクル/度の範囲内の空間周波数の特徴を生成する縁プロファイルを背景上に有する多色性アイコンを備える、項目1に記載の装置。
(項目20)
前記複数の刺激はそれぞれ、0.7を上回る、随意に、8.0を上回る大域的コントラスト係数を備える、項目1に記載の装置。
(項目21)
前記1つまたはそれを上回る光学系は、ホログラム、導波管、ミラー、レンズ、眼鏡レンズ、またはコンタクトレンズのうちの1つまたはそれを上回るものを備える、項目1に記載の装置。
(項目22)
前記ユーザに結合し、前記1つまたはそれを上回る光学系を支持するための支持体をさらに備え、前記支持体は、頭部搭載型デバイス、眼鏡レンズ、眼鏡フレーム、ゴーグル、ARディスプレイ、コンタクトレンズ、またはVRディスプレイのうちの1つまたはそれを上回るもののコンポーネントを備える、項目1に記載の装置。
(項目23)
前記眼の屈折異常を補正するためのレンズをさらに備える、項目1に記載の装置。
(項目24)
前記1つまたはそれを上回る光学系は、前記眼の瞳孔が散瞳薬で拡張されているとき、前記複数の刺激を前記網膜の周辺部分に向かって投影するように配列される、項目1に記載の装置。
(項目25)
前記複数の刺激は、前記眼の視軸から少なくとも35度の角度で、前記網膜の周辺部分を照明するように配列される、項目24に記載の装置。
(項目26)
前記瞳孔のサイズを測定するためのセンサをさらに備え、前記瞳孔のサイズに応答して、前記光学刺激を前記眼に向かって指向するための命令とともに構成されるプロセッサをさらに備え、随意に、前記瞳孔のサイズは、前記瞳孔の直径を備える、項目1に記載の装置。
(項目27)
前記プロセッサは、前記瞳孔のサイズに応答して、前記光学刺激の強度または持続時間のうちの1つまたはそれを上回るものを調節するように構成される、項目26に記載の装置。
(項目28)
前記センサは、センサアレイを備え、随意に、前記センサアレイは、カメラのセンサアレイを備える、項目26に記載の装置。
(項目29)
前記複数の刺激は、複数の刺激で照明されると、天然瞳孔の拡張を可能にするように構成される、項目26に記載の装置。
(項目30)
前記複数の刺激は、前記刺激が提供されるとき、前記刺激がまだ提供されていないときの前記瞳孔の直径と比較して、1ミリメートル(mm)以下だけ前記瞳孔を収縮させるように構成される、項目1に記載の装置。
(項目31)
前記瞳孔は、前記眼が、前記複数の刺激に暴露されるとき、刺激直径を備え、前記眼は、前記眼が、前記複数の刺激を伴わずに、明所視視認条件に暴露されるとき、明所視直径を備え、前記明所視直径は、前記刺激直径より少なくとも1ミリメートル小さく、随意に、前記明所視視認条件は、少なくとも3カンデラ(cd)/平方メートル(m )の輝度を備える、項目1に記載の装置。
(項目32)
前記刺激は、35度を上回る偏心を伴って、前記網膜の周辺部分を照明するように構成され、前記眼の瞳孔は、前記刺激が、前記35度を上回る偏心を伴って、前記周辺網膜に提供されている間、明所視照明と比較して、少なくとも約1ミリメートルだけ拡張される、項目1に記載の装置。
(項目33)
前記複数の刺激のエネルギーの総量の10%以下、随意に、前記総量の5%以下、随意に、前記総量の1%以下が、前記複数の刺激に応答して、前記瞳孔の収縮を減少させるために、前記眼の中心窩に指向される、項目1に記載の装置。
(項目34)
眼の屈折異常を治療する方法であって、前記方法は、
刺激を前記眼の網膜の周辺領域に提供することを含み、前記刺激は、朝に提供される、方法。
(項目35)
前記刺激は、前記先行項目のうちの任意の1つに記載の装置によって提供される、項目34に記載の方法。
(項目36)
前記刺激は、午前6時~午前10時に提供される、項目34に記載の方法。
(項目37)
前記刺激は、午前6時~午前10時に提供される、項目34に記載の方法。
(項目38)
前記刺激は、複数の連続する日の朝に前記眼に提供され、それぞれの日の総治療時間は、1時間以下を含む、項目34に記載の方法。
(項目39)
プロセッサによって実行されるための命令とともに構成される有形媒体であって、前記有形媒体は、項目34-38のいずれか1項に記載の方法を実施するように構成される、有形媒体。
(項目40)
患者データベースであって、
複数の患者に関する複数の網膜刺激治療に対応する治療データと、
前記複数の患者に関する有効性データであって、前記有効性データは、前記複数の治療に関する屈折データを備える、有効性データと
を備える、患者データベース。
(項目41)
臨床試験を行う方法であって、前記方法は、
複数の日のそれぞれの日に、周辺網膜刺激を試験眼に提供し、対照眼に提供しないことと、
複数の日のそれぞれの日に、治療前および後の前記試験眼および前記対照眼の軸方向長を測定することと、
前記試験眼の軸方向長と前記対照眼の軸方向長を比較し、前記周辺網膜刺激の有効性を決定することと
を含む、方法。
(項目42)
眼の屈折異常を治療する方法であって、前記方法は、
前記眼の瞳孔を拡張させることと、
光学刺激を前記網膜の周辺部分に提供し、前記眼の屈折異常を減少させることと
を含む、方法。
(項目43)
前記刺激は、前記項目のいずれか1項に記載の前記複数の刺激を備える、項目42に記載の方法。
(項目44)
前記瞳孔は、散瞳薬で拡張される、項目42に記載の方法。
(項目45)
前記散瞳薬は、毛様体筋麻痺薬を備え、随意に、前記毛様体筋麻痺薬は、アトロピン、シクロペントラート、ホマトロピン、スコポラミン、およびトロピカミドから成る群から選択される、項目44に記載の方法。
(項目46)
前記毛様体筋麻痺薬は、0.025%~0.2%、随意に、0.05%~0.1%の範囲内のパーセンテージ重量比を伴うアトロピンを備える、項目45に記載の方法。
(項目47)
前記瞳孔のサイズは、測定され、前記光学刺激は、前記瞳孔のサイズに応答して、前記眼に向かって指向され、随意に、前記瞳孔のサイズは、前記瞳孔の直径を備える、項目42に記載の方法。
(項目48)
前記光学刺激の強度または持続時間のうちの1つまたはそれを上回るものは、前記瞳孔のサイズに応答して調節される、項目47に記載の方法。
(項目49)
前記瞳孔のサイズは、センサを用いて測定され、随意に、前記センサは、センサアレイを備え、随意に、前記センサアレイは、カメラのセンサアレイを備える、項目47に記載の方法。
(項目50)
前記瞳孔は、前記周辺網膜の適切な量の照明および前記天然瞳孔を通して通過する他の源からの光で拡張された前記眼の天然瞳孔を備え、随意に、前記天然瞳孔は、前記眼への照明に応答して収縮および拡張することが可能である、項目42に記載の方法。
(項目51)
前記天然瞳孔は、薄明視背景照明または暗所視背景照明で拡張され、随意に、前記薄明視背景照明は、0.01カンデラ/平方メートル(cd/m )~3cd/m の範囲内の量を備える、項目50に記載の方法。
(項目52)
前記天然瞳孔は、前記刺激が提供されるとき、前記刺激がまだ提供されていないときの前記天然瞳孔の直径と比較して、1ミリメートル(mm)以下だけ収縮する、項目51に記載の方法。
(項目53)
前記天然瞳孔は、前記眼が前記刺激に暴露されるとき、刺激直径を備え、前記天然瞳孔は、前記眼が明所視視認条件に暴露されるとき、明所視直径を備え、前記明所視直径は、前記刺激直径より少なくとも1ミリメートル小さい、項目51に記載の方法。
(項目54)
前記刺激は、35度を上回る偏心を伴って、前記周辺網膜を照明するように構成され、前記瞳孔は、前記刺激が、前記35度を上回る偏心を伴って、前記周辺網膜に提供される間、明所視照明と比較して、少なくとも約1ミリメートルだけ拡張される、項目42に記載の方法。
(項目55)
前記複数の刺激のエネルギーの総量の10%以下、随意に、前記総量の5%以下、随意に、前記総量の1%以下が、前記複数の刺激に応答して、前記瞳孔の収縮を減少させるために、前記眼の中心窩に指向される、項目42に記載の方法。
(項目56)
前記刺激は、前記網膜の前記周辺領域に指向される明所視刺激を備え、中心窩または黄斑のうちの1つまたはそれを上回るものの照明は、瞳孔のサイズを減少させるために、薄明視または暗所視照明のうちの1つまたはそれを上回るものを備える、項目42に記載の方法。
(参照による組み込み)
A device for treating refractive error comprises one or more optical systems configured to project a stimulus comprising an out-of-focus image onto the peripheral retina outside the macula. The stimulus can be configured in many ways, but in some embodiments, the stimulus is arranged to reduce interference with central vision, such as macular vision. The stimulus can be an out-of-focus image that may comprise an amount of defocusing in the range of about 2 diopters ("D") to about 6D, and the range can be from about 3D to about 6D. In some embodiments, the brightness of the stimulus exceeds the brightness of the background illumination by an appropriate amount, such as at least three times the brightness of the background. In some embodiments, each of the multiple stimuli comprises a spatial frequency distribution with an amplitude profile having a substantial spatial frequency in the range of about 1×10 −1 to 1×10 1 cycles per degree. In some embodiments, each of the stimuli is sized and shaped with an intensity profile distribution to provide a spatial frequency to facilitate a response to the stimulus. Each of the stimuli may comprise one or more localized intensity peaks in proximity to the area of reduced illumination. In some embodiments, the region of reduced illumination is located between multiple peaks, however, the region of reduced illumination may be bounded by annular peaks.
The present invention provides, for example, the following:
(Item 1)
1. An apparatus for treating refractive error of an eye, the apparatus comprising:
Multiple stimuli and
one or more optical systems that image the plurality of stimuli in front of or behind a peripheral portion of a retina to form a plurality of defocused images on the peripheral portion of the retina;
wherein the plurality of stimuli and the one or more optical systems are arranged to reduce interference with central vision of the eye.
(Item 2)
2. The apparatus of claim 1, wherein the plurality of images are defocused by an amount in the range of 3.0D to 6.0D, optionally myopically, optionally defocused within the range of 3.5D to 5.0D.
(Item 3)
2. The apparatus of claim 1, wherein a brightness of the plurality of defocused images is at least 3 times higher than a brightness of the background illumination, optionally at least 5 times higher than a brightness of the background illumination, optionally within a range of 3 to 20 times higher than a brightness of the background illumination, further optionally within a range of 5 to 15 times higher than a brightness of the background illumination.
(Item 4)
2. The apparatus of claim 1, wherein each of the plurality of defocused images comprises an intensity profile distribution comprising one or more peaks distributed around an inner portion with reduced intensity relative to the one or more peaks.
(Item 5)
5. The apparatus of claim 4, wherein the one or more peaks comprise a plurality of peaks and the inner portion is located between the plurality of peaks.
(Item 6)
6. The apparatus of claim 5, wherein the plurality of peaks comprises four peaks and the inner portion is located between the four peaks.
(Item 7)
7. The apparatus of claim 6, wherein the inner portion comprises a cross extending between the four peaks.
(Item 8)
5. The apparatus of claim 4, wherein the one or more peaks comprise an annular peak and the inner portion is located within the annular peak.
(Item 9)
2. The apparatus of claim 1, wherein each of the plurality of defocused images comprises a multi-chromatic icon on a darker background to provide contrast, and optionally, the multi-chromatic icon comprises a white icon and the darker background comprises a substantially black background.
(Item 10)
2. The apparatus of claim 1, wherein each of the plurality of stimuli has a length, edge, and intensity profile distribution and, when imaged into the eye in front of or behind the retina, produces a spatial frequency in the range of 1×10 −1 to 2.5× 10 1 cycle/degree, optionally in the range of 1×10 −1 to 1×10 1 cycle/degree.
(Item 11)
2. The device of claim 1, wherein the plurality of stimuli when imaged into the eye comprises a spatial frequency distribution that provides a decrease in spatial frequency amplitude with increasing spatial frequency over a range of spatial frequencies from about 1×10 −1 to about 2.5 × 10 1 cycles/degree, optionally from 1×10 −1 to about 10 0 cycles/degree.
(Item 12)
12. The apparatus of claim 11, wherein the reduction in spatial frequency intensity is in the range of 1/(spatial frequency) 0.5 to 1/(spatial frequency) 2 across the spatial frequency amplitude in arbitrary units, optionally in the range of 1/(spatial frequency) to 1/(spatial frequency) 2 across the spatial frequency amplitude in arbitrary units.
(Item 13)
12. The apparatus of claim 11, wherein the spatial frequency range is within the range of about 3×10 −1 to about 1.0× 10 1 cycles/degree, optionally from about 3× 10 −1 to about 2.0×10 0 , further optionally from about 3×10 −1 to about 1.0×10 0 .
(Item 14)
13. The device of claim 1, wherein the device is configured for monocular stimulation of a patient's eye.
(Item 15)
2. The device of claim 1, wherein the device is configured for binocular stimulation of the patient.
(Item 16)
a second plurality of stimuli for stimulating the patient's fellow eye; and
a second one or more optical systems that images the second plurality of stimuli in front of or behind a peripheral portion of the retina of the fellow eye and form a second plurality of defocused images on the peripheral portion of the second retina;
Further equipped with
16. The device of claim 15, wherein the second plurality of stimuli and the second one or more optical systems are arranged to reduce interference with central vision of the fellow eye.
(Item 17)
2. The apparatus of claim 1, wherein the plurality of stimuli and the one or more optical systems are arranged to provide a substantially uninterrupted field of view within a range of 10 degrees to 30 degrees, optionally within a range of 10 degrees to 20 degrees, optionally within a range of 12 degrees to 18 degrees; optionally, each of the plurality of defocused images is projected onto the retina outside the field of view.
(Item 18)
2. The apparatus of claim 1, wherein each of the plurality of stimuli as imaged into the eye is overlaid on a substantially uniform grey background, and each of the plurality of stimuli comprises a white icon, such that the icon has a total edge length that produces spatial frequency features primarily within a range of 1× 10 −1 cycles/degree to 2.5×10 1 cycles/degree, optionally within a range of 1×10 −1 cycles/degree to 1×10 1 cycles/degree.
(Item 19)
2. The apparatus of claim 1 , wherein each of the plurality of stimuli when imaged into the eye comprises a polychromatic icon having an edge profile on a background that produces spatial frequency features primarily within a range of 1× 10 −1 cycles/ degree to 2.5× 10 1 cycles/degree, optionally within a range of 1×10 −1 cycles/degree to 1×10 1 cycles/degree.
(Item 20)
2. The apparatus of claim 1, wherein each of the plurality of stimuli comprises a global contrast coefficient greater than 0.7, optionally greater than 8.0.
(Item 21)
2. The apparatus of claim 1, wherein the one or more optical systems comprise one or more of a hologram, a waveguide, a mirror, a lens, an eyeglass lens, or a contact lens.
(Item 22)
Item 1, the apparatus of item 1 further comprising a support for coupling to the user and supporting the one or more optical systems, the support comprising a component of one or more of a head mounted device, an eyeglass lens, an eyeglass frame, goggles, an AR display, a contact lens, or a VR display.
(Item 23)
2. The device of claim 1, further comprising a lens for correcting refractive error of the eye.
(Item 24)
13. The device of claim 1, wherein the one or more optical systems are arranged to project the plurality of stimuli toward a peripheral portion of the retina when the pupil of the eye is dilated with a mydriatic.
(Item 25)
25. The apparatus of claim 24, wherein the plurality of stimuli are arranged to illuminate a peripheral portion of the retina at an angle of at least 35 degrees from the visual axis of the eye.
(Item 26)
13. The device of claim 1, further comprising a sensor for measuring a size of the pupil, and further comprising a processor configured with instructions for directing the optical stimulus towards the eye in response to a size of the pupil, optionally wherein the size of the pupil comprises a diameter of the pupil.
(Item 27)
27. The apparatus of claim 26, wherein the processor is configured to adjust one or more of an intensity or duration of the optical stimulus in response to a size of the pupil.
(Item 28)
27. The apparatus of claim 26, wherein the sensor comprises a sensor array, and optionally the sensor array comprises a sensor array of a camera.
(Item 29)
27. The apparatus of claim 26, wherein the plurality of stimuli are configured to enable dilation of a natural pupil when illuminated with the plurality of stimuli.
(Item 30)
2. The device of claim 1, wherein the plurality of stimuli are configured to constrict the pupil by 1 millimeter (mm) or less when the stimuli are provided compared to a diameter of the pupil when the stimuli are not yet provided.
(Item 31)
2. The device of claim 1, wherein the pupil comprises a stimulus diameter when the eye is exposed to the plurality of stimuli, and the eye comprises a photopic diameter when the eye is exposed to photopic viewing conditions without the plurality of stimuli, the photopic diameter being at least 1 millimeter smaller than the stimulus diameter, and optionally, the photopic viewing conditions comprising a luminance of at least 3 candelas (cd) per square meter (m2 ) .
(Item 32)
2. The device of claim 1, wherein the stimulus is configured to illuminate a peripheral portion of the retina with an eccentricity greater than 35 degrees, and wherein the pupil of the eye is dilated by at least about 1 millimeter compared to photopic illumination while the stimulus is presented to the peripheral retina with an eccentricity greater than 35 degrees.
(Item 33)
2. The device of claim 1, wherein less than 10% of a total amount of energy of the plurality of stimuli, optionally less than 5% of the total amount, optionally less than 1% of the total amount, is directed to the fovea of the eye to reduce constriction of the pupil in response to the plurality of stimuli.
(Item 34)
1. A method for treating refractive error of an eye, the method comprising:
providing a stimulus to a peripheral area of the retina of the eye, the stimulus being provided in the morning.
(Item 35)
35. The method of claim 34, wherein the stimulus is provided by an apparatus according to any one of the preceding claims.
(Item 36)
35. The method of claim 34, wherein the stimulation is provided between 6:00 am and 10:00 am.
(Item 37)
35. The method of claim 34, wherein the stimulation is provided between 6:00 am and 10:00 am.
(Item 38)
35. The method of claim 34, wherein the stimulation is provided to the eye in the morning on multiple consecutive days, the total treatment time on each day comprising 1 hour or less.
(Item 39)
39. A tangible medium configured with instructions for execution by a processor, the tangible medium configured to implement the method of any one of claims 34-38.
(Item 40)
1. A patient database comprising:
treatment data corresponding to a plurality of retinal stimulation treatments for a plurality of patients;
Efficacy data for the plurality of patients, the efficacy data comprising refraction data for the plurality of treatments;
A patient database comprising:
(Item 41)
1. A method of conducting a clinical trial, the method comprising:
providing peripheral retinal stimulation to the test eye and not to the control eye on each of the plurality of days;
measuring the axial length of the test eye and the control eye before and after treatment on each of a plurality of days;
comparing the axial length of the test eye to the axial length of the control eye to determine efficacy of the peripheral retinal stimulation;
A method comprising:
(Item 42)
1. A method for treating refractive error in an eye, the method comprising:
dilating the pupil of said eye;
providing optical stimulation to a peripheral portion of the retina to reduce refractive error of the eye;
A method comprising:
(Item 43)
43. The method of claim 42, wherein the stimuli comprise the plurality of stimuli of any one of the preceding claims.
(Item 44)
43. The method of claim 42, wherein the pupil is dilated with a mydriatic.
(Item 45)
45. The method of claim 44, wherein the mydriatic comprises a cycloplegic agent, optionally wherein the cycloplegic agent is selected from the group consisting of atropine, cyclopentolate, homatropine, scopolamine, and tropicamide.
(Item 46)
46. The method of claim 45, wherein the cycloplegic agent comprises atropine with a percentage weight ratio in the range of 0.025% to 0.2%, optionally 0.05% to 0.1%.
(Item 47)
43. The method of claim 42, wherein a size of the pupil is measured and the optical stimulus is directed towards the eye in response to a size of the pupil, optionally wherein the size of the pupil comprises a diameter of the pupil.
(Item 48)
48. The method of claim 47, wherein one or more of an intensity or duration of the optical stimulus is adjusted in response to a size of the pupil.
(Item 49)
48. The method of claim 47, wherein the pupil size is measured using a sensor, optionally the sensor comprises a sensor array, optionally the sensor array comprises a sensor array of a camera.
(Item 50)
43. The method of claim 42, wherein the pupil comprises a natural pupil of the eye dilated with an appropriate amount of illumination of the peripheral retina and light from other sources passing through the natural pupil, and optionally the natural pupil is capable of contracting and dilating in response to illumination to the eye.
(Item 51)
51. The method of claim 50, wherein the natural pupil is dilated with mesopic background illumination or scotopic background illumination, optionally the mesopic background illumination comprising an amount in the range of 0.01 candela per square meter (cd/m 2 ) to 3 cd/m 2 .
(Item 52)
52. The method of claim 51, wherein the natural pupil constricts by no more than 1 millimeter (mm) when the stimulus is provided compared to the diameter of the natural pupil when the stimulus has not yet been provided.
(Item 53)
52. The method of claim 51, wherein the natural pupil comprises a stimulus diameter when the eye is exposed to the stimulus, and the natural pupil comprises a photopic diameter when the eye is exposed to photopic viewing conditions, the photopic diameter being at least 1 millimeter smaller than the stimulus diameter.
(Item 54)
43. The method of claim 42, wherein the stimulus is configured to illuminate the peripheral retina with an eccentricity of greater than 35 degrees, and the pupil is dilated by at least about 1 millimeter compared to photopic illumination while the stimulus is provided to the peripheral retina with an eccentricity of greater than 35 degrees.
(Item 55)
43. The method of claim 42, wherein 10% or less of a total amount of energy of the plurality of stimuli, optionally 5% or less of the total amount, optionally 1% or less of the total amount, is directed to the fovea of the eye to reduce constriction of the pupil in response to the plurality of stimuli.
(Item 56)
43. The method of claim 42, wherein the stimulus comprises a photopic stimulus directed to the peripheral region of the retina, and illumination of one or more of the fovea or macula comprises one or more of mesopic or scotopic illumination to reduce pupil size.
(Incorporated by reference)

Claims (34)

眼の屈折異常を治療するための装置であって、前記装置は、
複数の刺激と、
1つまたはそれを上回る光学系であって、前記1つまたはそれを上回る光学系は、前記複数の刺激を網膜の周辺部分の前方または後方に結像し、複数の脱焦点化された画像を前記網膜の周辺部分上に形成する、1つまたはそれを上回る光学系と
を備え、前記複数の刺激および前記1つまたはそれを上回る光学系は、前記眼の中心視への干渉を低減させるように配列される、装置。
1. An apparatus for treating refractive error of an eye, the apparatus comprising:
Multiple stimuli and
and one or more optical systems that image the plurality of stimuli in front of or behind a peripheral portion of the retina to form a plurality of defocused images on the peripheral portion of the retina, wherein the plurality of stimuli and the one or more optical systems are arranged to reduce interference with central vision of the eye.
前記複数の画像は、3.0D~6.0Dの範囲内の量だけ脱焦点化され随意に、近視眼的に、随意に、3.5D~5.0Dの範囲内で脱焦点化される、請求項1に記載の装置。 10. The apparatus of claim 1, wherein the images are defocused by an amount in the range of 3.0D to 6.0D , optionally myopically, and optionally defocused within the range of 3.5D to 5.0D. 前記複数の脱焦点化された画像の明度は、背景照明の明度の少なくとも3倍、随意に、背景照明の明度の少なくとも5倍、随意に、背景照明の明度の3~20倍の範囲内、さらに随意に、背景照明の明度の5~15倍の範囲内でより高い、請求項1に記載の装置。 The apparatus of claim 1, wherein the brightness of the plurality of defocused images is at least 3 times the brightness of the background illumination, optionally at least 5 times the brightness of the background illumination, optionally in the range of 3 to 20 times the brightness of the background illumination, and further optionally in the range of 5 to 15 times the brightness of the background illumination. 前記複数の脱焦点化された画像はそれぞれ、強度プロファイル分布を備え、前記強度プロファイル分布は、1つまたはそれを上回るピークに対して減少された強度を伴う内側部分の周囲に分散された1つまたはそれを上回るピークを備える、請求項1に記載の装置。 The apparatus of claim 1, wherein each of the plurality of defocused images comprises an intensity profile distribution, the intensity profile distribution comprising one or more peaks distributed around an inner portion with reduced intensity relative to the one or more peaks. 前記1つまたはそれを上回るピークは、複数のピークを備え、前記内側部分は、前記複数のピーク間に位置する、請求項4に記載の装置。 The device of claim 4, wherein the one or more peaks comprise a plurality of peaks, and the inner portion is located between the plurality of peaks. 前記複数のピークは、4つのピークを備え、前記内側部分は、前記4つのピーク間に位置する、請求項5に記載の装置。 The device of claim 5, wherein the plurality of peaks comprises four peaks, and the inner portion is located between the four peaks. 前記内側部分は、前記4つのピーク間に延在する十字を備える、請求項6に記載の装置。 The device of claim 6, wherein the inner portion comprises a cross extending between the four peaks. 前記1つまたはそれを上回るピークは、環状ピークを備え、前記内側部分は、前記環状ピーク内に位置する、請求項4に記載の装置。 The device of claim 4, wherein the one or more peaks comprise an annular peak and the inner portion is located within the annular peak. 前記複数の脱焦点化された画像はそれぞれ、多色性アイコンをより暗い背景上に備え、コントラストを提供し、随意に、前記多色性アイコンは、白色アイコンを備え、前記より暗い背景は、実質的に黒色背景を備える、請求項1に記載の装置。 The device of claim 1, wherein each of the plurality of defocused images comprises a multi-chromatic icon on a darker background to provide contrast, and optionally, the multi-chromatic icon comprises a white icon and the darker background comprises a substantially black background. 前記複数の刺激はそれぞれ、長さ、縁、および強度プロファイル分布を備え、前記網膜の前方または後方において前記眼の中に結像される際に、1X10-1~2.5X10サイクル/度の範囲内、随意に、1X10-1~1X10サイクル/度の範囲内の空間周波数を生成する、請求項1に記載の装置。 2. The apparatus of claim 1, wherein each of the plurality of stimuli has a length, edge, and intensity profile distribution that when imaged into the eye in front of or behind the retina produces a spatial frequency in the range of 1X10 -1 to 2.5X10 1 cycle/degree, optionally in the range of 1X10 -1 to 1X10 1 cycle/degree. 前記眼内に結像される際の前記複数の刺激は、約1X10-1~約2.5X10サイクル/度、随意に、1X10-1~約5X10サイクル/度の空間周波数の範囲にわたって、空間周波数の増加に伴って空間周波数振幅の減少を提供する空間周波数分布を備える、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the plurality of stimuli when imaged into the eye comprises a spatial frequency distribution providing a decrease in spatial frequency amplitude with increasing spatial frequency over a range of spatial frequencies from about 1×10 −1 to about 2.5 × 10 1 cycles/degree, optionally from 1×10 −1 to about 5×10 0 cycles /degree. 前記空間周波数強度の減少は、任意単位における前記空間周波数振幅にわたって、1/(空間周波数)0.5~1/(空間周波数)、随意に、任意単位における前記空間周波数振幅にわたって、1/(空間周波数)~1/(空間周波数)の範囲内である、請求項11に記載の装置。 12. The apparatus of claim 11, wherein the reduction in spatial frequency intensity is in the range of 1/(spatial frequency) 0.5 to 1/(spatial frequency) 2 across the spatial frequency amplitude in arbitrary units, optionally in the range of 1/(spatial frequency) to 1/(spatial frequency) 2 across the spatial frequency amplitude in arbitrary units. 前記空間周波数の範囲は、約3X10-1~約1.0X10サイクル/度、随意に、約3X10-1~約2.0X10の範囲内、さらに随意に、約3X10-1~約1.0X10である、請求項11に記載の装置。 12. The apparatus of claim 11, wherein the spatial frequency range is from about 3X10 -1 to about 1.0X10 1 cycles per degree, optionally within the range of about 3X10 -1 to about 2.0X10 0 , further optionally from about 3X10 -1 to about 1.0X10 0 . 前記装置は、患者の眼の単眼刺激のために構成される、請求項1に記載の装置。 The device of claim 1, wherein the device is configured for monocular stimulation of a patient's eye. 前記装置は患者の両眼刺激のために構成される、請求項1に記載の装置。 The device of claim 1 , wherein the device is configured for binocular stimulation of a patient. 前記患者の僚眼を刺激する第2の複数の刺激と、
第2の1つまたはそれを上回る光学系であって、前記第2の1つまたはそれを上回る光学系は、前記第2の複数の刺激を前記僚眼の網膜の周辺部分の前方または後方に結像し、第2の複数の脱焦点化された画像を前記第2の網膜の周辺部分上に形成する、第2の1つまたはそれを上回る光学系と
をさらに備え、
前記第2の複数の刺激および前記第2の1つまたはそれを上回る光学系は、前記僚眼の中心視への干渉を低減させるように配列される、請求項15に記載の装置。
a second plurality of stimuli for stimulating the patient's fellow eye; and
a second one or more optical systems that images the second plurality of stimuli anterior to or posterior to a peripheral portion of the retina of the fellow eye and forms a second plurality of defocused images on the peripheral portion of the second retina;
16. The apparatus of claim 15, wherein the second plurality of stimuli and the second one or more optical systems are arranged to reduce interference with central vision of the fellow eye.
前記複数の刺激および前記1つまたはそれを上回る光学系は、10度~30度の範囲内、随意に、10度~20度、随意に、12度~18度の範囲内の実質的に中断されない視野を提供するように配列され随意に、前記複数の脱焦点化された画像はそれぞれ、前記視野の外側の前記網膜上に投影される、請求項1に記載の装置。 2. The device of claim 1, wherein the plurality of stimuli and the one or more optical systems are arranged to provide a substantially uninterrupted field of view within a range of 10 degrees to 30 degrees, optionally within a range of 10 degrees to 20 degrees , optionally within a range of 12 degrees to 18 degrees, and optionally each of the plurality of defocused images is projected onto the retina outside the field of view. 前記眼内に結像される際の前記複数の刺激はそれぞれ、略均一灰色背景上にオーバーレイされ、前記複数の刺激はそれぞれ、白色アイコンを備え、したがって、前記アイコンは、主に、1X10-1サイクル/度~2.5X10サイクル/度の範囲内、随意に、1X10-1サイクル/度~1X10サイクル/度の範囲内の空間周波数の特徴を生成する縁の全長を有する、請求項1に記載の装置。 2. The apparatus of claim 1, wherein each of the plurality of stimuli as imaged into the eye is overlaid on a substantially uniform grey background, and each of the plurality of stimuli comprises a white icon, such that the icons have overall edge lengths producing spatial frequency features primarily within the range of 1×10 −1 cycles/degree to 2.5×10 1 cycles/degree, optionally within the range of 1×10 −1 cycles/degree to 1×10 1 cycles/degree. 前記眼内に結像される際の前記複数の刺激はそれぞれ、主に、1X10-1サイクル/度~2.5X10サイクル/度の範囲内、随意に、1X10-1サイクル/度~1X10サイクル/度の範囲内の空間周波数の特徴を生成する縁プロファイルを背景上に有する多色性アイコンを備える、請求項1に記載の装置。 2. The apparatus of claim 1 , wherein each of the plurality of stimuli when imaged into the eye comprises a polychromatic icon having an edge profile on a background that produces spatial frequency features primarily within a range of 1×10 −1 cycles/degree to 2.5× 10 1 cycles/degree, optionally within a range of 1×10 −1 cycles/degree to 1×10 1 cycles/degree. 前記複数の刺激はそれぞれ、0.7を上回る、随意に、8.0を上回る大域的コントラスト係数を備える、請求項1に記載の装置。 The device of claim 1, wherein each of the plurality of stimuli has a global contrast coefficient greater than 0.7, and optionally greater than 8.0. 前記1つまたはそれを上回る光学系は、ホログラム、導波管、ミラー、レンズ、眼鏡レンズ、またはコンタクトレンズのうちの1つまたはそれを上回るものを備える、請求項1に記載の装置。 The apparatus of claim 1, wherein the one or more optical systems comprise one or more of a hologram, a waveguide, a mirror, a lens, an eyeglass lens, or a contact lens. ーザに結合し、前記1つまたはそれを上回る光学系を支持するための支持体をさらに備え、前記支持体は、頭部搭載型デバイス、眼鏡レンズ、眼鏡フレーム、ゴーグル、ARディスプレイ、コンタクトレンズ、またはVRディスプレイのうちの1つまたはそれを上回るもののコンポーネントを備える、請求項1に記載の装置。 10. The apparatus of claim 1, further comprising a support for coupling to a user and supporting the one or more optical systems, the support comprising a component of one or more of a head mounted device, an eyeglass lens, an eyeglass frame, goggles, an AR display, a contact lens, or a VR display. 前記眼の屈折異常を補正するためのレンズをさらに備える、請求項1に記載の装置。 The device of claim 1, further comprising a lens for correcting refractive error of the eye. 前記1つまたはそれを上回る光学系は、前記眼の瞳孔が散瞳薬で拡張されているとき、前記複数の刺激を前記網膜の周辺部分に向かって投影するように配列される、請求項1に記載の装置。 The device of claim 1, wherein the one or more optical systems are arranged to project the plurality of stimuli toward a peripheral portion of the retina when the pupil of the eye is dilated with a mydriatic drug. 前記複数の刺激は、前記眼の視軸から少なくとも35度の角度で、前記網膜の周辺部分を照明するように配列される、請求項24に記載の装置。 25. The device of claim 24, wherein the plurality of stimuli are arranged to illuminate a peripheral portion of the retina at an angle of at least 35 degrees from the visual axis of the eye. 前記瞳孔のサイズを測定するためのセンサをさらに備え、前記瞳孔のサイズに応答して、前記光学刺激を前記眼に向かって指向するための命令とともに構成されるプロセッサをさらに備え、随意に、前記瞳孔のサイズは、前記瞳孔の直径を備える、請求項1に記載の装置。 The device of claim 1, further comprising a sensor for measuring a size of the pupil, and further comprising a processor configured with instructions for directing the optical stimulus towards the eye in response to the size of the pupil, and optionally, the size of the pupil comprises a diameter of the pupil. 前記プロセッサは、前記瞳孔のサイズに応答して、前記光学刺激の強度または持続時間のうちの1つまたはそれを上回るものを調節するように構成される、請求項26に記載の装置。 27. The device of claim 26, wherein the processor is configured to adjust one or more of an intensity or duration of the optical stimulus in response to the size of the pupil. 前記センサは、センサアレイを備え、随意に、前記センサアレイは、カメラのセンサアレイを備える、請求項26に記載の装置。 27. The apparatus of claim 26, wherein the sensor comprises a sensor array, and optionally, the sensor array comprises a sensor array of a camera. 前記複数の刺激は、複数の刺激で照明されると、天然瞳孔の拡張を可能にするように構成される、請求項26に記載の装置。 27. The device of claim 26, wherein the plurality of stimuli are configured to enable dilation of the natural pupil when illuminated with the plurality of stimuli. 前記複数の刺激は、前記刺激が提供されるとき、前記刺激がまだ提供されていないときの前記瞳孔の直径と比較して、1ミリメートル(mm)以下だけ前記瞳孔を収縮させるように構成される、請求項1に記載の装置。 The device of claim 1, wherein the plurality of stimuli are configured to constrict the pupil by 1 millimeter (mm) or less when the stimuli are provided, compared to the diameter of the pupil when the stimuli are not yet provided. 前記瞳孔は、前記眼が、前記複数の刺激に暴露されるとき、刺激直径を備え、前記眼は、前記眼が、前記複数の刺激を伴わずに、明所視視認条件に暴露されるとき、明所視直径を備え、前記明所視直径は、前記刺激直径より少なくとも1ミリメートル小さく、随意に、前記明所視視認条件は、少なくとも3カンデラ(cd)/平方メートル(m)の輝度を備える、請求項1に記載の装置。 2. The apparatus of claim 1, wherein the pupil comprises a stimulus diameter when the eye is exposed to the plurality of stimuli, and the eye comprises a photopic diameter when the eye is exposed to photopic viewing conditions without the plurality of stimuli, the photopic diameter being at least 1 millimeter smaller than the stimulus diameter, and optionally, the photopic viewing conditions comprising a luminance of at least 3 candelas (cd) per square meter ( m2 ). 前記刺激は、35度を上回る偏心を伴って、前記網膜の周辺部分を照明するように構成され、前記眼の瞳孔は、前記刺激が、前記35度を上回る偏心を伴って、前記周辺網膜に提供されている間、明所視照明と比較して、少なくとも約1ミリメートルだけ拡張される、請求項1に記載の装置。 The device of claim 1, wherein the stimulus is configured to illuminate a peripheral portion of the retina with an eccentricity of greater than 35 degrees, and the pupil of the eye is dilated by at least about 1 millimeter compared to photopic illumination while the stimulus is provided to the peripheral retina with an eccentricity of greater than 35 degrees. 前記複数の刺激のエネルギーの総量の10%以下、随意に、前記総量の5%以下、随意に、前記総量の1%以下が、前記複数の刺激に応答して、前記瞳孔の収縮を減少させるために、前記眼の中心窩に指向される、請求項1に記載の装置。 The device of claim 1, wherein 10% or less of the total amount of energy of the plurality of stimuli, optionally 5% or less of the total amount, optionally 1% or less of the total amount, is directed to the fovea of the eye to reduce constriction of the pupil in response to the plurality of stimuli. 患者データベースであって、
複数の患者に関する複数の網膜刺激治療に対応する治療データと、
前記複数の患者に関する有効性データであって、前記有効性データは、前記複数の治療に関する屈折データを備える、有効性データと
を備える、患者データベース。
1. A patient database comprising:
treatment data corresponding to a plurality of retinal stimulation treatments for a plurality of patients;
and efficacy data for the plurality of patients, the efficacy data comprising refraction data for the plurality of treatments.
JP2022571788A 2020-06-08 2021-06-07 Projection of Defocused Images onto the Peripheral Retina to Treat Refractive Errors Pending JP2023528301A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US202063036226P 2020-06-08 2020-06-08
US63/036,226 2020-06-08
US202062706153P 2020-08-03 2020-08-03
US62/706,153 2020-08-03
US202062706456P 2020-08-18 2020-08-18
US62/706,456 2020-08-18
PCT/US2021/036100 WO2021252319A1 (en) 2020-06-08 2021-06-07 Projection of defocused images on the peripheral retina to treat refractive error

Publications (2)

Publication Number Publication Date
JP2023528301A JP2023528301A (en) 2023-07-04
JPWO2021252319A5 true JPWO2021252319A5 (en) 2024-06-12

Family

ID=78817406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022571788A Pending JP2023528301A (en) 2020-06-08 2021-06-07 Projection of Defocused Images onto the Peripheral Retina to Treat Refractive Errors

Country Status (7)

Country Link
US (3) US11275259B2 (en)
EP (1) EP4161636A4 (en)
JP (1) JP2023528301A (en)
KR (1) KR20230020951A (en)
CN (1) CN115916331A (en)
AU (1) AU2021289593A1 (en)
CA (1) CA3174148A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020014074A1 (en) 2018-07-07 2020-01-16 Acucela Inc. Device to prevent retinal hypoxia
CN112740099B (en) 2018-07-30 2024-05-14 奥克塞拉有限公司 Optical design of electronic contact lenses for retarding myopia progression
CN114502120A (en) 2019-07-31 2022-05-13 奥克塞拉有限公司 Device for projecting an image onto the retina
JP2022547621A (en) 2019-09-16 2022-11-14 アキュセラ インコーポレイテッド Assembly process for electronic soft contact lenses designed to inhibit the progression of myopia
JP2023514382A (en) 2020-02-21 2023-04-05 アキュセラ インコーポレイテッド charging case for electronic contact lenses
CA3177695A1 (en) 2020-05-13 2021-11-18 Ryo Kubota Electro-switchable spectacles for myopia treatment
CN115698832A (en) 2020-06-08 2023-02-03 奥克塞拉有限公司 Asymmetric projection lens for treating astigmatism
EP4161636A4 (en) 2020-06-08 2024-06-26 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
KR20230020391A (en) 2020-06-08 2023-02-10 어큐셀라 인코포레이티드 Stick on device using peripheral defocus to treat progressive refractive error
US11281022B2 (en) 2020-06-10 2022-03-22 Acucela Inc. Apparatus and methods for the treatment of refractive error using active stimulation
CN111783660B (en) * 2020-07-01 2023-11-10 业成科技(成都)有限公司 Eye movement tracking device and electronic device using same
USD983865S1 (en) * 2021-03-24 2023-04-18 Mitsui Chemicals, Inc. Spectacles
US11209672B1 (en) 2021-04-06 2021-12-28 Acucela Inc. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens
US11960088B2 (en) * 2021-04-28 2024-04-16 Meta Platforms Technologies, Llc Waveguide configurations in a head-mounted display (HMD) for improved field of view (FOV)
US11366341B1 (en) 2021-05-04 2022-06-21 Acucela Inc. Electronic case for electronic spectacles
KR20230030126A (en) * 2021-08-24 2023-03-06 삼성디스플레이 주식회사 Display device and method of driving the same
FR3134705A1 (en) * 2022-04-21 2023-10-27 Institut Mines Telecom Instrumented contact lens and associated device for measuring refractive error and/or accommodation.
WO2023231497A1 (en) * 2022-05-30 2023-12-07 珠海菲特兰医疗科技有限公司 Ophthalmic lens and frame glasses having same
WO2024023712A2 (en) * 2022-07-27 2024-02-01 Evolution Optiks Limited Face-wearable ocular stimulation device
CN115268105B (en) * 2022-08-22 2023-08-11 惠晶显示科技(苏州)有限公司 Active myopia prevention and control glasses
CN116570843B (en) * 2023-07-12 2023-09-29 北京市眼科研究所 Myopia treatment device

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516808B2 (en) 1997-09-12 2003-02-11 Alfred E. Mann Foundation For Scientific Research Hermetic feedthrough for an implantable device
US6409345B1 (en) 2000-08-08 2002-06-25 Tracey Technologies, Llc Method and device for synchronous mapping of the total refraction non-homogeneity of the eye and its refractive components
US6820979B1 (en) 1999-04-23 2004-11-23 Neuroptics, Inc. Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6851805B2 (en) 1999-07-02 2005-02-08 E-Vision, Llc Stabilized electro-active contact lens
CN1423546A (en) 1999-12-29 2003-06-11 新英格兰验光学院 Myopia progression retardation by optical defect correction
US6709102B2 (en) 2001-01-16 2004-03-23 Arthur G. Duppstadt Multifocal contact lens and method of making the same
US6561648B2 (en) 2001-05-23 2003-05-13 David E. Thomas System and method for reconstruction of aberrated wavefronts
US20040237971A1 (en) 2003-06-02 2004-12-02 Hema Radhakrishnan Methods and apparatuses for controlling optical aberrations to alter modulation transfer functions
US7503655B2 (en) 2003-11-19 2009-03-17 Vision Crc Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
US7506983B2 (en) 2004-09-30 2009-03-24 The Hong Kong Polytechnic University Method of optical treatment
US8778022B2 (en) 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
WO2007002797A2 (en) 2005-06-29 2007-01-04 Reflexite Corporation Method and apparatus for aperture sculpting in a microlens array film
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
JP4841401B2 (en) 2005-11-21 2011-12-21 三洋電機株式会社 Optical pickup device
WO2007103349A2 (en) 2006-03-07 2007-09-13 The Trustees Of Princeton University Devices, methods and compositions for presbyopia correction using ultrashort pulse lasers
DE102007008375B3 (en) * 2007-02-21 2008-10-16 Forschungszentrum Karlsruhe Gmbh Implantable system for determining the accommodation requirement by optical measurement of the pupil diameter and the surrounding luminance
AU2008243693A1 (en) 2007-04-27 2008-11-06 Brien Holden Vision Institute Determination of optical adjustments for retarding myopia progression
US7828432B2 (en) 2007-05-25 2010-11-09 Synergeyes, Inc. Hybrid contact lenses prepared with expansion controlled polymeric materials
US7976163B2 (en) 2007-06-27 2011-07-12 Amo Wavefront Sciences Llc System and method for measuring corneal topography
US8747466B2 (en) 2007-08-27 2014-06-10 Amo Groningen, B.V. Intraocular lens having extended depth of focus
FR2925171B1 (en) 2007-12-13 2010-04-16 Optinvent OPTICAL GUIDE AND OPTICAL SYSTEM OF EYE VISION
WO2009117506A2 (en) 2008-03-18 2009-09-24 Pixeloptics, Inc. Advanced electro-active optic device
FR2929720B1 (en) 2008-04-03 2010-11-12 Optinvent CATADIOPTRIC COLLIMATOR
EP2349148A1 (en) 2008-08-08 2011-08-03 Glostrup Hospital System and method for treatment of lens related disorders
FR2937152B1 (en) 2008-10-14 2011-04-22 Optinvent DEVICE FOR OPTICALLY GUIDING A LIGHT BEAM.
ES2345027B1 (en) 2009-03-12 2011-09-30 Universidad De Murcia OPTICAL REFRACTION CORRECTION DEVICE IN THE PERIPHERAL RETINA OF ASYMMETRICAL WAY FOR THE CONTROL OF THE PROGRESSION OF MYOPIA.
US20180055351A1 (en) 2009-05-06 2018-03-01 University Of Virginia Patent Foundation Self-Illuminated Handheld Lens for Retinal Examination and Photography and Related Method thereof
US8128223B2 (en) 2009-10-08 2012-03-06 Crt Technology, Inc. Methods and therapeutic optical devices for regulation of astigmatism
US8246167B2 (en) 2009-12-17 2012-08-21 Crt Technology, Inc. Systems and methods for the regulation of emerging myopia
JP5410954B2 (en) 2009-12-29 2014-02-05 株式会社ニデック Axial length measuring device
FR2955673B1 (en) 2010-01-22 2012-07-27 Optinvent REASONABLY WIDE ANGLE DISTANCE PROJECTION DEVICE WITH ZOOM AND FOCUS
US8432124B2 (en) 2010-02-24 2013-04-30 A&D Concepts, Llc Portable electronic device carrier with charging system
US20120206485A1 (en) 2010-02-28 2012-08-16 Osterhout Group, Inc. Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US8950860B2 (en) 2010-09-09 2015-02-10 The Hong Kong Polytechnic University Method and system for retarding the progression of myopia
US9248309B2 (en) 2011-02-04 2016-02-02 Johnson & Johnson Vision Care, Inc. Light therapy system including spectacle frames and contact lenses
US9446262B2 (en) 2011-02-04 2016-09-20 Johnson & Johnson Vision Care, Inc. Apparatus and method for formation of an energized ophthalmic device for light therapy
FR2973889B1 (en) 2011-04-05 2014-01-03 Optinvent OPTICAL GUIDING DEVICE AND METHOD OF MANUFACTURING SUCH A DEVICE
US9081208B2 (en) 2011-06-02 2015-07-14 Mitsui Chemicals, Inc. Electro-active lenses including thin glass substrates
US20170229730A1 (en) 2011-08-02 2017-08-10 Johnson & Johnson Vision Care, Inc. Method for manufacturing a biocompatible cathode slurry for use in biocompatible batteries for a contact lens
WO2013086078A1 (en) 2011-12-06 2013-06-13 E-Vision Smart Optics, Inc. Systems, devices, and/or methods for providing images
FR2983976B1 (en) 2011-12-13 2017-10-20 Optinvent OPTICAL GUIDE WITH OVERLAY GUIDE ELEMENTS AND METHOD OF MANUFACTURE
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
WO2013158418A1 (en) * 2012-04-19 2013-10-24 Legerton Jerome A Eye-wear borne electromagnetic radiation refractive therapy
TW201406707A (en) 2012-05-04 2014-02-16 Acucela Inc Methods for the treatment of diabetic retinopathy and other ophthalmic diseases
US9345813B2 (en) 2012-06-07 2016-05-24 Medos International S.A.R.L. Three dimensional packaging for medical implants
CN102692730B (en) 2012-06-15 2013-12-04 戴明华 Multi-element lens for controlling defocus and eye diopter and application thereof
US8857981B2 (en) 2012-07-26 2014-10-14 Google Inc. Facilitation of contact lenses with capacitive sensors
US10231897B2 (en) 2012-08-06 2019-03-19 The Hong Kong Polytechnic University Methods, devices, and systems for inhibiting ocular refractive disorders from progressing
US20140039361A1 (en) 2012-08-06 2014-02-06 The Hong Kong Polytechnic University Methods and viewing systems for inhibiting ocular refractive disorders from progressing
FR2995089B1 (en) 2012-08-30 2015-08-21 Optinvent OPTICAL DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
US20140081357A1 (en) 2012-09-20 2014-03-20 Myolite, Inc. Protective lighting system
US8960898B1 (en) * 2012-09-24 2015-02-24 Google Inc. Contact lens that restricts incoming light to the eye
US8874182B2 (en) 2013-01-15 2014-10-28 Google Inc. Encapsulated electronics
US9468372B2 (en) 2013-02-28 2016-10-18 Johnson & Johnson Vision Care, Inc. Electronic ophthalmic lens with rear-facing pupil diameter sensor
EP2772794B1 (en) 2013-03-01 2018-06-13 Essilor International An myopia control optical system
US20140268029A1 (en) 2013-03-15 2014-09-18 Johnson & Johnson Vision Care, Inc. Method and ophthalmic device for providing visual representations to a user
US9289623B2 (en) 2013-03-15 2016-03-22 Johnson & Johnson Vision Care, Inc. Method and device for monitoring and treatment of seasonal affective disorder
US9763827B2 (en) 2013-04-30 2017-09-19 Tear Film Innovations, Inc. Systems and methods for the treatment of eye conditions
FR3006455A1 (en) 2013-05-31 2014-12-05 Optinvent OCULAR VISION SYSTEM WITH OPTICAL GUIDE POSITIONABLE IN TWO POSITIONS
US20160158486A1 (en) 2013-07-25 2016-06-09 Koninklijke Philips N.V. System and method for providing light therapy and modifying circadian rhythm
US20160212404A1 (en) 2013-08-23 2016-07-21 The Schepens Eye Research Institute, Inc. Prevention and Treatment of Myopia
FR3012624B1 (en) 2013-10-29 2018-02-09 Optinvent OPTICAL GUIDE ADAPTED TO CREATE TWO LIGHT FINGERPRINTS
EP4220999A3 (en) 2013-11-27 2023-08-09 Magic Leap, Inc. Virtual and augmented reality systems and methods
WO2015095737A2 (en) * 2013-12-19 2015-06-25 The University Of North Carolina At Chapel Hill Optical see-through near-eye display using point light source backlight
US9993335B2 (en) * 2014-01-08 2018-06-12 Spy Eye, Llc Variable resolution eye mounted displays
EP3116444A2 (en) 2014-03-10 2017-01-18 Amo Groningen B.V. Dual-optic intraocular lens that improves overall vision where there is a local loss of retinal function
SG10201400920RA (en) * 2014-03-24 2015-10-29 Menicon Singapore Pte Ltd Apparatus and methods for controlling axial growth with an ocular lens
WO2015168477A1 (en) 2014-05-02 2015-11-05 Ohio State Innovation Foundation Method of identifying an eye disorder of an observer and apparatus for implementing the same
US10823982B2 (en) 2014-06-03 2020-11-03 Tsubota Laboratory, Inc. Myopia treatment device
SG11201610000VA (en) 2014-06-03 2016-12-29 Tsubota Lab Inc Myopia prevention article
JP6646659B2 (en) 2014-06-14 2020-02-14 マジック リープ, インコーポレイテッドMagic Leap,Inc. Methods and systems for creating virtual and augmented reality
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
KR102271817B1 (en) 2014-09-26 2021-07-01 삼성전자주식회사 Smart contact lens for augmented reality and methods of manufacturing and operating the same
NZ773834A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
WO2016162554A1 (en) 2015-04-10 2016-10-13 Essilor International (Compagnie Generale D'optique) Head mounted display device
US11061255B2 (en) 2015-06-23 2021-07-13 Johnson & Johnson Vision Care, Inc. Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression
US10877294B2 (en) 2015-06-23 2020-12-29 Johnson & Johnson Vision Care, Inc. Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression
MA42366A (en) 2015-09-16 2018-05-16 Frances Joan Rucker DEVICE TO TREAT, PREVENT OR REDUCE MYOPIA, OR THE RISK OF THEM
US10222632B2 (en) 2015-10-01 2019-03-05 Verily Life Sciences Llc Lens-to-lens communication for contact lenses
US10268050B2 (en) 2015-11-06 2019-04-23 Hoya Lens Thailand Ltd. Spectacle lens
WO2017083774A1 (en) 2015-11-11 2017-05-18 Onefocus Vision, Inc. Accommodating lens with cavity
US10192292B2 (en) 2016-02-16 2019-01-29 The Board Of Trustees Of The Leland Stanford Junior University Accommodation-invariant computational near-eye displays
US10353463B2 (en) 2016-03-16 2019-07-16 RaayonNova LLC Smart contact lens with eye driven control system and method
US10859857B2 (en) 2016-03-22 2020-12-08 Johnson & Johnson Vision Care, Inc. Pulsed plus lens designs for myopia control, enhanced depth of focus and presbyopia correction
US10139522B2 (en) 2016-04-20 2018-11-27 Coopervision International Holding Company, Lp Silicone elastomer-silicone hydrogel hybrid contact lenses
US10216007B2 (en) * 2016-07-12 2019-02-26 Brighten Optix Corp. Contact lens having a moiré structure, contact lens moiré structure processing method
US10802298B2 (en) 2016-07-15 2020-10-13 Tectus Corporation Eye mounted device for controlling focusing disorders
BR112019001199A2 (en) 2016-07-21 2019-08-13 Visionapp Solutions S L system and method for preventing visual deterioration caused by use in close proximity to electronic display apparatus
CN107643597B (en) 2016-07-22 2020-05-01 蔡清来 Eye-protecting and shading device for intelligent glasses integrating real environments
KR102669685B1 (en) 2016-07-25 2024-05-29 매직 립, 인코포레이티드 Light field processor system
SG11201900867UA (en) 2016-08-01 2019-02-27 Jay Neitz Ophthalmic lenses for treating myopia
US10295821B2 (en) 2016-08-19 2019-05-21 Oakley, Inc. Laminated lenses with anti-fogging functionality
US10146067B2 (en) 2016-09-09 2018-12-04 Ching-Lai Tsai Eye-protective shade for augmented reality smart glasses
EP3515232B1 (en) 2016-09-26 2021-11-17 Snap Inc. Multifunctional case for electronics enabled eyewear
EP3518828A4 (en) 2016-10-03 2020-06-17 California Institute of Technology Radioluminescent phototherapy eye device
KR101956701B1 (en) 2016-10-06 2019-07-04 (주)화이바이오메드 Smart Remotely Controlled Contact Lens
US10353204B2 (en) 2016-10-31 2019-07-16 Tectus Corporation Femtoprojector optical systems
US11826098B2 (en) 2016-11-02 2023-11-28 Massachusetts Eye And Ear Infirmary System and method for the treatment of amblyopia
US10261343B2 (en) 2016-12-29 2019-04-16 Valdemar Portney Frame independent focus adjustable eyewear lens
JP7222981B2 (en) 2017-05-08 2023-02-15 サイトグラス・ヴィジョン・インコーポレイテッド Contact lenses for reducing myopia and methods of making same
US20180345034A1 (en) 2017-06-06 2018-12-06 Peter Butzloff Myopia inhibition apparatus and ocular method
EP3413116A1 (en) 2017-06-07 2018-12-12 Ching-Lai Tsai Eye-protective shade for augmented reality smart glasses
EP3418795A1 (en) 2017-06-22 2018-12-26 Essilor International Multifunctional device for an ophthalmic lens
FR3068147B1 (en) * 2017-06-22 2020-04-24 Laboratoire Precilens ORTHOKERATOLOGY CONTACT LENS FOR THE TREATMENT OF MYOPIA
KR101891668B1 (en) 2017-07-27 2018-08-24 한국과학기술연구원 Smart wearable lens mounted with all-solid-state thin film battery and method for preparing the same
US11000186B2 (en) 2017-08-02 2021-05-11 Barry Jonathan Linder Systems and methods for retarding myopia progression
WO2019033339A1 (en) 2017-08-17 2019-02-21 Xinova, LLC Disposable contact lens for optical treatment systems
US11219287B1 (en) 2017-08-28 2022-01-11 Snap Inc. Eyewear device charging case
AU2018330604A1 (en) 2017-09-11 2020-04-02 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
EP3695271A4 (en) 2017-10-10 2021-07-28 Verily Life Sciences LLC Efficient gesture-based contact lens algorithms for human to contact lens communication
WO2019114463A1 (en) 2017-12-11 2019-06-20 The Hong Kong Polytechnic University Methods, devices, and systems for inhibiting ocular refractive disorders from progressing
US10768431B2 (en) 2017-12-20 2020-09-08 Aperture In Motion, LLC Light control devices and methods for regional variation of visual information and sampling
US10901237B2 (en) * 2018-01-22 2021-01-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with an optically non-coaxial zone for myopia control
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
US20210048690A1 (en) * 2018-03-01 2021-02-18 Essilor International Lens element
US10921612B2 (en) 2018-03-29 2021-02-16 Reopia Optics, Llc. Spectacles and associated methods for presbyopia treatment and myopia progression control
WO2019217241A1 (en) 2018-05-10 2019-11-14 Acucela Inc. Method and apparatus for treating refractive error of the eye
US11163166B1 (en) 2018-05-23 2021-11-02 Facebook Technologies, Llc Removable frames for head-mounted display systems
WO2020014074A1 (en) 2018-07-07 2020-01-16 Acucela Inc. Device to prevent retinal hypoxia
TWI774968B (en) 2018-07-12 2022-08-21 美商賽特眼鏡視光有限公司 Methods and devices for reducing myopia in children
US11681164B2 (en) 2018-07-27 2023-06-20 Tectus Corporation Electrical interconnects within electronic contact lenses
CN112740099B (en) * 2018-07-30 2024-05-14 奥克塞拉有限公司 Optical design of electronic contact lenses for retarding myopia progression
EP3830637A1 (en) * 2018-07-31 2021-06-09 Essilor International Optical systems, spectacle lens and eyewear including the same
CN118050914A (en) 2018-09-27 2024-05-17 瑞奥匹亚光学公司 Glasses for preventing myopia progression and associated methods
US10288909B1 (en) 2018-10-26 2019-05-14 Spy Eye, Llc Contact lens data transceiver
US11221486B2 (en) 2018-12-10 2022-01-11 Auroratech Company AR headsets with improved pinhole mirror arrays
US11693257B2 (en) * 2019-07-19 2023-07-04 Clerio Vision, Inc. Myopia progression treatment
CN114502120A (en) 2019-07-31 2022-05-13 奥克塞拉有限公司 Device for projecting an image onto the retina
JP2022547621A (en) 2019-09-16 2022-11-14 アキュセラ インコーポレイテッド Assembly process for electronic soft contact lenses designed to inhibit the progression of myopia
JP2023514382A (en) 2020-02-21 2023-04-05 アキュセラ インコーポレイテッド charging case for electronic contact lenses
CA3177695A1 (en) 2020-05-13 2021-11-18 Ryo Kubota Electro-switchable spectacles for myopia treatment
WO2021252320A1 (en) 2020-06-08 2021-12-16 Acucela Inc. Stick on devices using peripheral defocus to treat progressive refractive error
WO2021252318A1 (en) 2020-06-08 2021-12-16 Acucela Inc. Lens with asymmetric projection to treat astigmatism
KR20230020391A (en) 2020-06-08 2023-02-10 어큐셀라 인코포레이티드 Stick on device using peripheral defocus to treat progressive refractive error
CN115698832A (en) 2020-06-08 2023-02-03 奥克塞拉有限公司 Asymmetric projection lens for treating astigmatism
WO2021252319A1 (en) 2020-06-08 2021-12-16 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
EP4161636A4 (en) 2020-06-08 2024-06-26 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
US11281022B2 (en) 2020-06-10 2022-03-22 Acucela Inc. Apparatus and methods for the treatment of refractive error using active stimulation

Similar Documents

Publication Publication Date Title
US11480813B2 (en) Projection of defocused images on the peripheral retina to treat refractive error
JPWO2021252319A5 (en)
Wolffsohn et al. Presbyopia: effectiveness of correction strategies
TW202145978A (en) Projection of defocused images on the peripheral retina to treat refractive error
KR102564748B1 (en) Methods and system for diagnosing and treating health ailments
US11497931B2 (en) Lens with asymmetric projection to treat astigmatism
CN104094165B (en) The method for treating myopia development
Voskresenskaya et al. Initial results of trifocal diffractive IOL implantation
US20040156554A1 (en) System and method for simulating visual defects
WO2021252318A1 (en) Lens with asymmetric projection to treat astigmatism
Eppig et al. Ghost-image analysis in phakic intraocular lenses with central hole as a potential cause of dysphotopsia
Puell et al. Disk halo size measured in individuals with monofocal versus diffractive multifocal intraocular lenses
Panorgias et al. Retinal responses to simulated optical blur using a novel dead leaves ERG stimulus
Schrecker et al. Effect of interface reflection in pseudophakic eyes with an additional refractive intraocular lens
CN107533241A (en) The contact lens and its design method and manufacture method suppressed for myopia progression
de la Cera et al. Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model
Hayashi et al. All-distance visual acuity in eyes with a nontinted or a yellow-tinted diffractive multifocal intraocular lens
Sevšek et al. Entoptic phenomena, photopsias, phosphenes
RU2401672C1 (en) Method of correcting visual dysfunctions
Xu et al. Digital Pupillometry and Centroid Shift Changes in Dominant and Nondominant Eyes Digitale Pupillometrie und Zentroidverschiebungsänderungen in dominanten und nicht dominanten Augen
TW202327541A (en) Adaptive system for the treatment of myopia progression
Suliman The Effect of Conventional and Aberration Control Soft Contact Lenses on Fourth Order Aberrations, Especially Spherical Aberrations of Myopic Eyes
Lee et al. Eyelid Contour Analysis Following Müller's Muscle-conjunctival Resection and Levator Aponeurosis Advancement in Mild to Moderate Belpharoptosis
Tsang The effect of aberrations and light scatter on visual performance at photopic and mesopic light levels
Mishor Higher order aberrations and age-related cataract: a pre-and post-operative study