TW202327541A - Adaptive system for the treatment of myopia progression - Google Patents

Adaptive system for the treatment of myopia progression Download PDF

Info

Publication number
TW202327541A
TW202327541A TW111138636A TW111138636A TW202327541A TW 202327541 A TW202327541 A TW 202327541A TW 111138636 A TW111138636 A TW 111138636A TW 111138636 A TW111138636 A TW 111138636A TW 202327541 A TW202327541 A TW 202327541A
Authority
TW
Taiwan
Prior art keywords
stimulus
retina
treatment
eye
image
Prior art date
Application number
TW111138636A
Other languages
Chinese (zh)
Inventor
漥田良
納賓 橋西
雅克狄 席藍諾
史提夫 阿里
渡邊雅一
阿米塔薇 古帕
Original Assignee
美商艾尤席拉有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾尤席拉有限公司 filed Critical 美商艾尤席拉有限公司
Publication of TW202327541A publication Critical patent/TW202327541A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/02Goggles
    • A61F9/029Additional functions or features, e.g. protection for other parts of the face such as ears, nose or mouth; Screen wipers or cleaning devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • A61N2005/0647Applicators worn by the patient the applicator adapted to be worn on the head
    • A61N2005/0648Applicators worn by the patient the applicator adapted to be worn on the head the light being directed to the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Abstract

Treatment for the progression of refractive error of an eye is adapted based on a subject's response to therapy. The optical property of an eye can be measured before and after treatment, and a subsequent treatment configured based on the subject's response. The optical property of the eye may comprise one or more of refractive data or axial length data. The optical properties before and after treatment can be compared, and the subsequent treatment configured in response to the comparison. A characteristic of the stimulus can be adjusted in response to the comparison, such as a duration of daily treatment or an intensity of the stimulus during treatment. In some embodiments, the comparison corresponds to a transient change in the optical property of the eye, and the treatment adjusted in response to the transient change.

Description

用於治療近視加深之自適應系統Adaptive system for treating myopia progression

用於治療諸如近視之屈光不正之先前方法在至少一些方面可不夠理想。眼鏡鏡片、隱形鏡片及屈光手術可用於治療眼睛之屈光不正。然而,必須佩戴鏡片以便矯正不正,且未矯正屈光不正會影響一個人達成且完全參與學校、體育及其他活動之能力。雖然可執行手術以減少屈光不正,但在至少一些例項中,手術帶有風險,諸如感染及視力下降。又,此等方法不解決與諸如近視之屈光不正相關之眼睛長度之基礎改變。Previous approaches for treating refractive errors such as myopia have been less than ideal in at least some respects. Spectacle lenses, contact lenses and refractive surgery are used to treat refractive errors of the eye. However, lenses must be worn in order to correct the error, and uncorrected refractive error can affect a person's ability to achieve and fully participate in school, sports, and other activities. Although surgery can be performed to reduce refractive errors, in at least some cases, surgery carries risks, such as infection and loss of vision. Also, these approaches do not address the underlying changes in eye length that are positively associated with refractive errors such as myopia.

與本發明相關之工作表明,許多物種(包含人類)之視網膜對失焦影像作出回應且透過鞏膜重塑重新定位以便減少由失焦引起之模糊。生長信號之產生機制仍在研究中,但一個可觀察現象係脈絡膜之厚度之一增加。一失焦影像可引起脈絡膜厚度改變,其與眼睛之軸向長度相關。眼睛之軸向長度之改變可藉由改變視網膜相對於角膜之位置而更改屈光不正。例如,軸向長度之一增加可藉由增加角膜與視網膜之間的距離而增加一眼睛之近視。Work related to the present invention has shown that the retina of many species, including humans, responds to out-of-focus images and is repositioned through sclera remodeling to reduce blur caused by out-of-focus. The mechanism by which the growth signal is generated is still under investigation, but one observable phenomenon is an increase in the thickness of the choroid. An out-of-focus image can cause changes in choroidal thickness, which correlates with the axial length of the eye. Changes in the axial length of the eye can alter the refractive error by changing the position of the retina relative to the cornea. For example, an increase in axial length can increase the myopia of an eye by increasing the distance between the cornea and the retina.

雖然影像之失焦可對脈絡膜厚度及眼睛之軸向長度之改變起作用,但先前方法不夠理想地適用於解決與軸向長度相關之眼睛之屈光不正。雖然已提出藥物治療來治療與軸向長度生長相關聯之近視,但此等治療可具有不夠理想之結果且在至少一些例項中尚未被展示為安全地治療屈光不正。雖然已提出光作為更改眼睛之生長之一刺激物,但至少一些先前裝置可提供不夠理想之結果。又,治療時間可比理想的更長,且至少一些先前方法可比理想的更複雜。While defocus of the image can contribute to changes in choroidal thickness and axial length of the eye, previous methods are less than ideal for addressing refractive errors of the eye that are related to axial length. Although drug treatments have been proposed to treat myopia associated with axial length growth, such treatments can have suboptimal results and have not been shown to safely treat refractive errors in at least some instances. Although light has been proposed as a stimulus to alter the growth of the eye, at least some previous devices have provided less than ideal results. Also, treatment times can be longer than desired, and at least some previous methods can be more complex than desired.

具有用於判定用於治療屈光不正加深之療法之有效量將係有用的。先前方法可在某種程度上比理想的更不可預測,且改良可預測性將係有幫助的。又,回應於治療而判定療法之適當量將係有用的,且在至少一些例項中,先前方法可在某種程度上係開環的。此外,先前方法可不良好適用於回應於不同眼睛(其等可對治療進行不同地回應)之特性而調適治療。It would be useful to have an effective amount for determining therapy for treating refractive error progression. Previous methods can be somewhat less predictable than ideal, and improved predictability would be helpful. Also, it would be useful to determine the appropriate amount of therapy in response to treatment, and in at least some instances, the previous methods may be somewhat open-loop. Furthermore, previous methods may not be well suited for adapting therapy in response to the properties of different eyes, which may respond differently to therapy.

因此,需要新方法來治療眼睛之屈光不正,此改善先前方法之至少一些上文限制。Accordingly, there is a need for new approaches to treating refractive errors of the eye that improve at least some of the above limitations of previous approaches.

本揭示之系統、方法及設備係關於可基於一受試者對療法之回應而經調適之對於屈光不正加深之經改良治療。該治療可包括一光學刺激物,該光學刺激物以距視網膜之一距離處之一焦點提供至眼睛以在該視網膜上提供一模糊影像,此可減少近視加深。可在治療之前及之後量測一眼睛之光學性質,且基於該受試者之回應而組態一後續治療。該眼睛之該等光學性質可包括可用於評估該受試者對治療之該回應之屈光資料或軸向長度資料之一或多者。可比較治療之前及之後之該等光學性質,且回應於該比較而組態該後續治療。在一些實施例中,回應於該比較而調整刺激物之一特性,諸如每日治療之一持續時間或治療期間該刺激物之一強度。在一些實施例中,該比較對應於該眼睛之該等光學性質的一暫態改變,且回應於該暫態改變而調整該治療。在一些實施例中,使用一顯示器產生該刺激物,此容許該刺激物容易回應於該眼睛之該等光學性質之該暫態改變而經組態。The systems, methods and devices of the present disclosure relate to improved treatment of refractive error progression that can be tailored based on a subject's response to therapy. The treatment may include an optical stimulus delivered to the eye at a focal point at a distance from the retina to provide a blurred image on the retina, which may reduce myopia progression. Optical properties of an eye can be measured before and after treatment, and a subsequent treatment configured based on the subject's responses. The optical properties of the eye can include one or more of refractive data or axial length data that can be used to assess the subject's response to treatment. The optical properties before and after treatment can be compared, and the subsequent treatment configured in response to the comparison. In some embodiments, a characteristic of the stimulus, such as a duration of a daily treatment or an intensity of the stimulus during treatment, is adjusted in response to the comparison. In some embodiments, the comparison corresponds to a transient change in the optical properties of the eye, and the treatment is adjusted in response to the transient change. In some embodiments, a display is used to generate the stimulus, which allows the stimulus to be easily configured in response to the transient change in the optical properties of the eye.

相關申請案Related applications

本申請案主張2021年10月12日申請之標題為「ADAPTIVE SYSTEM FOR THE TREATMENT OF MYOPIA PROGRESSION」之美國臨時專利申請案第63/262,419號之優先權,該案之完整內容以引用的方式併入本文中。This application claims priority to U.S. Provisional Patent Application No. 63/262,419, filed October 12, 2021, entitled "ADAPTIVE SYSTEM FOR THE TREATMENT OF MYOPIA PROGRESSION," which is incorporated by reference in its entirety In this article.

本申請案之標的物與以下案相關:在2019年7月26日申請之標題為「ELECTRONIC CONTACT LENS TO DECREASE MYOPIA PROGRESSION」之PCT/US2019/043692,其在2020年2月6日發表為WO/2020/028177;在2021年7月31日申請之標題為「DEVICE FOR PROJECTING IMAGES ON THE RETINA」之PCT/US2020/044571,其在2021年2月4日發表為WO/2021/022193;在2021年6月7日申請之標題為「PROJECTION OF DEFOCUSED IMAGES ON THE PERIPHERAL RETINA TO TREAT REFRACTIVE ERROR」之PCT/US2021/036100,其在2021年12月16日發表為WO 2021/252319;在2021年6月7日申請之標題為「STICK ON DEVICES USING PERIPHERAL DEFOCUS TO TREAT PROGRESSIVE REFRACTIVE ERROR」之PCT/US2021/036102,其在2021年12月16日發表為WO 2021/252320;及在2021年5月13日申請之標題為「ELECTRO-SWITCHABLE SPECTACLES FOR MYOPIA TREATMENT」之PCT/US2021/032162,其在2021年11月18日發表為WO 2021/231684,該等案之完整揭示內容以引用的方式併入本文中。 以引用的方式併入 The subject matter of this application is related to: PCT/US2019/043692, filed on July 26, 2019, entitled "ELECTRONIC CONTACT LENS TO DECREASE MYOPIA PROGRESSION," which was published on February 6, 2020 as WO/ 2020/028177; PCT/US2020/044571, filed 31 July 2021, entitled "DEVICE FOR PROJECTING IMAGES ON THE RETINA," which was published as WO/2021/022193 on 4 February 2021; PCT/US2021/036100 titled "PROJECTION OF DEFOCUSED IMAGES ON THE PERIPHERAL RETINA TO TREAT REFRACTIVE ERROR" filed on June 7, which was published as WO 2021/252319 on December 16, 2021; on June 7, 2021 PCT/US2021/036102 titled "STICK ON DEVICES USING PERIPHERAL DEFOCUS TO TREAT PROGRESSIVE REFRACTIVE ERROR" filed on 16 December 2021 as WO 2021/252320; and filed on 13 May 2021 PCT/US2021/032162, entitled "ELECTRO-SWITCHABLE SPECTACLES FOR MYOPIA TREATMENT," was published as WO 2021/231684 on November 18, 2021, the entire disclosures of which are incorporated herein by reference. incorporated by reference

本文中提及且識別之全部專利、申請案及公開案之全文藉此以引用的方式併入且應被視為以引用的方式完全併入,即使在申請案之其他處被提及。All patents, applications, and publications mentioned and identified herein are hereby incorporated by reference in their entirety and should be deemed fully incorporated by reference, even if mentioned elsewhere in the application.

以下詳細描述提供根據本文中揭示之實施例在本發明中描述之本發明之特徵及優點之一更佳理解。雖然詳細描述包含許多特定實施例,但此等僅藉由實例提供且不應被解釋為限制本文中揭示之發明之範疇。The following detailed description provides a better understanding of the features and advantages of the invention described in this disclosure from the embodiments disclosed herein. While the detailed description contains many specific embodiments, these are provided by way of example only and should not be construed as limiting the scope of the inventions disclosed herein.

本揭示之方法及設備可以許多方式組態以提供視網膜刺激,如本文中描述。本揭示之系統、方法及設備良好適用於與許多先前裝置組合,諸如一眼科裝置、一TV螢幕、一電腦螢幕、一虛擬實境(「VR」)顯示器、一擴增實境(「AR」)顯示器、一手持式裝置、一行動運算裝置、一平板運算裝置、一智慧型電話、一佩戴型裝置、一眼鏡鏡片框、一眼鏡鏡片、一近眼顯示器、一頭戴式顯示器、一護目鏡、一隱形鏡片、一可植入裝置、一角膜覆蓋物、一角膜鑲嵌物、一角膜假體或一眼內鏡片之一或多者。雖然特定參考眼鏡及隱形鏡片,但本揭示之方法及設備良好適用於與任何前述裝置一起使用,且基於本文中提供之教示,一般技術者將容易瞭解本揭示之組件之一或多者可如何在裝置當中互換。The methods and devices of the present disclosure can be configured in many ways to provide retinal stimulation, as described herein. The systems, methods and apparatuses of the present disclosure are well suited for use in combination with many prior devices, such as an ophthalmic device, a TV screen, a computer screen, a virtual reality (“VR”) display, an augmented reality (“AR”) ) display, a handheld device, a mobile computing device, a tablet computing device, a smart phone, a wearable device, a spectacle lens frame, a spectacle lens, a near-eye display, a head-mounted display, and goggles , one or more of a contact lens, an implantable device, a corneal onlay, a corneal inlay, a corneal prosthesis, or an intraocular lens. While specific reference is made to eyeglasses and contact lenses, the methods and apparatus of the present disclosure are well suited for use with any of the aforementioned devices, and based on the teachings provided herein, one of ordinary skill will readily appreciate how one or more of the components of the present disclosure may be used. Interchange among devices.

在一些實施例中,使用失焦光刺激視網膜提供軸向長度及脈絡膜厚度之一可量測改變。刺激可以許多方式提供且可包括(例如)使用一光源之主動刺激或(例如)使用一自然場景之被動刺激。在一些實施例中,使用一設備提供刺激,該設備包括一腮托以便使受試者舒適地休息。替代地或組合地,例如,可使用諸如頭盔或眼鏡之一佩戴式設備提供刺激,其中刺激及投影系統可由受試者佩戴且支撐。In some embodiments, stimulating the retina using out-of-focus light provides a measurable change in one of axial length and choroidal thickness. Stimuli can be provided in many ways and can include, for example, active stimulation using a light source or passive stimulation, such as using a natural scene. In some embodiments, stimulation is provided using a device that includes a chin rest to allow the subject to rest comfortably. Alternatively or in combination, for example, stimulation may be provided using a wearable device such as a helmet or glasses, wherein the stimulation and projection system may be worn and supported by the subject.

在一些實施例中,使用包括一腮托之一光學設備提供主動刺激,其中受試者將其腮定位於腮托上且以在20呎或更大之一距離處之主要凝視觀看一視訊或一靜止場景。在一些實施例中,光學設備包括一光具座。替代地或組合地,設備可包括一佩戴式設備,如本文中描述。例如,距離可包括距影像之一真實實體距離或自受試者之瞳孔至一虛擬影像之一距離。在一些實施例中,光學設備包括矯正受試者之屈光不正且向受試者提供一經矯正視敏度(諸如受試者之一經最佳矯正視敏度)之鏡片。當如所述般定位時,設備(例如)使用一近視視角將影像聚焦至視網膜前方之一聚焦影像,使得影像以至少一些視角及模糊到達視網膜。雖然設備可以許多方式經組態,但設備可包括光源、遮罩、微鏡片及光束分離器以產生在一影像中具有具備在自+2.00 D至+8.00 D之一範圍中之一量之一近視失焦之影像。雖然可使用失焦以許多方式產生影像,但在一些實施例中,影像透過經提供以矯正受試者之屈光不正之鏡片傳輸且透過受試者之眼睛之自然瞳孔以一角度投射使得經投射影像以相對於中央凹及受試者之視線之一適當偏心率入射於視網膜表面上而不漸暈。偏心角可為如本文中描述之任何適合角度,諸如在自6度至22.5度之一範圍內之一角度(半角,12度至45度,全角),且角度可對應於包括對應於在(例如)自12度至45度自一範圍內之一角度之一直徑之一環形區域之一圓圈。In some embodiments, active stimulation is provided using an optical device comprising a chin rest, wherein the subject positions their cheeks on the chin rest and watches a video or video with a primary gaze at a distance of 20 feet or greater A still scene. In some embodiments, the optical device includes an optical bench. Alternatively or in combination, the device may comprise a wearable device, as described herein. For example, distance may include a real physical distance from an image or a distance from a subject's pupil to a virtual image. In some embodiments, the optical device includes lenses that correct the refractive error of the subject and provide the subject with a corrected visual acuity, such as a best corrected visual acuity of the subject. When positioned as described, the device focuses the image, for example, using a myopic viewing angle to a focused image in front of the retina such that the image reaches the retina with at least some viewing angle and blur. Although the device can be configured in many ways, the device can include light sources, masks, microlenses, and beam splitters to produce an image with one of the quantities in the range from +2.00 D to +8.00 D Myopic out-of-focus images. While defocus can be used to generate images in many ways, in some embodiments the images are transmitted through lenses provided to correct the subject's refractive error and projected through the natural pupils of the subject's eyes at an angle such that the The projected image is incident on the retinal surface at an appropriate eccentricity relative to the fovea and the subject's line of sight without vignetting. The eccentricity angle may be any suitable angle as described herein, such as an angle (half angle, 12 degrees to 45 degrees, full angle) in a range from 6 degrees to 22.5 degrees, and the angle may correspond to those included in ( For example) an angle in a range from 12 degrees to 45 degrees a diameter an annular area a circle.

與本發明相關之工作表明,可在完成一受試者之一眼睛之刺激物治療之後(例如,在完成一刺激物治療之約一小時內)量測並偵測軸向長度或脈絡膜厚度之一或多個之改變。在一些實施例中,藉由在刺激終止之後立即量測受試者之軸向長度及脈絡膜厚度而量測軸向長度及脈絡膜厚度之暫態改變。一刺激物治療之持續時間可為任何適合持續時間,諸如(例如)持續時間自1至6小時且可在自60至90分鐘之一範圍內。在一些實施例中,執行治療且在當地時間早晨量測暫態改變。在一些實施例中,軸向長度之暫態改變包括在治療當天開始治療之前量測之一第一軸向長度與在治療當天在完成使用刺激物治療之後量測之一第二軸向長度之間的一差異。在一些實施例中,來自一或多個治療作業階段之暫態改變被用作輸入以判定用於抑制近視加深之一特定裝置組態是否有效。替代地或組合地,暫態改變亦可用於改良設備之一或多個參數,諸如失焦之量值、經投射近視失焦影像之亮度、經投射影像之色度及刺激之其他特性,如本文中描述。Work related to the present invention demonstrates that axial length or choroidal thickness can be measured and detected after completion of irritant treatment of one eye of a subject (e.g., within about one hour of completion of an irritant treatment). one or more changes. In some embodiments, the transient changes in axial length and choroidal thickness are measured by measuring the subject's axial length and choroidal thickness immediately after cessation of stimulation. The duration of a stimulus treatment may be any suitable duration, such as, for example, a duration of from 1 to 6 hours and may range from one of 60 to 90 minutes. In some embodiments, therapy is administered and transient changes are measured in the morning local time. In some embodiments, the transient change in axial length comprises the difference between a first axial length measured before initiation of treatment on the day of treatment and a second axial length measured after completion of treatment with the stimulant on the day of treatment. a difference between. In some embodiments, transient changes from one or more treatment sessions are used as input to determine whether a particular device configuration for inhibiting myopia progression is effective. Alternatively or in combination, transient changes may also be used to modify one or more parameters of the device, such as the magnitude of defocus, brightness of projected myopic out-of-focus images, chromaticity of projected images, and other characteristics of stimuli such as described in this article.

本發明者已根據本發明進行臨床研究且量測軸向長度之暫態改變。已在一臨床研究中量測根據本發明之回應於一刺激物之軸向長度之暫態改變,如本文中描述。The present inventors have performed clinical studies according to the present invention and measured transient changes in axial length. Transient changes in axial length in response to a stimulus according to the present invention have been measured in a clinical study, as described herein.

在一些實施例中,軸向長度、脈絡膜厚度或屈光資料之一或多者的一暫態改變被用作治療設備之長期臨床驗證之一代理。回應於治療之暫態改變可在任何適合持續時間內量測,諸如在同一天之治療之前及之後或一更長持續時間,諸如在複數天之治療之前及複數天之治療之後,諸如在治療之後一週或複數天之治療之後一個月。在一些實施例中,在一週或一個月之持續時間內之治療包括在持續時間之天數之至少一半(例如在一週之至少4天或一個月之至少16天)之一治療。In some embodiments, a transient change in one or more of axial length, choroidal thickness, or refractive data is used as a proxy for long-term clinical validation of the therapeutic device. Transient changes in response to treatment may be measured over any suitable duration, such as before and after treatment on the same day or for a longer duration, such as before treatment on multiple days and after treatment on multiple days, such as after treatment One month after the treatment of the following week or multiple days. In some embodiments, treatment over a duration of one week or one month includes one treatment on at least half of the days of the duration (eg, on at least 4 days of a week or at least 16 days of a month).

回應於治療之暫態改變可以任何適合方式量測,諸如眼睛之屈光資料、眼睛之軸向長度或眼睛之脈絡膜厚度之一或多者。屈光資料可包括與眼睛之屈光性質相關之任何適合資料,諸如用於視網膜之經照明位置之球體、圓柱體、軸、像差、球面像差、彗形像差三葉、波前資料、任尼克(Zernike)係數或波前圖之一或多者。屈光資料可使用任何適當設備量測,諸如一綜合屈光檢查儀、試驗鏡片、一自動屈光計、一寬場自動屈光計、一窄場自動屈光計、一掃描狹縫自動屈光計、一像差計或一波前感測器。在一些實施例中,使用一自然瞳孔量測屈光資料。替代地或組合地,當眼睛已使用一散瞳劑擴張時,可使用一經擴張瞳孔量測屈光資料以提供睫狀肌麻痹屈光資料。可使用量測眼睛之自角膜至視網膜之長度之任何適當儀器(諸如一光學相干斷層攝影(OCT)生物計)量測軸向長度及脈絡膜厚度。可使用量測軸向長度之一類似儀器或相同儀器量測脈絡膜厚度。Transient changes in response to treatment may be measured in any suitable manner, such as one or more of refractive data of the eye, axial length of the eye, or choroidal thickness of the eye. Refractive data may include any suitable data related to the refractive properties of the eye, such as spheres, cylinders, axes, aberrations, spherical aberrations, coma trilobes, wavefront data for the illuminated location of the retina , one or more of Zernike coefficients or wavefront maps. Refractive data may be measured using any suitable device, such as a phoropter, trial lens, an autorefractometer, a widefield autorefractometer, a narrowfield autorefractometer, a scanning slit autorefractometer light meter, an aberrometer or a wavefront sensor. In some embodiments, a natural pupil is used to measure the refractive data. Alternatively or in combination, when the eye has been dilated with a mydriatic, refraction data can be measured using a dilated pupil to provide cycloplegic refraction data. Axial length and choroidal thickness can be measured using any suitable instrument that measures the length of the eye from the cornea to the retina, such as an optical coherence tomography (OCT) biometer. Choroidal thickness can be measured using a similar or equivalent instrument to one that measures axial length.

圖1A展示用於減少近視加深或至少部分逆轉近視加深之一或多者之一視網膜刺激裝置。裝置包括用於支撐複數個光源之一鏡片10。複數個光源可耦合至一或多個光學組件以向視網膜提供一刺激物,如本文中描述。在一些實施例中,鏡片10包括一眼鏡鏡片72。在一些實施例中,鏡片10經塑形以矯正使用者之球面及柱面屈光不正以透過鏡片提供經矯正視敏度。複數個光源可包括投影單元12或一顯示器74 (諸如一近眼顯示器)之一或多者。複數個光源繞鏡片之中心部分配置以便向視網膜之一外部位置(諸如周邊視網膜)提供光刺激,如本文中描述。在一些實施例中,光源定位於一近似環形區域中以便向周邊視網膜提供刺激。光源可以一大體上環形圖案(例如以象限)配置以便對應於黃斑外部之周邊視網膜之象限。複數個光源之各者可經組態以使用一適當刺激物圖案將一圖案投射於視網膜前方,如本文中描述。在一些實施例中,來自光源之光穿過眼睛之一光軸以便在視網膜之與光源相對之一側上之一位置處刺激視網膜。Figure 1A shows a retinal stimulating device for one or more of reducing myopia progression or at least partially reversing myopia progression. The device comprises an optic 10 for supporting one of the plurality of light sources. A plurality of light sources can be coupled to one or more optical components to provide a stimulus to the retina, as described herein. In some embodiments, lens 10 includes a spectacle lens 72 . In some embodiments, the lens 10 is shaped to correct the user's spherical and cylindrical refractive errors to provide corrected visual acuity through the lens. The plurality of light sources may include one or more of the projection unit 12 or a display 74 such as a near-eye display. A plurality of light sources are arranged around the central portion of the lens to provide light stimulation to an outer location of the retina, such as the peripheral retina, as described herein. In some embodiments, the light source is positioned in an approximately annular region to provide stimulation to the peripheral retina. The light sources may be arranged in a generally circular pattern (eg, in quadrants) so as to correspond to quadrants of the peripheral retina outside the macula. Each of the plurality of light sources can be configured to project a pattern in front of the retina using an appropriate pattern of stimuli, as described herein. In some embodiments, light from the light source passes through one of the optical axes of the eye to stimulate the retina at a location on the side of the retina opposite the light source.

在一些實施例中,投影單元12經組態以發射光線以進入眼睛之瞳孔而無實質混疊。在一些實施例中,眼睛之瞳孔可藉由適當量之照明或散瞳劑之應用而放大使得視網膜表面之一更大區域可由藉由投影單元12投射之刺激物接取。In some embodiments, projection unit 12 is configured to emit light rays into the pupil of the eye without substantial aliasing. In some embodiments, the pupil of the eye can be enlarged by an appropriate amount of illumination or application of a mydriatic agent so that a larger area of the retinal surface can be accessed by the stimulus projected by the projection unit 12 .

在一些實施例中,複數個光源經組態以在使用者觀察一物件時保持靜態。替代地,光源可經組態以回應於眼睛移動而(例如)使用像素之選擇性啟動而移動,如本文中描述。In some embodiments, the plurality of light sources are configured to remain static while a user observes an object. Alternatively, the light source may be configured to move in response to eye movement, for example using selective activation of pixels, as described herein.

雖然參考支撐在一鏡片上之複數個光源,但光源可支撐在任何適合光學透射基板(諸如一光束分離器或一實質上平坦光學組件)上,且光源可包括一像素顯示器(諸如一AR或VR顯示器)之光源。在一些實施例中,顯示器72包括經選擇性地啟動以向視網膜提供一刺激物之像素94,如本文中描述。替代地或組合地,投影單元12可包括用於向視網膜提供刺激物之一成形結構,如本文中描述。Although reference is made to a plurality of light sources supported on a mirror, the light sources may be supported on any suitable optically transmissive substrate such as a beam splitter or a substantially flat optical component, and the light source may comprise a pixelated display such as an AR or VR display) light source. In some embodiments, display 72 includes pixels 94 that are selectively activated to provide a stimulus to the retina, as described herein. Alternatively or in combination, projection unit 12 may include a shaped structure for delivering stimuli to the retina, as described herein.

在一些實施例中,像素經組態以發射複數個色彩,使得經投射光可經組合以產生任何適合色彩或色調,諸如(例如)白光。In some embodiments, the pixels are configured to emit a plurality of colors such that the projected light can be combined to produce any suitable color or hue, such as, for example, white light.

在一些實施例中,複數個光源由一頭戴式支撐件(諸如眼鏡70上之眼鏡框76)支撐。In some embodiments, the plurality of light sources are supported by a head-mounted support, such as eyeglass frame 76 on eyeglasses 70 .

圖1B及圖1C描繪用於治療眼睛之屈光不正(諸如球面屈光不正)之眼鏡70,儘管如本文中描述之任何適合視力裝置可根據本文中揭示之實施例適當地修改。複數個光源可耦合至一或多個光學組件以向視網膜提供一刺激物,如本文中描述。眼鏡70可包括市售擴增實境眼鏡之一或多個組件。眼鏡70可包括用於視網膜刺激之一或多個顯示器72。近眼顯示器72可安裝至鏡片74。鏡片74可為藉由眼鏡框76支撐之眼鏡鏡片。鏡片74可為一矯正或非矯正鏡片。鏡片74可為一平光鏡片、一球面矯正鏡片、一像散矯正鏡片或一稜鏡矯正鏡片。在一些實施例中,近眼顯示器遠離一光學區定位以提供清晰中心直覺。一光軸可自受試者注視之一物件沿著一視線延伸穿過鏡片74至眼睛之一中央凹。在一些實施例中,眼鏡70包括適用於根據本發明併入之一眼動儀。近眼顯示器72可經程式化以選擇性地啟動像素94以便向視網膜提供周邊刺激,如本文中描述。在一些實施例中,承載微鏡片之一塑膠基板之一層附接至微型顯示器以便在視網膜處產生所要位準之失焦及刺激。可選擇性啟動之像素可包括可選擇性地一起啟動之像素之一群組,例如,像素94a之一第一群組、像素94b之一第二群組、像素94c之一第三群組及像素94d之一第四群組。像素群組可經配置以提供相對於受試者之一視線之一適當偏心率以便提供周邊視網膜刺激,如本文中描述。Figures IB and 1C depict eyeglasses 70 for treating a refractive error of the eye, such as a spherical refractive error, although any suitable vision device as described herein may be suitably modified in accordance with the embodiments disclosed herein. A plurality of light sources can be coupled to one or more optical components to provide a stimulus to the retina, as described herein. Glasses 70 may include one or more components of commercially available augmented reality glasses. Eyewear 70 may include one or more displays 72 for retinal stimulation. Near-eye display 72 may be mounted to lens 74 . Lens 74 may be a spectacle lens supported by spectacle frame 76 . Lens 74 may be a corrective or non-corrective lens. The lens 74 may be a plano lens, a spherical corrective lens, an astigmatic corrective lens, or a spheroidal corrective lens. In some embodiments, the near-eye display is positioned away from an optical zone to provide a clear center perception. An optical axis may extend from an object the subject is looking at through lens 74 along a line of sight to a fovea of the eye. In some embodiments, eyewear 70 includes an eye tracker suitable for incorporation in accordance with the present invention. Near-eye display 72 may be programmed to selectively activate pixels 94 to provide peripheral stimulation to the retina, as described herein. In some embodiments, a layer of a plastic substrate carrying microlenses is attached to a microdisplay to produce a desired level of defocus and stimulation at the retina. Selectively actuatable pixels may include groups of pixels that are selectively actuatable together, for example, a first group of pixels 94a, a second group of pixels 94b, a third group of pixels 94c, and A fourth group of pixels 94d. Groups of pixels can be configured to provide an appropriate eccentricity relative to a line of sight of the subject in order to provide peripheral retinal stimulation, as described herein.

在一些實施例中,一近眼顯示器72包括一微型顯示器及一微光學器件之一組合。在一些實施例中,微光學器件經組態以收集、實質上準直且聚焦自微型顯示器發出之光線。在一些實施例中,微光學器件經組態以在視網膜前方或後方形成一影像,如本文中描述。在一些實施例中,近眼顯示器距眼睛之入射瞳孔之距離在自約10 mm至約30 mm之一範圍內,例如約15 mm。微型顯示器可放置於一透明基板(諸如眼鏡70之鏡片74之前或後表面)上。當微型顯示器放置於鏡片74之前表面上時,接著微型顯示器之焦點可受鏡片74之後表面上之柱面矯正影響。In some embodiments, a near-eye display 72 includes a combination of a microdisplay and a micro-optics. In some embodiments, the micro-optics are configured to collect, substantially collimate, and focus light emitted from the microdisplay. In some embodiments, the micro-optics are configured to form an image in front of or behind the retina, as described herein. In some embodiments, the distance of the near-to-eye display from the entrance pupil of the eye is in a range from about 10 mm to about 30 mm, for example about 15 mm. The microdisplay can be placed on a transparent substrate such as the front or back surface of the lens 74 of the glasses 70 . When the microdisplay is placed on the front surface of the lens 74, then the focus of the microdisplay can be affected by the cylindrical correction on the rear surface of the lens 74.

在一些實施例中,一微型顯示器中之像素之焦點可基於其等在鏡片74上之位置及由鏡片在該區域中提供之屈光矯正而變化。在一些實施例中,像素之焦點可係固定的。在一些實施例中,像素之焦點可基於角膜之經感測位置而變化以考量角膜及眼睛之晶狀體之屈光。在一些實施例中,像素經失焦以在視網膜上產生直徑為約1 mm之一失焦點。In some embodiments, the focus of pixels in a microdisplay can be varied based on their position on the lens 74 and the refractive correction provided by the lens in that area. In some embodiments, the focal point of a pixel may be fixed. In some embodiments, the focal point of the pixel can be changed based on the sensed position of the cornea to account for the refraction of the cornea and the lens of the eye. In some embodiments, the pixels are defocused to produce an out-of-focus on the retina with a diameter of about 1 mm.

由近眼顯示器之微型顯示器中之像素94發射之光可在被引導至眼睛之瞳孔之前被實質上準直或聚焦之一或多者。在一些實施例中,一微鏡片陣列與近眼顯示器之像素對準,使得來自近眼顯示器之光線可進入瞳孔且在視網膜前方或後方形成一影像。在一些實施例中,近眼顯示器之寬度對應於一受試者之視場。在一些實施例中,近眼顯示器之範圍可實質上類似於眼鏡70之鏡片74之範圍。Light emitted by pixels 94 in a microdisplay of a near-eye display may be substantially one or more of collimated or focused before being directed to the pupil of the eye. In some embodiments, a microlens array is aligned with the pixels of the near-eye display so that light from the near-eye display can enter the pupil and form an image in front or behind the retina. In some embodiments, the width of the near-eye display corresponds to a field of view of a subject. In some embodiments, the extent of the near-eye display may be substantially similar to the extent of the lenses 74 of the glasses 70 .

在一些實施例中,裝置提供未受損中心視力,使得使用者之生活品質及視力品質不受不利影響。在一些實施例中,中心視力包括覆蓋黃斑之+/-5度或更大、較佳+/-7.5度或更大(諸如+/-12.5度)之一視場,而用於固定之中央凹視力具有+/-1.0度之一視場。在一些實施例中,失焦影像在視網膜之一外部部分處朝向視網膜之周邊(例如,在與中央凹偏心自15度(全角,或+/-7.5度)至40度(全角,或+/-20度)之一範圍內)經投射且可在自20度至40度之一範圍內,例如在自20度至30度之一範圍內。在一些實施例中,微型顯示器72不阻礙中心視力視場。在一些實施例中,像素94不阻礙中心視力視場。In some embodiments, the device provides unimpaired central vision such that the user's quality of life and vision are not adversely affected. In some embodiments, central vision includes a field of view covering +/- 5 degrees or greater, preferably +/- 7.5 degrees or greater, such as +/- 12.5 degrees, of the macula for a fixed central vision. Concave vision has a field of view of +/- 1.0 degrees. In some embodiments, the out-of-focus image is at an outer portion of the retina toward the periphery of the retina (e.g., between 15 degrees (full angle, or +/- 7.5 degrees) and 40 degrees (full angle, or +/- 7.5 degrees) to 40 degrees (full angle, or +/- -20 degrees)) is projected and may be in a range from 20 degrees to 40 degrees, for example in a range from 20 degrees to 30 degrees. In some embodiments, the microdisplay 72 does not obstruct the central vision field of view. In some embodiments, pixels 94 do not obstruct the central vision field of view.

在一些實施例中,微型顯示器及光學器件經組態以將光投射至視網膜之外部區域上,該等外部區域足夠遠離中央凹使得即使在眼睛移動之情況下,照明仍保持實質上固定。在一些實施例中,監測注視點且(例如)藉由使用一處理器進行之一運算而判定待在微型顯示器上啟動之像素之所要位置,使得將一影像投射在視網膜上之所要位置處,從而容許相同視網膜位置處之持續刺激。在一些實施例中,藉由監測眼睛相對於主要位置之水平、垂直及扭轉位移而計算眼鏡平面或微型顯示器之平面上之注視點。In some embodiments, the microdisplay and optics are configured to project light onto outer regions of the retina that are far enough away from the fovea that the illumination remains substantially fixed even as the eye moves. In some embodiments, the point of gaze is monitored and the desired location of a pixel to be activated on the microdisplay is determined, such as by using a processor to perform an operation such that an image is projected at the desired location on the retina, This allows for continued stimulation at the same retinal location. In some embodiments, the gaze point on the plane of the glasses or the plane of the microdisplay is calculated by monitoring the horizontal, vertical and torsional displacement of the eye relative to the principal position.

可以許多方式(例如使用一眼睛位置感測器,諸如一磁性感測器或一光學感測器)判定注視點。在一些實施例中,嵌入眼鏡框中之一搜尋線圈用於追蹤眼睛移動。嵌入眼鏡框中之線圈可耦合至放置於眼睛上之一磁性結構,諸如一隱形鏡片上之一線圈、植入眼睛中之一線圈、一隱形鏡片上之一磁性材料或植入眼睛中之一磁性材料之一或多者。在一些實施例中,感測器包括一光學感測器(諸如一位置靈敏偵測器或一陣列感測器)以光學地量測眼睛之一位置。光學感測器可經組態以依許多方式量測眼睛之一位置,例如經組態以量測來自一光源、一瞳孔、一角膜緣或一鞏膜之一角膜反射之一或多者之一位置。眼睛框可支撐一額外光源以照明眼睛,例如以產生一角膜反射。來自感測器之資料可提供同軸視角膜光反射(「CSCLR」)之位置,及因此視軸之方向及中央凹之位置。注視點、視軸、光軸、眼結及CSCLR在J CATARACT REFRACT SURG中之「Ocular axes and angles: time for better understanding」,Srinivasan, S.-第42卷,2016年3月中描述。在一些實施例中,使用眼睛位置感測器之處理器可經組態以調整光學器件(諸如微型顯示器中之像素)以減少回應於眼睛移動之視網膜之經刺激位置之移動。在一些實施例中,基於來自眼睛位置感測器之資訊自中央凹運算周邊影像之目標位置且一即時光線追蹤計算提供待在微型顯示器中啟動之像素之位置。用於回應於眼睛移動而選擇性地切換至第二複數個像素之時間可為小於100毫秒,例如小於20毫秒。Gaze point can be determined in many ways (eg using an eye position sensor such as a magnetic sensor or an optical sensor). In some embodiments, a search coil embedded in the eyeglass frame is used to track eye movement. A coil embedded in the eyeglass frame can be coupled to a magnetic structure placed on the eye, such as a coil on a contact lens, a coil implanted in the eye, a magnetic material on a contact lens, or one implanted in the eye One or more magnetic materials. In some embodiments, the sensor includes an optical sensor such as a position sensitive detector or an array sensor to optically measure a position of the eye. The optical sensor can be configured to measure a position of the eye in many ways, for example configured to measure one or more of corneal reflections from a light source, a pupil, a limbus, or a sclera Location. The eye box may support an additional light source to illuminate the eye, for example to create a corneal reflection. Data from the sensor can provide the position of the coaxial view film light reflection ("CSCLR"), and thus the direction of the visual axis and the position of the fovea. Point of fixation, visual axis, optical axis, knot and CSCLR are described in "Ocular axes and angles: time for better understanding" in J CATARACT REFRACT SURG, Srinivasan, S. - Vol. 42, March 2016. In some embodiments, a processor using an eye position sensor can be configured to adjust optics, such as pixels in a microdisplay, to reduce movement of the stimulated position of the retina in response to eye movement. In some embodiments, the target position of the peripheral image is calculated from the fovea based on information from the eye position sensor and a real-time ray tracing calculation provides the position of the pixel to be activated in the microdisplay. The time for selectively switching to the second plurality of pixels in response to eye movement may be less than 100 milliseconds, such as less than 20 milliseconds.

在一些實施例中,待啟動以朝向視網膜之周邊形成外部影像之微型顯示器中之像素之位置係自眼鏡光學器件之光學中心參考,此係因為其係主要凝視時之注視點。在一些實施例中,藉由考量相對於眼睛在主要凝視時之位置之眼睛移動且參考新注視點計算待啟動之像素之位置而計算注視點之位置。例如,圖1B展示當一受試者正在水平向前直視(所謂的主要凝視)時之主動像素94,而圖1C展示當一受試者正在向上及向左看時之主動像素94。在此一情況中,像素陣列之形狀可係相同的,但向上且向左平移,或陣列之形狀可改變。In some embodiments, the position of a pixel in a microdisplay to be activated to form an external image towards the periphery of the retina is referenced from the optical center of the eyeglass optics because it is the point of fixation during primary gaze. In some embodiments, the position of the gaze point is calculated by taking into account the eye movement relative to the position of the eye at the time of primary gaze and calculating the position of the pixel to be activated with reference to the new gaze point. For example, FIG. 1B shows active pixels 94 when a subject is looking straight ahead horizontally (the so-called primary gaze), while FIG. 1C shows active pixels 94 when a subject is looking up and to the left. In this case, the shape of the pixel array may be the same, but shifted up and to the left, or the shape of the array may change.

在一些實施例中,裝置係雙目的且包括用於使用者之各眼睛之一微型顯示器及光學器件。微型顯示器可與一或多個微型光學組件光學地耦合,該一或多個微型光學組件經設計以在藉由微型顯示器之像素產生且呈現會聚之照明進入瞳孔之前實質上準直該照明。In some embodiments, the device is dual purpose and includes a microdisplay and optics for each eye of the user. The microdisplay can be optically coupled with one or more micro-optical components designed to substantially collimate the illumination generated by the pixels of the microdisplay and appearing convergent before entering the pupil.

在一些實施例中,一顯示器72安裝於一眼鏡鏡片之外側上且與眼鏡鏡片光學器件對準使得近眼顯示器可提供+/-40度或更大之一視場,使得微型顯示器可繼續為正常範圍之眼睛移動(通常橫向+/-15度及垂直+10至-20度,包含當閱讀或觀察附近物件時向下凝視)提供周邊視網膜刺激。在一些實施例中,來自微型顯示器之光經透射穿過眼鏡鏡片光學器件且提供使用者之屈光矯正。In some embodiments, a display 72 is mounted on the outside of a spectacle lens and is aligned with the spectacle lens optics so that the near-eye display can provide a field of view of +/- 40 degrees or more so that the microdisplay can continue to be normal A range of eye movements (typically +/-15 degrees laterally and +10 to -20 degrees vertically, including downward gaze when reading or viewing nearby objects) provides peripheral retinal stimulation. In some embodiments, light from the microdisplay is transmitted through eyeglass lens optics and provides refractive correction to the user.

在一些實施例中,光學系統經組態以在視網膜前方形成影像且包括一單一微鏡片(小透鏡)、複數個微鏡片(小透鏡陣列)、一複合鏡片(諸如一加博(Gabor)鏡片、一微稜鏡或一微鏡)或其等之一組合之一或多者。在一些實施例中,光隔板及微鏡經配置以確保未由微光學器件捕獲之光之量實質上減少(例如,最小化)以便減少雜散光及自顯示器之前側逸出之光。In some embodiments, the optical system is configured to form an image in front of the retina and includes a single microlens (lentlet), a plurality of microlenses (lenslet array), a composite lens such as a Gabor lens , a micro-screen or a micro-mirror) or a combination of one or more of them. In some embodiments, the light baffles and micromirrors are configured to ensure that the amount of light not captured by the micro-optics is substantially reduced (eg, minimized) in order to reduce stray light and light escaping from the front side of the display.

在一些實施例中,小於10% (0.1)之一像素填充因數足夠稀疏以提供中央凹及黃斑影像之一清晰視圖。在一些實施例中,填充因數在0.01至0.3之範圍中且可在自0.05至0.20之一範圍內。例如,具有5微米之像素大小及20微米之一像素節距之像素之一陣列導致0.06之一填充因數。一低填充因數亦可降低製造程序之複雜性且降低此等微光學顯示器之成本。In some embodiments, a pixel fill factor of less than 10% (0.1) is sufficiently sparse to provide a clear view of the fovea and macula images. In some embodiments, the fill factor is in the range of 0.01 to 0.3 and may be in a range from 0.05 to 0.20. For example, an array of pixels with a pixel size of 5 microns and a pixel pitch of 20 microns results in a fill factor of 0.06. A low fill factor also reduces the complexity of the manufacturing process and lowers the cost of these micro-optical displays.

在一些實施例中,微光學陣列經設計以與顯示器光學對準,使得來自一單一或複數個像素94之光可經收集、準直且聚焦以在主要凝視時經引導至使用者之瞳孔。此等微光學元件之密度可控制近眼顯示器之整體可視性。在一些實施例中,微光學器件具有一低填充因數(較佳等於或小於0.1)使得透過近眼顯示器之整體光透射對於使用者將係可接受的且容許受試者觀察物件。In some embodiments, the micro-optics array is designed to be optically aligned with the display so that light from a single or plurality of pixels 94 can be collected, collimated and focused to be directed to the user's pupil when primarily gazing. The density of these micro-optical elements can control the overall visibility of near-eye displays. In some embodiments, the micro-optics have a low fill factor (preferably equal to or less than 0.1) such that the overall light transmission through the near-eye display will be acceptable to the user and allow the subject to view the object.

在一些實施例中,例如,裝置包括可藉由光電組件利用(例如)可自一個折射率切換至另一折射率或自一個偏振切換至另一偏振之一液晶或一基於LC之材料而在一平光(無光學屈光度)狀態與一經啟動狀態之間切換之一可切換微光學陣列。在一些實施例中,微光學陣列在未被啟動時不散射光或使真實世界之影像失真。In some embodiments, for example, the device includes a liquid crystal or an LC-based material that can be switched by optoelectronic components, for example, that can switch from one index of refraction to another or from one polarization to another. A switchable micro-optic array is switched between a plano (no optical power) state and an activated state. In some embodiments, the micro-optics array does not scatter light or distort images of the real world when not activated.

在一些實施例中,待啟動以朝向視網膜之周邊形成外部影像之微型顯示器中之像素之位置係自眼鏡光學器件之光學中心參考,此係因為其係主要凝視時之注視點。在一些實施例中,藉由考量相對於眼睛在主要凝視時之位置之眼睛移動且參考新注視點計算待啟動之像素之位置而計算注視點之位置。In some embodiments, the position of a pixel in a microdisplay to be activated to form an external image towards the periphery of the retina is referenced from the optical center of the eyeglass optics because it is the point of fixation during primary gaze. In some embodiments, the position of the gaze point is calculated by taking into account the eye movement relative to the position of the eye at the time of primary gaze and calculating the position of the pixel to be activated with reference to the new gaze point.

在一些實施例中,複數個像素經啟動以形成藉由微光學器件成像之光源。微光學器件之光學設計及其與微型顯示器之分離可經組態以提供影像傳送系統之焦距、投射於視網膜上之影像之影像放大率及由繞射引起之模糊,如量測為光學傳送系統之Airy盤直徑。In some embodiments, a plurality of pixels are activated to form a light source imaged by micro-optics. The optical design of the micro-optics and its separation from the micro-display can be configured to provide the focal length of the image delivery system, the image magnification of the image projected on the retina, and the blurring caused by diffraction, as measured for the optical delivery system The diameter of the Airy disc.

與本發明相關之工作表明,視網膜感知由存在於失焦影像中之較高階像差引起之影像模糊之改變(除球面失焦之外),包含對失焦符號敏感之縱向色差(LCA)、較高階球面像差、像散等。基於本文中提供之教示,一般技術者可進行實驗以判定當裝置之焦深大於或接近等於失焦之量值時,視網膜是否可辨識一近視模糊與一遠視模糊。例如,如本文中描述之裝置可近似地經組態以提供適當位置處之適當量之失焦。Work related to the present invention has shown that changes in retinal perception of image blur (in addition to spherical defocus) are caused by higher order aberrations present in out-of-focus images, including longitudinal chromatic aberration (LCA), which is sensitive to out-of-focus signs, Higher order spherical aberration, astigmatism, etc. Based on the teachings provided herein, one of ordinary skill can conduct experiments to determine whether the retina can discern a myopic blur and a hyperopic blur when the depth of focus of the device is greater than or approximately equal to the magnitude of the defocus. For example, a device as described herein may approximately be configured to provide an appropriate amount of defocus at an appropriate location.

裝置可經組態以提供限制與經應用近視失焦之量值及依據失焦之量值而變化之影像模糊之改變速率或影像清晰度梯度相關之影像解析度及焦深之適當影像放大率、繞射。The device can be configured to provide an appropriate image magnification that limits the image resolution and depth of focus associated with the magnitude of the applied myopic defocus and the rate of change of image blur that varies depending on the magnitude of the defocus or the gradient of image sharpness , Diffraction.

在一些實施例中,近眼顯示器經組態以為舒適的視力提供中央凹及黃斑影像之一清晰、實質上未失真視場。在一些實施例中,例如,中心影像之視場係至少+/-5度且可更大(例如,+/-12度)例如以便考量不同使用者之瞳距(IPD)之差異。可在使一實質上透明近眼顯示器透明之情況下且藉由減小微型顯示器中之發光像素之填充因數而提供真實影像之影像品質及視場。在一些實施例中,小於10% (0.1)之一填充因數足夠稀疏以提供中央凹及黃斑影像之一清晰視圖。在一些實施例中,填充因數在0.01至0.3之範圍中且可在自0.05至0.20之一範圍內。例如,具有5微米之像素大小及20微米之一像素節距之像素之一陣列將導致0.06之一填充因數。一低填充因數亦可降低製造程序之複雜性且降低此等微光學顯示器之成本。In some embodiments, the near-eye display is configured to provide a clear, substantially undistorted field of view of the foveal and macular images for comfortable vision. In some embodiments, for example, the field of view of the central image is at least +/- 5 degrees and may be larger (eg, +/- 12 degrees), eg, to account for differences in interpupillary distance (IPD) of different users. The image quality and field of view of realistic images can be provided while making a substantially transparent near-eye display transparent and by reducing the fill factor of light-emitting pixels in the microdisplay. In some embodiments, a fill factor of less than 10% (0.1) is sufficiently sparse to provide a clear view of the fovea and macula images. In some embodiments, the fill factor is in the range of 0.01 to 0.3 and may be in a range from 0.05 to 0.20. For example, an array of pixels with a pixel size of 5 microns and a pixel pitch of 20 microns will result in a fill factor of 0.06. A low fill factor also reduces the complexity of the manufacturing process and lowers the cost of these micro-optical displays.

在一些實施例中,微光學陣列經設計以與顯示器光學對準,使得來自一單一或複數個像素之光可經收集、準直且聚焦以在主要凝視時經引導至使用者之瞳孔。此等微光學元件之群體密度可控制近眼顯示器之整體可視性。在一些實施例中,微光學器件具有一低填充因數(較佳等於或小於0.1)使得透過近眼顯示器之整體光透射對於使用者將係可接受的。In some embodiments, the micro-optics array is designed to be optically aligned with the display so that light from a single or multiple pixels can be collected, collimated and focused to be directed to the user's pupil when primarily gazing. The population density of these micro-optical elements can control the overall visibility of near-eye displays. In some embodiments, the micro-optics have a low fill factor (preferably equal to or less than 0.1) so that the overall light transmission through the near-eye display will be acceptable to the user.

在一些實施例中,例如,裝置包括可藉由光電組件利用(例如)可自一個折射率切換至另一折射率或自一個偏振切換至另一偏振之一液晶或一基於LC之材料而在一平光(無光學屈光度)狀態與一經啟動狀態之間切換之一可切換微光學陣列。在一些實施例中,微光學陣列在未被啟動時不散射光或使真實世界之影像失真。In some embodiments, for example, the device includes a liquid crystal or an LC-based material that can be switched by optoelectronic components, for example, that can switch from one index of refraction to another or from one polarization to another. A switchable micro-optic array is switched between a plano (no optical power) state and an activated state. In some embodiments, the micro-optics array does not scatter light or distort images of the real world when not activated.

圖2A及圖2B描繪包括複數個光源之一隱形鏡片10,該複數個光源經組態以在視網膜上遠離包含黃斑之中心場投射一失焦影像以便刺激脈絡膜厚度的一改變。複數個光源可耦合至一或多個光學組件以向視網膜提供一刺激物,如本文中描述。雖然參考一隱形鏡片,但鏡片10可包括一投影機、一眼科裝備、一TV螢幕、一電腦螢幕、一擴增實境顯示器、一虛擬實境顯示器、一手持式裝置(諸如一智慧型電話)、一穿戴型裝置(諸如一眼鏡鏡片)、一近眼顯示器、一頭戴式顯示器、一護目鏡、一隱形鏡片、一角膜覆蓋物、一角膜鑲嵌物、一角膜假體或一人工晶狀體之一或多者之一鏡片。2A and 2B depict a contact lens 10 comprising light sources configured to project an out-of-focus image on the retina away from the central field containing the macula in order to stimulate a change in choroidal thickness. A plurality of light sources can be coupled to one or more optical components to provide a stimulus to the retina, as described herein. Although reference is made to a contact lens, lens 10 may include a projector, ophthalmic equipment, a TV screen, a computer screen, an augmented reality display, a virtual reality display, a handheld device such as a smartphone ), a wearable device (such as a spectacle lens), a near-eye display, a head-mounted display, a goggle, a contact lens, a corneal onlay, a corneal inlay, a corneal prosthesis, or an intraocular lens One or more lenses.

此隱形鏡片10包括含有嵌入式電子器件及光學器件之一基底或載體隱形鏡片。基底軟性隱形鏡片10由經設計為持久佩戴舒適之一生物相容材料(諸如水凝膠或矽水凝膠聚合物)製成。隱形鏡片包括一橫跨最大整體距離,例如一直徑13。生物相容材料可囊封軟性隱形鏡片10之組件。在一些實施例中,隱形鏡片10具有經設計以在許多照明條件下覆蓋一使用者之眼睛之瞳孔之一中心光學區14。在一些實施例中,光學區包括使用一半徑15界定之一圓形區。在一些實施例中,複數個投影單元12定位成與光學區之一中心相距一距離17。複數個投影單元12之各者包括一橫跨距離19。在一些實施例中,投影單元之間的距離經定大小以將投影單元放置於光學區外部以刺激視網膜之一周邊區域,儘管投影單元亦可放置於光學區內部以刺激周邊視網膜,如本文中描述。The contact lens 10 comprises a substrate or carrier contact lens containing embedded electronics and optics. The base soft contact lens 10 is made of a biocompatible material, such as a hydrogel or silicone hydrogel polymer, designed for long-lasting wearing comfort. The contact lens includes a maximum overall distance across, for example a diameter 13 . Biocompatible materials may encapsulate the components of soft contact lens 10 . In some embodiments, contact lens 10 has a central optical zone 14 designed to cover the pupil of a user's eye under many lighting conditions. In some embodiments, the optical zone comprises a circular zone bounded by a radius 15 . In some embodiments, projection units 12 are positioned a distance 17 from the center of one of the optical zones. Each of the plurality of projection units 12 includes a spanning distance 19 . In some embodiments, the distance between the projection units is sized to place the projection units outside the optic zone to stimulate a peripheral area of the retina, although the projection units can also be placed inside the optic zone to stimulate the peripheral retina, as herein describe.

光學區14可針對眼睛之瞳孔及治療期間之照明條件經適當地定大小。在一些實施例中,例如,當隱形鏡片經組態以用於在白天期間使用時,光學區包括6 mm之一直徑。光學區14可具有在自6 mm至9 mm之一範圍內(例如在自7.0 mm至8.0 mm之一範圍內)之一直徑。中心光學區14經設計以向使用者提供正視矯正或其他適合矯正且可具備球面及像散矯正兩者。中心光學區14由一外部環形區(諸如具有在2.5 mm至3.0 mm之一範圍中之寬度之一周邊區16)外切。周邊區16 (有時稱為混合區)主要經設計以提供與角膜之一良好配合(包含良好中心性及最小去中心性)。外部環形區由具有在自0.5 mm至1.0 mm之範圍內之寬度之一最外邊緣區18包圍。光學區14經組態以提供屈光矯正且在設計上可為球面、複曲面或多焦點的,例如具有20/20或更佳之一視敏度。光學區14周邊之外部環形區經組態以配合角膜曲率且可包括用於平移及旋轉穩定性之旋轉穩定區,同時容許隱形鏡片10在眨眼之後在眼睛上移動。邊緣區18可包括在自0.05 mm至0.15 mm之一範圍內之一厚度且可以一楔形結束。軟隱形鏡片10之整體直徑13可在自12.5 mm至15.0 mm之一範圍內,例如在自13.5 mm至14.8 mm之一範圍內。Optical zone 14 can be appropriately sized for the pupil of the eye and the lighting conditions during treatment. In some embodiments, for example, when the contact lens is configured for use during the day, the optic zone includes a diameter of 6 mm. Optical zone 14 may have a diameter in a range of from 6 mm to 9 mm, such as in a range of from 7.0 mm to 8.0 mm. The central optic zone 14 is designed to provide emmetropia or other suitable correction to the user and may have both spherical and astigmatic corrections. The central optical zone 14 is circumscribed by an outer annular zone, such as a peripheral zone 16 having a width in the range of 2.5 mm to 3.0 mm. The peripheral zone 16 (sometimes called the hybrid zone) is primarily designed to provide a good fit (including good centrality and minimal decentering) to the cornea. The outer annular region is surrounded by an outermost edge region 18 having a width in the range from 0.5 mm to 1.0 mm. Optic zone 14 is configured to provide refractive correction and may be spherical, toric, or multifocal in design, eg, having a visual acuity of 20/20 or better. The outer annular zone surrounding the optic zone 14 is configured to match the curvature of the cornea and may include a rotational stabilization zone for translational and rotational stability while allowing the contact lens 10 to move over the eye after blinking. The edge region 18 may comprise a thickness in a range from 0.05 mm to 0.15 mm and may end in a wedge shape. The overall diameter 13 of the soft contact lens 10 may be in a range from 12.5 mm to 15.0 mm, for example in a range from 13.5 mm to 14.8 mm.

隱形鏡片10包含複數個嵌入式投影單元12。複數個投影單元12之各者包括一光源及用於將光聚焦於視網膜前方之一或多個光學器件,如本文中描述。光學器件之各者可包括一鏡、複數個鏡、一鏡片、複數個鏡片、一折射光學器件、一菲涅爾(Fresnel)鏡片、一光管或一波導之一或多者。隱形鏡片10可包括一電池20及一感測器22。隱形鏡片10可包括一撓曲印刷電路板(PCB) 24,且一處理器可安裝於撓曲PCB 24上。處理器可安裝於PCB 24上且耦合至感測器22及複數個光源30。軟性隱形鏡片10亦可包括無線通訊電路及用於進行電子通訊及用於對隱形鏡片10之電池20進行感應充電之一或多個天線41。雖然參考一電池20,但隱形鏡片10可包括任何適合能量儲存裝置。The contact lens 10 includes a plurality of embedded projection units 12 . Each of the plurality of projection units 12 includes a light source and one or more optics for focusing the light in front of the retina, as described herein. Each of the optics may include one or more of a mirror, mirrors, a mirror, a plurality of mirrors, a refractive optic, a Fresnel mirror, a light pipe, or a waveguide. The contact lens 10 can include a battery 20 and a sensor 22 . The contact lens 10 may include a flex printed circuit board (PCB) 24 and a processor may be mounted on the flex PCB 24 . A processor may be mounted on PCB 24 and coupled to sensor 22 and light sources 30 . The soft contact lens 10 may also include wireless communication circuitry and one or more antennas 41 for electronic communication and for inductively charging the battery 20 of the contact lens 10 . Although reference is made to a battery 20, the contact lens 10 may comprise any suitable energy storage device.

投影單元12可經組態以如本文中描述般將失焦影像提供至視網膜之周邊部分且可包含光源及投影光學器件。在一些實施例中,一或多個投影光學器件經組態以具有光源以將一失焦影像自光源投射至遠離包含黃斑之中心視力場之周邊視網膜上以便刺激脈絡膜厚度的一改變,諸如脈絡膜厚度之一增加或減小。一或多個投影單元12可經組態以刺激視網膜而不使中心視力及形成於視網膜之中央凹或黃斑區域之一或多者上之對應影像降級。在一些實施例中,一或多個投影光學器件不降低規定用於矯正使用者之屈光不正之視力矯正光學器件之影像形成特性。此組態可容許使用者在自失焦影像接收療法時具有良好視敏度,如本文中描述。Projection unit 12 may be configured to provide an out-of-focus image to a peripheral portion of the retina as described herein and may include a light source and projection optics. In some embodiments, one or more projection optics are configured with a light source to project an out-of-focus image from the light source onto the peripheral retina away from the central field of vision including the macula to stimulate a change in choroidal thickness, such as the choroid One of the thickness increases or decreases. One or more projection units 12 may be configured to stimulate the retina without degrading central vision and corresponding images formed on one or more of the fovea or macular area of the retina. In some embodiments, the one or more projection optics do not degrade the image forming characteristics of the vision correction optics prescribed to correct the user's refractive error. This configuration may allow a user to have good visual acuity while receiving therapy from an out-of-focus image, as described herein.

在一些實施例中,來自投影單元12之光源之光藉由一或多個投影光學器件實質上準直及聚焦,如本文中描述。光源及投影光學器件之功能係實質上準直由光源發射之光且將其引導於經設計以在視網膜前方或後方之一焦點處以提供適當失焦以刺激脈絡膜厚度的一改變。例如,針對近視失焦,聚焦影像可呈現在周邊視網膜前方大約1.5 mm至2.5 mm,且近視達約2.0 D至5.0 D (例如,2.0 D至4.0 D,或較佳2.5 D至3.5 D)。例如,針對遠視失焦,聚焦影像可呈現在周邊視網膜後方大約1.5 mm至2.5 mm以便遠視達約-2.0 D至-5.0 D,例如-2.0 D至-4.0 D,或較佳-2.5 D至-3.5 D。In some embodiments, the light from the light source of projection unit 12 is substantially collimated and focused by one or more projection optics, as described herein. The function of the light source and projection optics is to substantially collimate the light emitted by the light source and direct it at a focal point designed to be in front or behind the retina to provide the proper defocus to stimulate a change in choroidal thickness. For example, for myopic out-of-focus, an in-focus image may appear about 1.5 mm to 2.5 mm in front of the peripheral retina, and for myopia up to about 2.0 D to 5.0 D (eg, 2.0 D to 4.0 D, or preferably 2.5 D to 3.5 D). For example, for hyperopic defocus, the focused image may be presented approximately 1.5 mm to 2.5 mm behind the peripheral retina for hyperopia of approximately -2.0 D to -5.0 D, such as -2.0 D to -4.0 D, or preferably -2.5 D to - 3.5 D.

複數個刺激物及清晰區可經配置以容許相對於投影光學器件及清晰區之眼睛移動,此可良好適用於其中眼睛相對於投影光學器件之實施例中,諸如眼鏡、AR及VR應用。根據一些實施例,來自投影單元之光可相對於眼睛之一光軸以一傾斜角度定向以便進入瞳孔同時維持實質上大於瞳孔之一清晰中心視力區以便提供清晰區之一大視場,例如,一大眼盒。清晰區可以許多方式定尺寸,且可包括一圓形區、一卵形、一方形區或一矩形區。在一些實施例中,眼盒可為5.0 mm乘4.0 mm。在一些實施例中,清晰區包括可為15 mm乘4.0 mm之一眼盒。一較大清晰觀察區(例如,一較大眼盒)容許一更大位準之眼睛移動而(例如)在眼睛改變凝視方向且藉由眼盒界定之清晰觀察區保持靜止時,瞳孔之邊緣不阻擋刺激物。在一些實施例中,刺激物投射至眼睛中之傾斜角度取決於眼盒之大小。The plurality of stimuli and clear zones can be configured to allow movement of the eye relative to the projection optics and clear zone, which may be well suited for embodiments where the eye is relative to the projection optics, such as eyeglasses, AR and VR applications. According to some embodiments, the light from the projection unit may be oriented at an oblique angle relative to an optical axis of the eye so as to enter the pupil while maintaining a zone of sharp central vision substantially larger than the pupil in order to provide a large field of view of the zone of sharpness, e.g., A big eye box. The clear zone can be sized in many ways, and can include a circular zone, an oval, a square zone, or a rectangular zone. In some embodiments, the eye box may be 5.0 mm by 4.0 mm. In some embodiments, the clear zone includes an eye box that may be 15 mm by 4.0 mm. A larger area of clear viewing (e.g., a larger eye box) allows a greater level of eye movement and, for example, the edge of the pupil when the eye changes gaze direction and the area of clear viewing defined by the eye box remains stationary. Does not block irritants. In some embodiments, the oblique angle at which the stimulus is projected into the eye depends on the size of the eye box.

根據一些實施例,鏡片10或其他適合光學支撐結構包括包含投影光學器件及微型顯示器作為光源之投影單元。微型顯示器可包括一OLED (有機發光二極體)或微LED之一陣列。由此等顯示器發射之光可為朗伯的(Lambertian)。在一些實施例中,微型顯示器光學上耦合至實質上準直且聚焦自微型顯示器發出之光之一微光學陣列。微型顯示器可包括一或多個微型化像素。在一些實施例中,微型顯示器形成藉由一像素大小及一像素節距特性化之一擴展像素陣列,其中像素大小及像素節距一起對應於微型顯示器之一填充因數。如本文中描述,例如,各像素可具有在自約2微米至約100微米之一範圍內之一大小,且像素節距可在自10微米至1.0 mm之範圍內。對應填充因數可在自0.1%至10%或更大之範圍內。在其中可期望真實世界觀看之一些實施例中,一較小填充因數阻擋來自真實環境之更少光且提供一更大位準之舒適度及視力。替代地或組合地,一較大填充因數可增強刺激物之整體亮度且可良好適用於不依賴於真實世界觀察及全方位視力之應用。在一些實施例中,光學陣列與一微光學陣列光學地耦合以便實質上準直且聚焦來自像素之光。According to some embodiments, the lens 10 or other suitable optical support structure includes a projection unit comprising projection optics and a microdisplay as a light source. Microdisplays can include an OLED (Organic Light Emitting Diode) or an array of micro LEDs. The light emitted by such displays can be Lambertian. In some embodiments, the microdisplay is optically coupled to a micro-optics array that substantially collimates and focuses light emitted from the microdisplay. A microdisplay can include one or more miniaturized pixels. In some embodiments, the microdisplay forms an extended pixel array characterized by a pixel size and a pixel pitch, where the pixel size and pixel pitch together correspond to a fill factor of the microdisplay. As described herein, for example, each pixel can have a size ranging from about 2 microns to about 100 microns, and the pixel pitch can range from 10 microns to 1.0 mm. Corresponding fill factors may range from 0.1% to 10% or more. In some embodiments where real world viewing may be desired, a smaller fill factor blocks less light from the real environment and provides a greater level of comfort and vision. Alternatively or in combination, a larger fill factor may enhance the overall brightness of the stimuli and may be well suited for applications that do not rely on real world viewing and omnidirectional vision. In some embodiments, the optical array is optically coupled with a micro-optic array to substantially collimate and focus light from the pixels.

根據一些實施例,鏡片10或其他適合光學支撐結構包括包含投影光學器件及微型顯示器作為光源之投影單元。微型顯示器可包括一OLED (有機發光二極體)或微LED之一陣列。由此等顯示器發射之光可為朗伯的。在一些實施例中,微型顯示器光學上耦合至實質上準直且聚焦自微型顯示器發出之光之一微光學陣列。微型顯示器可包括一或多個微型化像素。在一些實施例中,微型顯示器形成藉由一像素大小及一像素節距特性化之一擴展像素陣列,其中像素大小及像素節距一起對應於微型顯示器之一填充因數。如本文中描述,例如,各像素可具有在自約2微米至約100微米之一範圍內之一大小,且像素節距可在自10微米至1.0 mm之範圍內。對應填充因數可在自0.1%至10%之範圍內。在一些實施例中,光學陣列與一微光學陣列光學地耦合以便實質上準直且聚焦來自像素之光。According to some embodiments, the lens 10 or other suitable optical support structure includes a projection unit comprising projection optics and a microdisplay as a light source. Microdisplays can include an OLED (Organic Light Emitting Diode) or an array of micro LEDs. The light emitted by such displays may be Lambertian. In some embodiments, the microdisplay is optically coupled to a micro-optics array that substantially collimates and focuses light emitted from the microdisplay. A microdisplay can include one or more miniaturized pixels. In some embodiments, the microdisplay forms an extended pixel array characterized by a pixel size and a pixel pitch, where the pixel size and pixel pitch together correspond to a fill factor of the microdisplay. As described herein, for example, each pixel can have a size ranging from about 2 microns to about 100 microns, and the pixel pitch can range from 10 microns to 1.0 mm. The corresponding fill factor may range from 0.1% to 10%. In some embodiments, the optical array is optically coupled with a micro-optic array to substantially collimate and focus light from the pixels.

藉由此等顯示器產生之影像經失焦且可在眼睛之視場之四個象限(例如,鼻下、鼻上、顳下及顳上)中對稱地放置。微型顯示器可定位成遠離鏡片之光學中心達自1.5 mm至4.0 mm,較佳2.5 mm至3.5 mm之一範圍內之一距離。隱形鏡片之中心光學器件可經選擇以將使用者帶至正視,且可具有在3.0至5.0 mm之一範圍內之一直徑。在一些實施例中,各微型顯示器之形狀可為圓形、矩形或弧形的且具有在自0.01 mm 2至8.0 mm 2之一範圍內(例如在自1 mm 2至8 mm 2之一範圍內,或較佳在自1.0 mm 2至4.0 mm 2之一範圍內)之一面積。 Images produced by these displays are out of focus and can be placed symmetrically in the four quadrants of the eye's field of view (eg, infranasal, supranasal, infratemporal, and supratemporal). The microdisplay can be positioned away from the optical center of the lens by a distance in the range from 1.5 mm to 4.0 mm, preferably 2.5 mm to 3.5 mm. The central optic of the contact lens can be selected to bring the user to emmetropia and can have a diameter in the range of 3.0 to 5.0 mm. In some embodiments, each microdisplay can be circular, rectangular, or arcuate in shape and have a shape in the range from 0.01 mm 2 to 8.0 mm 2 (eg, in the range from 1 mm 2 to 8 mm 2 ) . within, or preferably within a range from 1.0 mm 2 to 4.0 mm 2 ).

微型顯示器可耦合至矯正光學器件(諸如一隱形鏡片或一眼鏡鏡片、一擴增實境(「AR」)耳機或一虛擬實境(「VR」)耳機)之本體且使用矯正光學器件之本體支撐。在一些實施例中,微型顯示器耦合至一眼內鏡片、一角膜假體、一角膜覆蓋物或一角膜鑲嵌物之一或多者且使用該一或多者支撐。例如,本文中參考一隱形鏡片描述之光學組態可類似地與一眼內鏡片、一角膜假體、一角膜覆蓋物或一角膜鑲嵌物之一或多者一起使用。The microdisplay can be coupled to the body of a corrective optic such as a contact lens or a spectacle lens, an augmented reality ("AR") headset, or a virtual reality ("VR") headset and use the body of the corrective optic support. In some embodiments, the microdisplay is coupled to and supported using one or more of an intraocular lens, a corneal prosthesis, a corneal onlay, or a corneal inlay. For example, optical configurations described herein with reference to a contact lens may similarly be used with one or more of an intraocular lens, a corneal prosthesis, a corneal onlay, or a corneal inlay.

在一些實施例中,微型顯示器及微光學陣列在同一矯正光學器件上彼此緊鄰安裝,分離達一固定距離以便將一束光線以其在視網膜上之一所要位置處形成一失焦影像之一定向上投射至眼睛之瞳孔,如本文中描述。在一些實施例中,一或多個投影光學器件安裝於一或多個矯正光學器件上或中使得來自投影光學器件之光線透過矯正光學器件折射。矯正光學器件折射來自投影光學器件之光線以會聚或發散以有助於清晰視力,使得微光學陣列可提供取決於所要失焦之量值及符號而為正或負之所要量值之額外屈光度。例如,微型顯示器可為單色或多色的。In some embodiments, the microdisplay and microoptic array are mounted in close proximity to each other on the same corrective optic, separated by a fixed distance in order to direct a beam of light in such a way that it forms an out-of-focus image at a desired location on the retina. Projection to the pupil of the eye, as described herein. In some embodiments, one or more projection optics are mounted on or in one or more corrective optics such that light from the projection optics is refracted through the corrective optics. The corrective optics refract light from the projection optics to converge or diverge to aid in clear vision so that the micro-optics array can provide a desired amount of extra diopters, positive or negative depending on the magnitude and sign of the desired defocus. For example, microdisplays can be monochrome or multicolor.

在一些實施例中,經投射失焦影像可由包括一螢幕(包括一LCD螢幕、由OLEDS (有機發光二極體)、TOLEDS、AMOLEDS、PMOLEDS或QLEDS驅動之一螢幕之一或多者)之一微型顯示器提供。In some embodiments, the projected out-of-focus image may be provided by one or more of a screen including an LCD screen, one or more screens driven by OLEDS (Organic Light Emitting Diodes), TOLEDS, AMOLEDS, PMOLEDS or QLEDS Microdisplay provided.

圖3展示一視網膜刺激裝置(諸如如圖1A至圖2B中之一鏡片10)之組件之功能之系統圖式。此等組件可使用PCB 24支撐。例如,電源(諸如一電池20)可安裝於PCB 24上且耦合至其他組件以提供一電源功能21。感測器22可經組態以提供一啟動功能23。感測器22可耦合至安裝於PCB 24上之一處理器以提供鏡片10之一控制功能25。控制功能25可包括一光強度設定27及一光開關29。處理器可經組態以(例如)使用來自感測器22之信號之一編碼序列偵測來自感測器22之對應於強度之一增加、強度之一減小之信號或來自感測器22之一開/關信號。處理器耦合至可包括一光源30及光學器件32之光投影單元18以提供投影功能31。例如,處理器可耦合至複數個光源30 (例如,投影單元12或一或多個顯示器72)以回應於至感測器22之使用者輸入而控制各光源30。FIG. 3 shows a system diagram of the function of components of a retinal stimulation device, such as lens 10 in FIGS. 1A-2B . Such components may be supported using PCB 24 . For example, a power source such as a battery 20 may be mounted on the PCB 24 and coupled to other components to provide a power function 21 . The sensor 22 can be configured to provide an activation function 23 . The sensor 22 can be coupled to a processor mounted on the PCB 24 to provide a control function 25 of the lens 10 . Control functions 25 may include a light intensity setting 27 and a light switch 29 . The processor may be configured to detect a signal from the sensor 22 corresponding to an increase in intensity, a decrease in intensity, or a signal from the sensor 22, for example, using an encoded sequence of signals from the sensor 22. One of the on/off signals. The processor is coupled to a light projection unit 18 which may include a light source 30 and optics 32 to provide a projection function 31 . For example, a processor may be coupled to a plurality of light sources 30 (eg, projection unit 12 or one or more displays 72 ) to control each light source 30 in response to user input to sensor 22 .

視網膜刺激裝置可包括用於判定使用者之位置之全球定位系統(GPS)電路及用於量測身體移動(諸如頭部移動)之一加速度計。視網膜刺激裝置可包括耦合至GPS或加速度計之一或多者以接收且儲存經量測資料之一處理器。在一些實施例中,一處理器使用GPS連同一本地時鐘(保持本地時間之時鐘)以運算佩戴者之眼睛之軸向長度之日變化之出現。在一些實施例中,可使刺激物之應用與日變化下最大軸向長度之出現一致。視網膜刺激裝置可包括通訊電路(諸如無線通訊電路(例如,藍牙或WIFI)或有線通訊電路(例如,一USB))以便將來自裝置之資料傳輸至一遠端伺服器(諸如一基於雲端之資料儲存系統)。資料至遠端伺服器之此傳輸可容許待遠端監測之使用者之治療及順應性。在一些實施例中,處理器包括一圖形處理單元(GPU)。GPU可用於有效且快速地處理來自網頁之內容以便在形成刺激物時利用此內容,如本文中描述。The retinal stimulation device may include global positioning system (GPS) circuitry for determining the user's location and an accelerometer for measuring body movement, such as head movement. The retinal stimulation device may include a processor coupled to one or more of the GPS or accelerometer to receive and store the measured data. In some embodiments, a processor uses GPS in conjunction with a local clock (the one keeping local time) to calculate the occurrence of diurnal variations in the axial length of the wearer's eyes. In some embodiments, application of stimuli can be aligned with the occurrence of maximum axial length under diurnal variation. The retinal stimulation device may include communication circuitry (such as wireless communication circuitry (eg, Bluetooth or WIFI) or wired communication circuitry (eg, a USB)) to transmit data from the device to a remote server (such as a cloud-based data storage system). This transfer of data to a remote server may allow for therapy and compliance of the user to be monitored remotely. In some embodiments, the processor includes a graphics processing unit (GPU). GPUs can be used to efficiently and quickly process content from web pages for utilization in forming stimuli, as described herein.

如本文中描述之用於視網膜刺激之方法及設備可以許多方式經組態且可包括用於鼓勵一使用者接收療法之一或多個屬性。例如,如本文中描述之視網膜刺激可與一遊戲之一顯示器組合以鼓勵一使用者佩戴治療裝置。在一些實施例中,視網膜刺激可與另一刺激物(諸如一表情符號)組合以鼓勵一使用者佩戴裝置以進行治療。系統之組件可與一遊戲或其他刺激物通訊或接收來自一遊戲或其他刺激物之資訊以促進使用遊戲或刺激物進行視網膜刺激。Methods and apparatus for retinal stimulation as described herein can be configured in many ways and can include one or more attributes for encouraging a user to receive therapy. For example, retinal stimulation as described herein can be combined with a display for a game to encourage a user to wear the therapy device. In some embodiments, retinal stimulation may be combined with another stimulus, such as an emoji, to encourage a user to wear the device for therapy. Components of the system may communicate with or receive information from a game or other stimulus to facilitate retinal stimulation using the game or other stimulus.

在以下案中描述適合根據本發明併入之用於投射刺激物之適合光學組態及組件之額外實例(諸如光管、反射器及鏡):2019年7月26日申請之標題為「ELECTRONIC CONTACT LENS TO DECREASE MYOPIA PROGRESSION」之PCT/US2019/043692,其在2020年2月6日發表為WO2020028177A1;及2021年7月31日申請之標題為「DEVICE FOR PROJECTING IMAGES ON THE RETINA」之PCT/US2020/044571,其在2021年2月4日發表為WO/2021/022193,該等案之完整揭示內容先前已以引用的方式併入本文中。Additional examples of suitable optical configurations and components for projecting stimuli (such as light pipes, reflectors, and mirrors) suitable for incorporation in accordance with the present invention are described in: 26 July 2019 application titled "ELECTRONIC CONTACT LENS TO DECREASE MYOPIA PROGRESSION", PCT/US2019/043692, published as WO2020028177A1 on February 6, 2020; and PCT/US2020, filed on July 31, 2021, entitled "DEVICE FOR PROJECTING IMAGES ON THE RETINA" /044571, which was published as WO/2021/022193 on February 4, 2021, the entire disclosure of which was previously incorporated herein by reference.

圖4展示包括用於提供清晰視力之一內部區及用於提供失焦以治療屈光不正之一外部區之一鏡片,諸如一隱形鏡片或眼鏡。鏡片400包括經組態以向佩戴者之眼睛提供清晰視力之一清晰內部區410 (例如,一清晰中心區)及經組態以將影像聚焦於視網膜前方之一外部區420。在一些實施例中,內部區410包括鏡片400之一中心412。例如,內部區410可包括一遠視矯正、一近視矯正、一中間矯正或一漸進加法矯正之一或多者。外部區420可包括用於將影像聚焦於視網膜前方之任何適合光學結構且可包括繞清晰區410延伸之一環形區。鏡片400可包括任何適合鏡片材料,諸如(例如)玻璃、塑膠或聚碳酸酯。在一些實施例中,內部區410包括用於矯正眼睛之一屈光不正之光學屈光度,其中光學屈光度由鏡片400之曲率、繞射結構(諸如階梯光柵)或折射結構(諸如菲涅爾鏡片)之一或多者提供。在一些實施例中,外部區420包括大於清晰區410之光學屈光度以將影像聚焦於視網膜前方以治療眼睛之屈光不正之一加深。Figure 4 shows a lens, such as a contact lens or eyeglasses, including an inner zone for providing clear vision and an outer zone for providing out-of-focus to treat refractive errors. Lens 400 includes a clear inner zone 410 (eg, a clear central zone) configured to provide clear vision to the wearer's eye and an outer zone 420 configured to focus the image in front of the retina. In some embodiments, interior region 410 includes a center 412 of lens 400 . For example, inner zone 410 may include one or more of a hyperopia correction, a near vision correction, an intermediate correction, or a progressive addition correction. Outer zone 420 may include any suitable optical structure for focusing the image in front of the retina and may include an annular zone extending around clear zone 410 . Lens 400 may comprise any suitable lens material such as, for example, glass, plastic, or polycarbonate. In some embodiments, the inner region 410 includes an optical power for correcting a refractive error of the eye, wherein the optical power is determined by the curvature of the lens 400, a diffractive structure (such as an echelle grating), or a refractive structure (such as a Fresnel lens) One or more are provided. In some embodiments, the outer zone 420 includes a greater optical power than the clear zone 410 to focus the image in front of the retina to treat a deepening of the refractive error of the eye.

在一些實施例中,外部區420包括用於將一刺激物之一影像聚焦至遠離視網膜之一位置處之視網膜前方或後方之一位置以在視網膜處之遠離中央凹之一位置處提供刺激物之一模糊影像。一或多個光學結構包括一鏡片、一稜鏡、一楔、一光學玻璃片、一繞射光學器件、一菲涅爾鏡片、複數個階梯光柵、一非球面輪廓、一液晶、複數個小透鏡、正光學屈光度之複數個區域、具有經增加光學屈光度之複數個環形區域或在具有經增加光學屈光度之區域之間延伸之複數個間隙之一或多者。In some embodiments, the outer region 420 includes an image for focusing an image of a stimulus to a location in front of or behind the retina at a location away from the retina to provide the stimulus at a location at the retina away from the fovea. One blurs the image. One or more optical structures include a lens, a disc, a wedge, an optical glass plate, a diffractive optical device, a Fresnel lens, a plurality of echelle gratings, an aspheric profile, a liquid crystal, a plurality of small One or more of a lens, regions of positive optical power, annular regions of increased optical power, or gaps extending between regions of increased optical power.

在一些實施例中,一或多個光學結構包括用於提供第一刺激物之一第一光學結構及用於提供第二刺激物之一第二光學結構,第二光學結構回應於在如本文中描述之治療之前及之後之眼睛之光學性質之比較而經組態。在一些實施例中,第二光學結構回應於比較而經組態以具有一焦距、一傾斜角、一繞射圖案、一階梯光柵圖案、一非球面輪廓、一液晶折射率改變、正光學屈光度之區域之位置或間隙之一或多者。在以下專利申請案中描述適合液晶材料及光學性質之實例:2021年6月7日申請之標題為「STICK ON DEVICES USING PERIPHERAL DEFOCUS TO TREAT PROGRESSIVE REFRACTIVE ERROR」之PCT/US2021/036102;及2021年5月13日申請之標題為「ELECTRO-SWITCHABLE SPECTACLES FOR MYOPIA TREATMENT」之PCT/US2021/032162,該等案之完整揭示內容先前已以引用的方式併入本文中。In some embodiments, the one or more optical structures include a first optical structure for providing a first stimulus and a second optical structure for providing a second stimulus, the second optical structure being responsive to A comparison of the optical properties of the eye before and after the treatment described in . In some embodiments, the second optical structure is configured responsive to the comparison to have a focal length, a tilt angle, a diffraction pattern, an echelle pattern, an aspheric profile, a liquid crystal refractive index change, positive optical power One or more of the position or gap of the area. Examples of suitable liquid crystal materials and optical properties are described in the following patent applications: PCT/US2021/036102, filed June 7, 2021, entitled "STICK ON DEVICES USING PERIPHERAL DEFOCUS TO TREAT PROGRESSIVE REFRACTIVE ERROR"; and May 2021 PCT/US2021/032162, filed on March 13, entitled "ELECTRO-SWITCHABLE SPECTACLES FOR MYOPIA TREATMENT," the full disclosure of which was previously incorporated herein by reference.

清晰區410可以任何適合方式定大小以治療眼睛之屈光不正之加深且提供清晰觀察。在一些實施例中,例如,清晰區包括在清晰區距瞳孔之距離處對應於10至15度之半徑且可包括一眼鏡上在自約7 mm至約12 mm之一範圍內之尺寸。Clear zone 410 may be sized in any suitable manner to treat the deepening of the refractive error of the eye and provide clear viewing. In some embodiments, for example, the zone of clarity includes a radius corresponding to 10 to 15 degrees at the distance of the zone of clarity from the pupil and may include a dimension on an eyeglass ranging from about 7 mm to about 12 mm.

外部區420可包括用於提供經增加光學屈光度之可以任何適合方式組態以提供經增加光學屈光度之一光學結構,且可包括曲率、一非球面輪廓、繞射結構(諸如階梯光柵)或折射結構(諸如菲涅爾鏡片)之一或多者。在一些實施例中,外部區420包括一黏著層以提供額外屈光力。在一些實施例中,清晰內部區410由形成於外部區420之一黏著層中之一孔隙界定。例如,外部層可包括經組態以提供額外光學屈光度之鏡片材料之一層,諸如商業上可購自3M Health Care之菲涅爾「壓入」鏡片。區420中之額外屈光度之量可包括任何適合量之屈光度,例如在自約+2 D至約+6 D之一範圍內之一球面光學屈光度。Outer region 420 may include optical structures for providing increased optical power that may be configured in any suitable manner to provide increased optical power, and may include curvature, an aspheric profile, diffractive structures such as echelle gratings, or refractive One or more structures such as Fresnel lenses. In some embodiments, the outer region 420 includes an adhesive layer to provide additional optical power. In some embodiments, the clear inner region 410 is bounded by an aperture formed in an adhesive layer in the outer region 420 . For example, the outer layer may comprise a layer of lens material configured to provide additional optical power, such as Fresnel "press-in" lenses commercially available from 3M Health Care. The amount of additional diopters in zone 420 may include any suitable amount of diopters, such as one spherical optical diopter in a range from about +2D to about +6D.

雖然參考包括一黏著層之外部區420,但可使用任何適合結構以提供近焦點,諸如在市售鏡片中使用之結構。Although reference is made to the outer region 420 including an adhesive layer, any suitable structure to provide near focus may be used, such as those used in commercially available lenses.

圖5展示其中外部區420包括複數個小透鏡430之鏡片400。複數個小透鏡430可包括用於將影像聚焦於視網膜前方之任何適合光學屈光度。例如,小透鏡可包括在自約+2 D至約+6 D之一範圍內之一光學屈光度。在一些實施例中,一或多個間隙432在小透鏡之間延伸,該等小透鏡具有間隙在其中延伸之鏡片之光學屈光度。間隙之大小及間距可經組態使得小透鏡包括外部區420之一部分及區420之一適當百分比以便提供近視矯正與外部區之刺激物之一適當比率。FIG. 5 shows a lens 400 in which the outer region 420 includes a plurality of lenslets 430 . Lenslets 430 may comprise any suitable optical power for focusing the image in front of the retina. For example, the lenslet may include an optical power in a range from about +2D to about +6D. In some embodiments, one or more gaps 432 extend between the lenslets having the optical power of the lens in which the gap extends. The size and spacing of the gaps can be configured such that the lenslets include a portion of the outer zone 420 and an appropriate percentage of the zone 420 in order to provide an appropriate ratio of myopia correction to stimuli for the outer zone.

圖6展示一鏡片400,其中外部區420包括複數個分離正區440以將來自外部區420之光聚焦於視網膜前方。複數個正區440可包括用於將影像聚焦於視網膜前方之任何適合光學屈光度。例如,正區440可包括在自約+2 D至約+6 D之一範圍內之一光學屈光度。在一些實施例中,一或多個間隙442在正區之間延伸。間隙在其中延伸之鏡片之光學屈光度類似於區410之光學屈光度。間隙之大小及間距可經組態使得正區440包括外部區420之一部分及區420之一適當百分比以便提供近視矯正與外部區之刺激物之一適當比率。Figure 6 shows a lens 400 in which the outer zone 420 includes a plurality of separate positive zones 440 to focus light from the outer zone 420 in front of the retina. Plurality of positive zones 440 may comprise any suitable optical power for focusing the image in front of the retina. For example, positive zone 440 may include one optical power in a range from about +2D to about +6D. In some embodiments, one or more gaps 442 extend between the positive regions. The optical power of the lens in which the gap extends is similar to that of zone 410 . The size and spacing of the gaps can be configured such that positive zone 440 includes a portion of outer zone 420 and an appropriate percentage of zone 420 to provide an appropriate ratio of myopia correction to stimuli for the outer zone.

可回應於如本文中描述之治療而調整區420之光學屈光度。替代地或組合地,可回應於如本文中描述之治療而調整區420之正光學結構(例如,小透鏡430)之覆蓋範圍之一百分比面積。例如,亦可回應於治療而調整中心清晰區之大小。在一些實施例中,例如,可回應於治療而反轉區420之光學結構之光學屈光度以便將影像投射於視網膜後方。The optical power of zone 420 may be adjusted in response to treatment as described herein. Alternatively or in combination, a percentage area of coverage of positive optical structures (eg, lenslets 430 ) of region 420 may be adjusted in response to treatment as described herein. For example, the size of the central zone of sharpness may also be adjusted in response to treatment. In some embodiments, for example, the optical power of the optical structure of region 420 may be reversed in response to treatment to project an image behind the retina.

鏡片400可以許多方式經組態以提供如本文中描述之治療。在一些實施例中,例如當在正常日常使用期間佩戴鏡片時,鏡片400提供一自然場景之觀察。替代地或組合地,鏡片400可與一人工光源(諸如一顯示器)一起使用以便向視網膜提供複數個刺激物,如本文中描述。又,雖然參考鏡片400,但鏡片400可不包括有效光學屈光度,例如具有類似彎曲的前及後表面。Lens 400 can be configured in many ways to provide therapy as described herein. In some embodiments, the lens 400 provides viewing of a natural scene, such as when the lens is worn during normal everyday use. Alternatively or in combination, lens 400 may be used with an artificial light source, such as a display, to provide stimuli to the retina, as described herein. Also, while reference is made to lens 400, lens 400 may not include an effective optical power, eg, have similarly curved front and back surfaces.

雖然參考圖4至圖6中之一鏡片,但光學結構(諸如清晰區410及外部區420)可與任何適合光學結構(諸如(例如)具有如本文中描述之AR及VR裝置之一光學透射基板、一光學玻璃片、一楔、一稜鏡、一鏡或一光束分離器)組合。在一些實施例中,當一使用者觀察具有清晰區410及外部區420之一顯示器時提供治療。又,雖然參考將複數個刺激物聚焦在視網膜前方,但在一些實施例中,區420之光學結構經組態以將複數個刺激物聚焦於視網膜後方而中心區410 (例如)以類似量之失焦將影像聚焦於視網膜上。Although reference is made to one of the lenses in FIGS. 4-6 , optical structures such as clear zone 410 and outer zone 420 may be combined with any suitable optical structure such as, for example, having an optically transmissive AR and VR device as described herein. Substrate, an optical glass plate, a wedge, a rim, a mirror or a beam splitter) combination. In some embodiments, therapy is provided when a user views a display having a clear zone 410 and an outer zone 420 . Also, while reference is made to focusing the plurality of stimuli in front of the retina, in some embodiments, the optics of zone 420 are configured to focus the plurality of stimuli behind the retina while central zone 410, for example, in a similar amount. Out of focus focuses the image on the retina.

圖7展示如由一使用者看見之複數個刺激物702及一顯示器706上之一影像704。刺激物702定位於一顯示器706周圍,其中顯示器對應於清晰中心視力之一區域,且刺激物對應於使用者之周邊視力,例如黃斑外部之視力。複數個刺激物可以一近視失焦成像於視網膜前方以便提供一刺激物以增加脈絡膜厚度且減少眼睛之軸向長度之生長。FIG. 7 shows stimuli 702 and an image 704 on a display 706 as seen by a user. The stimulus 702 is positioned around a display 706, where the display corresponds to an area of clear central vision and the stimulus corresponds to the user's peripheral vision, eg, vision outside the macula. Multiple stimuli can be imaged in front of the retina with a myopic defocus to provide a stimulus to increase choroidal thickness and reduce growth in the axial length of the eye.

刺激物可以如本文中描述之許多方式經組態。在一些實施例中,刺激物包括一暗背景710上之一亮圖案708,例如一黑白圖案。在一些實施例中,刺激物包括一較暗背景上之一多色圖案,諸如一灰色背景或實質上黑色背景上之一白色或接近白色刺激物。在一些實施例中,各刺激物包括一暗背景上之一暗內部區域及一或多個亮外部區域,例如,在一暗背景上通過一白色圓形區域之一暗十字。刺激物可基於其等全域對比度因數、其等極性(例如,黑色背景上之白色或多色對白色或多色背景上之黑色)經選擇。刺激物可以許多方式經組態且可包括展示於一顯示器上之複數個重複圖示。刺激物可以重複圖示之一圓形或環形圖案配置。刺激物可包括任何適合全域對比度因數,諸如(例如)至少0.5、至少0.7或至少0.8之一全域對比度因數。Stimuli can be configured in a number of ways as described herein. In some embodiments, the stimulus includes a light pattern 708 on a dark background 710, such as a black and white pattern. In some embodiments, the stimulus comprises a multicolored pattern on a darker background, such as a white or near-white stimulus on a gray or substantially black background. In some embodiments, each stimulus includes a dark inner area and one or more light outer areas on a dark background, eg, a dark cross passing through a white circular area on a dark background. Stimuli may be selected based on their iso-global contrast factors, their isopolarity (eg, white on black background or multicolor versus white or black on multicolor background). Stimuli can be configured in many ways and can include a plurality of repeated graphics shown on a display. The stimuli may be arranged in repeating one of the circular or circular patterns shown. The stimuli may comprise any suitable global contrast factor, such as, for example, a global contrast factor of at least 0.5, at least 0.7 or at least 0.8.

圖8A展示用於向視網膜提供近視失焦刺激物之一螢幕800上之刺激物702,且圖8B以度數展示視網膜上之近視失焦刺激物之對應尺寸。顯示器上之刺激物之大小與使用者與顯示器之間的距離相關,且可根據觀察距離改變尺寸以向視網膜提供一適當角度橫距。一般技術者可容易執行計算以判定顯示器上之刺激物之大小以提供失焦投射影像之適當角度定大小。Figure 8A shows the stimuli 702 on one of the screens 800 used to provide the myopic out-of-focus stimuli to the retina, and Figure 8B shows the corresponding sizes of the myopic out-of-focus stimuli on the retina in degrees. The size of the stimuli on the display is related to the distance between the user and the display, and can vary in size according to the viewing distance to provide an appropriate angular distance to the retina. One of ordinary skill can readily perform calculations to determine the size of the stimulus on the display to provide the appropriate angular sizing of the out-of-focus projected image.

如圖8A及圖8B中展示,各刺激物包括對應於視網膜上之一角度照明812 (例如,3.3度)之一橫跨距離802 (例如,18 mm)。刺激物配置於顯示器上以提供具有一橫跨距離806 (例如,橫跨70 mm)之一清晰中心視場804,以便提供具有15度之一橫跨距離814之一未中斷中心視場804。複數個刺激物包括對應於35度之一角度橫距616之一最大橫跨距離615,例如,178 mm。刺激物可以任何適當物件大小配置以便提供視網膜上之適當影像大小。雖然參考特定尺寸,但可(例如)藉由變化距眼睛之距離及對應角度橫距而使用任何適合尺寸。在一些實施例中,刺激物可經配置以提供一清晰中心視場(例如,橫跨15 mm)以便提供15度之一未中斷中心視場。在一些實施例中,複數個刺激物包括對應於35度之一角度橫距之一最大橫跨距離,例如,70 mm。As shown in Figures 8A and 8B, each stimulus included a spanning distance 802 (eg, 18 mm) corresponding to an angular illumination 812 (eg, 3.3 degrees) on the retina. The stimuli are arranged on the display to provide a clear central field of view 804 with a spanning distance 806 (eg, 70 mm across) to provide an uninterrupted central field of view 804 with a spanning distance 814 of 15 degrees. The plurality of stimuli includes a maximum spanning distance 615 corresponding to an angular span 616 of 35 degrees, eg, 178 mm. The stimuli may be configured in any suitable object size to provide an appropriate image size on the retina. Although reference is made to specific dimensions, any suitable size may be used, for example by varying the distance from the eye and the corresponding angular cross-distance. In some embodiments, the stimuli can be configured to provide a clear central field of view (eg, 15 mm across) in order to provide an uninterrupted central field of view of 15 degrees. In some embodiments, the plurality of stimuli includes a maximum spanning distance corresponding to an angular spanning distance of 35 degrees, eg, 70 mm.

圖9展示描繪一自然場景900之一刺激物702,諸如一環形花圖案。雖然展示一花圖案,但可使用任何影像。例如,刺激物可替代或組合圖8A及圖8B中展示之刺激物702提供於一顯示器上。圖9中展示之刺激物之尺寸及角度可類似於圖8A及圖8B中展示之刺激物經定尺寸。展示為一暗圓圈之中心視場814可包括(例如)對應於約15度之一橫跨距離,且例如,橫跨環形區域之最大距離806可為約35度。與本發明相關之工作表明,一多色自然場景(諸如一花圖案)對於使用者可為更愉悅的。與本發明相關之工作亦表明,在一些實施例中,雖然可使用其他刺激物,但相較於一黑色背景上之白色圓圈之一環形陣列(其中一黑色十字分割圓形圖示),多色花場景作為一刺激物可更不有效。FIG. 9 shows a stimulus 702 depicting a natural scene 900, such as a ring flower pattern. Although a flower pattern is shown, any image may be used. For example, stimuli may be provided on a display instead of or in combination with stimuli 702 shown in FIGS. 8A and 8B. The size and angle of the stimuli shown in Figure 9 can be sized similarly to the stimuli shown in Figures 8A and 8B. The central field of view 814, shown as a dark circle, can include, for example, a spanning distance corresponding to about 15 degrees, and, for example, the maximum distance across the annular region 806 can be about 35 degrees. Work related to the present invention has shown that a multicolor natural scene, such as a flower pattern, can be more pleasing to the user. Work related to the present invention also showed that, in some embodiments, although other stimuli could be used, more Sex scenes are even less effective as a stimulus.

圖10展示圖8A至圖9中展示之刺激物之影像對比度及具有紅色(R)、藍色(B)及綠色(G)值之一直方圖。針對如圖9A及圖9B中展示之圓形圖案,直方圖展示在大約255之一強度值之情況下之大約3.5 x 10 5之刺激物像素之一像素計數。已在直方圖中排除黑色像素以增加圖形表示之清晰度(強度=0)。針對圖9中展示之花圖案,藍色強度分佈展示約50處之一強度峰值、約110處之一紅色峰值及約120處之一綠色峰值,其中計數低於0.5 x 10 5Figure 10 shows image contrast and histograms with red (R), blue (B) and green (G) values for the stimuli shown in Figures 8A-9. The histogram shows a pixel count of approximately 3.5 x 105 stimulus pixels at an intensity value of approximately 255 for the circular pattern as shown in Figures 9A and 9B. Black pixels have been excluded in the histogram to increase the clarity of the graphical representation (intensity=0). For the flower pattern shown in Figure 9, the blue intensity profile exhibited an intensity peak at about 50, a red peak at about 110, and a green peak at about 120, with counts below 0.5 x 105 .

在一些實施例中,將對比度定義為影像之最低與最高強度之間的間距。全域對比度因數(GCF)亦可用於定義刺激物影像之對比度。GCF量測如由一人類觀察者感知之細節之豐富性。在一些實施例中,如在以下文獻中描述般判定刺激物之GCF: Global contrast factor-a new approach to image contrast,Matkovic, Kresimir等人,2005年; Computational Aesthetics in Graphics, Visualization and Imaging (2005年);L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors)。 In some embodiments, contrast is defined as the distance between the lowest and highest intensity of an image. The Global Contrast Factor (GCF) can also be used to define the contrast of stimulus images. GCF measures the richness of detail as perceived by a human observer. In some embodiments, the GCF of a stimulus is determined as described in: Global contrast factor-a new approach to image contrast , Matkovic, Kresimir et al., 2005; Computational Aesthetics in Graphics, Visualization and Imaging (2005 ); L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors).

所獲得之GCF值如下:The obtained GCF values are as follows:

花:6.46Flower: 6.46

圓形圖案(b/w):9.94Circular pattern (b/w): 9.94

與本發明相關之工作表明,由於更高GCF,故相較於一田野中之花,黑色背景上之白色圓圈可係較佳地。Work related to the present invention showed that white circles on a black background may be better compared to a field of flowers due to higher GCF.

圖11展示適用於修改及併入為如本文中描述之一刺激物之一影像1100。影像1100可包括一經處理影像以提供一適合空間頻率分佈,如本文中描述。影像可包括一自然影像或一電腦產生影像。影像可經標記以便定義(例如)類似於圖9之一環形刺激物。圖12展示類似於圖11之影像之已經處理以提供一經改良刺激物之一影像1200。此經處理影像可經數位地標記以依適當空間頻率及對比度形成如圖9中展示之一環形刺激物。Figure 11 shows an image 1100 suitable for modification and incorporation as a stimulus as described herein. Image 1100 may include a processed image to provide a suitable spatial frequency distribution, as described herein. The image can include a natural image or a computer generated image. Images can be labeled to define a circular stimulus similar to, for example, FIG. 9 . FIG. 12 shows an image 1200 similar to that of FIG. 11 that has been processed to provide a modified stimulus. This processed image can be digitally labeled to form a circular stimulus as shown in FIG. 9 at the appropriate spatial frequency and contrast.

雖然可以許多方式處理影像,但在一些實施例中,使用一數位空間頻率濾波器處理一影像且調整對比度以便提供具有一適當空間頻率分佈之一影像以產生眼睛之一經改良回應。在程序中之一步驟處,使用具有一長度之一移動平均濾波器(例如,具有一400像素長度之一濾波器)處理影像。在另一步驟處,將RGB影像轉換為一灰階影像。在另一步驟處,根據移動平均影像調整RGB影像。在又一步驟處,將移動平均濾波器重新應用至新影像。在一些實施例中,平滑化亮度之移動平均值。例如,初始影像可具有亮度上之100%之差異,且經調整影像可具有亮度上之一25%之差異。While images can be processed in many ways, in some embodiments an image is processed using a digital spatial frequency filter and contrast adjusted to provide an image with an appropriate spatial frequency distribution to produce an improved response of the eye. At one step in the process, the image is processed using a moving average filter with a length (eg, a filter with a length of 400 pixels). In another step, the RGB image is converted into a grayscale image. At another step, the RGB image is adjusted according to the moving average image. At yet another step, the moving average filter is reapplied to the new image. In some embodiments, the moving average of brightness is smoothed. For example, the original image may have a 100% difference in brightness and the adjusted image may have a 25% difference in brightness.

圖13展示圖11之影像之空間頻率分佈之一影像1300。FIG. 13 shows one image 1300 of the spatial frequency distribution of the image of FIG. 11 .

圖14展示圖12之影像(其可用作圖9中之刺激物)之空間頻率分佈之一影像1400。FIG. 14 shows an image 1400 of the spatial frequency distribution of the image of FIG. 12 (which can be used as a stimulus in FIG. 9).

圖15展示圖8B及圖9中展示之刺激物影像之以循環/度為單位之影像空間頻率及在各頻率下之能量之對數之一曲線圖。在圖15中展示之曲線圖中,展示空間頻譜之平均徑向輪廓,其中振幅對數(任意單位,「au」)與一特定空間頻率之特徵之數密度相關。此曲線圖展示1/f、1/f 2及1/f 0.5線以供參考。包括圖9中展示之具有一圓圈之花圖案之經處理影像具有與圖7至圖8B中展示之具有黑色十字之白色圓圈圖案類似之一頻率相依性。此等曲線展示,花圖案及圓圈圖案兩者展現在自約2至10循環/度之中間(例如,中間範圍)頻率下之大約1/f之斜率相依性。在一些實施例中,刺激物包括強度之一變化(能量,au),其具有在自約2至10循環/度之一範圍內之頻率之自1/f至1/f 2頻率相依性之一範圍內之一頻率相依性。 Figure 15 shows a graph of the image spatial frequency in cycles/degree and the logarithm of the energy at each frequency for the stimulus images shown in Figures 8B and 9. In the graph shown in FIG. 15, the average radial profile of the spatial frequency spectrum is shown, where the logarithm of the amplitude (in arbitrary units, "au") is related to the number density of the signature at a particular spatial frequency. This graph shows the 1/f, 1/f 2 and 1/f 0.5 lines for reference. The processed image comprising the flower pattern with a circle shown in FIG. 9 has a frequency dependence similar to the white circle pattern with black crosses shown in FIGS. 7-8B . These curves show that both the flower pattern and the circle pattern exhibit a slope dependence of about 1/f at intermediate (eg, mid-range) frequencies from about 2 to 10 cycles/degree. In some embodiments, the stimulus comprises a change in intensity (energy, au) with a frequency dependence from 1/f to 1/ f2 of frequency in a range from about 2 to 10 cycles/degree. Frequency dependence within a range.

刺激物可以許多方式經組態以具有適當空間頻率分佈,例如,具有空間頻率分佈之一輪廓。在一些實施例中,複數個刺激物之各者包括一長度、邊緣及一强度輪廓分佈以產生如在視網膜前方或後方成像至眼睛中之在1X10 -1至2.5X10 1循環/度之一範圍中且視情況在自1X10 -1至1X10 1循環/度之一範圍內之空間頻率。在一些實施例中,如成像於眼睛中之複數個刺激物包括以自約1X10 -1至約5X10 0循環/度之一空間頻率範圍之空間頻率之一增加提供空間頻率振幅之一減小之一空間頻率分佈。在一些實施例中,針對任意單位之空間頻率振幅,空間頻率強度之減小在自1/(空間頻率)至1/(空間頻率) 2之一範圍內。在一些實施例中,空間頻率之範圍係自約3X10 -1至約1.0X10 1循環/度且視情況在自約3X10 -1至約2.0X10 0之一範圍內且進一步視情況在自約3X10 -1至約1.0X10 0之一範圍內。 Stimuli can be configured in many ways to have an appropriate spatial frequency distribution, for example, to have one of the profiles of the spatial frequency distribution. In some embodiments, each of the plurality of stimuli includes a length, edge, and an intensity profile distribution to produce a range of 1×10 −1 to 2.5× 10 cycles/degree as imaged into the eye in front of or behind the retina Medium and optionally within a range of spatial frequencies from 1X10 −1 to 1X10 1 cycles/degree. In some embodiments, the plurality of stimuli as imaged in the eye comprises an increase in spatial frequency providing a decrease in spatial frequency amplitude in a spatial frequency range from about 1×10 −1 to about 5×10 0 cycles/degree A spatial frequency distribution. In some embodiments, the reduction in spatial frequency intensity is in a range from 1/(spatial frequency) to 1/(spatial frequency) 2 for an arbitrary unit of spatial frequency amplitude. In some embodiments, the spatial frequency ranges from about 3×10 −1 to about 1.0×10 1 cycles/degree and optionally within a range from about 3×10 −1 to about 2.0×10 0 and further optionally from about 3×10 -1 to about 1.0X100 in the range of one.

替代或組合空間頻率性質,刺激物可經組態以具有刺激物強度對背景強度之一適當比率。在一些實施例中,複數個失焦刺激物影像之一亮度比環境照明之一亮度高環境照明之亮度之至少3倍,視情況背景照明之亮度之至少5倍,視情況背景照明之亮度之自3至20倍之一範圍內且進一步視情況背景照明之亮度之自5至15倍之一範圍內之一因數。Instead or in combination with spatial frequency properties, stimuli may be configured to have an appropriate ratio of stimulus intensity to background intensity. In some embodiments, the brightness of the plurality of out-of-focus stimulus images is at least 3 times the brightness of the ambient lighting, optionally at least 5 times the brightness of the background lighting, and optionally at least 5 times the brightness of the background lighting. In the range of from 3 to 20 times and further depending on the situation a factor in the range of from 5 to 15 times the brightness of the background lighting.

在一些實施例中,包括空間頻率及強度性質之刺激物以與背景照明或環境照明之一或多者之一適當比率呈現。在一些實施例中,如在眼睛中成像之複數個刺激物之各者覆疊至一實質上均勻灰色背景上。在一些實施例中,複數個刺激物之各者包括一較暗背景上之一多色圖示(例如,一白色圖示)以提供對比度,使得圖示具有產生主要在自1X10 -1循環/度至2.5X10 1循環/度,且視情況在自1X10 -1循環/度至1X10 1循環/度之一範圍中之空間頻率之特徵之一邊緣輪廓或邊緣之一總長度。 In some embodiments, stimuli including spatial frequency and intensity properties are presented at an appropriate ratio to one or more of background lighting or ambient lighting. In some embodiments, each of the plurality of stimuli as imaged in the eye is superimposed onto a substantially uniform gray background. In some embodiments, each of the plurality of stimuli includes a multi-color icon (e.g., a white icon) on a darker background to provide contrast, such that the icon has a characteristic generated primarily from 1×10 −1 cycles/ Degrees to 2.5×10 1 cycles/degree, and optionally a spatial frequency in the range from 1×10 −1 cycles/degree to 1×10 1 cycles/degree characterizes an edge profile or a total length of the edge.

在2021年6月7日申請之標題為「PROJECTION OF DEFOCUSED IMAGES ON THE PERIPHERAL RETINA TO TREAT REFRACTIVE ERROR」之PCT/US2021/036100中描述適用於根據本發明併入之刺激物及相關聯性質之額外實例,該案之完整揭示內容先前已以引用的方式併入。Additional examples of stimuli and associated properties suitable for incorporation in accordance with the present invention are described in PCT/US2021/036100, filed June 7, 2021, entitled "PROJECTION OF DEFOCUSED IMAGES ON THE PERIPHERAL RETINA TO TREAT REFRACTIVE ERROR" , the full disclosure of which was previously incorporated by reference.

圖16展示用於治療眼睛之屈光不正之一系統1600。系統1600包括一治療裝置1602,諸如使用一安全雙向通訊協定可操作地耦合至一伺服器1604之一使用者裝置。伺服器1604經組態以使用一安全雙向通訊協定1606與一治療專業人員裝置1608通訊。在一些實施例中,伺服器1604使用一安全雙向通訊協定1606耦合至一照護者裝置1610。在一些實施例中,系統1600包括儲存來自複數個治療之治療參數及結果之一治療資料庫1612。治療資料庫1612可經組態以使用安全雙向通訊協定1606與伺服器1604通訊。在一些實施例中,系統1600包括經組態以使用一安全雙向通訊協定1606與伺服器通訊之一或多個臨床量測裝置1614。各裝置可使用安全雙向通訊協定1606可操作地耦合至另一裝置。安全通訊可包括傳輸加密資料且資料可以任何適合加密格式儲存之任何適合安全通訊協定。例如,圖16中展示之裝置可經組態以遵守HIPAA及GDPR,如一般技術者將瞭解。伺服器1604可包括任何適合伺服器,諸如一基於雲端之伺服器,其包括可位於不同地理位置處之複數個伺服器。治療資料庫1612可包括伺服器之一組件,雖然其被分開展示。Figure 16 shows a system 1600 for treating refractive errors of the eye. System 1600 includes a treatment device 1602, such as a user device operably coupled to a server 1604 using a secure two-way communication protocol. The server 1604 is configured to communicate with a therapy professional device 1608 using a secure two-way communication protocol 1606 . In some embodiments, the server 1604 is coupled to a caregiver device 1610 using a secure two-way communication protocol 1606 . In some embodiments, system 1600 includes a treatment database 1612 that stores treatment parameters and results from a plurality of treatments. The therapy database 1612 can be configured to communicate with the server 1604 using a secure two-way communication protocol 1606 . In some embodiments, system 1600 includes one or more clinical measurement devices 1614 configured to communicate with a server using a secure two-way communication protocol 1606 . Each device may be operatively coupled to another device using a secure two-way communication protocol 1606 . Secure communication may include any suitable secure communication protocol in which encrypted data is transmitted and the data may be stored in any suitable encrypted format. For example, the device shown in FIG. 16 can be configured to comply with HIPAA and GDPR, as will be appreciated by those of ordinary skill. Server 1604 may include any suitable server, such as a cloud-based server that includes a plurality of servers that may be located at different geographic locations. Therapy database 1612 may include one component of the server, although shown separately.

治療裝置1602可以如本文中描述之許多方式經組態,其可包括一使用者裝置,該使用者裝置包括一眼科裝置、一TV螢幕、一電腦螢幕、一虛擬實境(「VR」)顯示器、一擴增實境(「AR」)顯示器、一手持式裝置、一行動運算裝置、一平板運算裝置、一智慧型電話、一佩戴型裝置、一眼鏡鏡片框、一眼鏡鏡片、一近眼顯示器、一頭戴式顯示器、一護目鏡、一隱形鏡片、一可植入裝置、一角膜覆蓋物、一角膜鑲嵌物、一角膜假體或一眼內鏡片之一或多者。例如,治療裝置1602可包括具有光束分離器之一光學系統,如本文中描述。在一些實施例中,治療裝置1602包括一使用者裝置,諸如(例如)一智慧型電話或平板電腦。使用者裝置之顯示器1620可經組態以提供複數個刺激物702,如本文中描述。在一些實施例中,使用者裝置1602包括放置於複數個刺激物702上方之一小透鏡陣列1622,以便在視網膜前方或後方提供刺激物702之一影像,如本文中描述。在一些實施例中,小透鏡陣列之各小透鏡與複數個刺激物之一者對準。使用者裝置可經組態以具有如本文中描述之一清晰觀察區域804 (例如)而不使小透鏡陣列延伸至清晰觀察區域中。清晰觀察區域804可經組態以供使用者觀察影像(諸如視訊)且容許使用者以一實質上正常方式使用裝置(例如)以便使用一網頁瀏覽器、玩視訊遊戲、發送並接收文本及電子郵件等。小透鏡陣列1622可定位於距像素之一定距離處以便提供一適當量之失焦,如本文中描述。在一些實施例中,治療系統1600包括一或多個臨床量測裝置1614。Therapeutic device 1602 can be configured in many ways as described herein, which can include a user device including an ophthalmic device, a TV screen, a computer screen, a virtual reality ("VR") display , an Augmented Reality (“AR”) display, a handheld device, a mobile computing device, a tablet computing device, a smart phone, a wearable device, a spectacle lens frame, a spectacle lens, a near-eye display , one or more of a head-mounted display, a goggle, a contact lens, an implantable device, a corneal onlay, a corneal inlay, a corneal prosthesis, or an intraocular lens. For example, treatment device 1602 may include an optical system with a beam splitter, as described herein. In some embodiments, therapeutic device 1602 includes a user device such as, for example, a smartphone or tablet computer. The display 1620 of the user device can be configured to provide the plurality of stimuli 702, as described herein. In some embodiments, user device 1602 includes a lenslet array 1622 positioned over plurality of stimuli 702 to provide an image of stimuli 702 in front of or behind the retina, as described herein. In some embodiments, each lenslet of the lenslet array is aligned with one of a plurality of stimuli. A user device may be configured to have a clear viewing area 804 as described herein, for example, without extending the lenslet array into the clear viewing area. Clear viewing area 804 can be configured for the user to view images (such as video) and to allow the user to use the device in a substantially normal manner (for example) to use a web browser, play video games, send and receive text and email mail etc. Lenslet array 1622 may be positioned at a distance from the pixels in order to provide an appropriate amount of defocus, as described herein. In some embodiments, therapy system 1600 includes one or more clinical measurement devices 1614 .

治療專業人員裝置1608可經組態以供治療專業人員接收來自使用者裝置1602之資料(諸如治療資料)。治療資料可包括任何適合治療資料,諸如每天的治療持續時間、每日使用、螢幕時間、啟動刺激物之螢幕時間。治療專業人員裝置1608亦可經組態以發送及接收來自眼科儀器之資料(諸如如本文中描述之屈光資料)以便評估治療效果。治療專業人員裝置1608可經組態以將治療指令傳輸至使用者裝置1602。例如,治療指令可包括如本文中描述之任何適合參數且可包括治療之一持續時間及一時間。與本發明相關之工作表明,晝夜節律可在治療效果中起作用,且治療指令可包括使使用者在一天之一時間或一時間範圍(例如在早晨,例如在其中受試者位於自本地時間約6 am至約9 am之一範圍內之一時間)執行治療之指令。Therapy professional device 1608 may be configured for the therapy professional to receive data from the user device 1602, such as therapy data. Therapy data may include any suitable therapy data, such as duration of therapy per day, daily usage, screen time, screen time for activating stimuli. Therapy professional device 1608 may also be configured to send and receive data from ophthalmic instruments, such as refraction data as described herein, in order to assess treatment effectiveness. Therapy professional device 1608 may be configured to transmit therapy instructions to user device 1602 . For example, a therapy instruction may include any suitable parameters as described herein and may include a duration and a time of therapy. Work related to the present invention has shown that circadian rhythms can play a role in the therapeutic effect, and that treatment instructions can include having the user set a time of day or range of times (e.g., in the morning, e.g., in which the subject is located at local time) at one of the times within the range of about 6 am to about 9 am) to execute the order for treatment.

臨床量測裝置1614可包括任何適合臨床量測裝置,諸如(例如)一自動屈光計或一OCT系統之一或多者。替代地或組合地,受試者記錄(諸如顯性屈光)可儲存於臨床網站處且傳輸至伺服器。Clinical measurement device 1614 may include any suitable clinical measurement device, such as, for example, one or more of an automated refractometer or an OCT system. Alternatively or in combination, subject records (such as manifest refraction) may be stored at the clinical website and transmitted to a server.

照護者裝置1610可包括具有一顯示器之任何適合裝置,諸如一智慧型電話或平板電腦。照護者裝置1610可經組態以傳輸並接收與使用者之治療相關之資料。照護者裝置1610可經組態以供一照護者(諸如一父母)監測治療且促進遵守一治療協定。例如,伺服器1604可經組態以將通知(諸如使用者經排程以進行治療且照護者可與使用者互動以鼓勵使用者接收治療之通知)傳輸至照護者裝置1610。Caregiver device 1610 may include any suitable device with a display, such as a smartphone or tablet computer. The caregiver device 1610 may be configured to transmit and receive data related to the user's treatment. The caregiver device 1610 can be configured for a caregiver, such as a parent, to monitor therapy and facilitate compliance with a therapy protocol. For example, server 1604 may be configured to transmit notifications to caregiver device 1610 , such as a notification that a user is scheduled for therapy and a caregiver may interact with the user to encourage the user to receive therapy.

治療資料庫1612可經組態以儲存與治療相關之資料。例如,與治療相關之資料可包括治療資料及效果資料。效果資料可包括屈光資料及軸向長度資料之一或多者。屈光資料可包括使用者之眼睛(例如,球體、圓柱體及軸)在時間點之屈光資料,例如,縱向資料。軸向長度資料可包括諸如在時間點收集之OCT資料之資料。治療資料1612可包括與如本文中描述之刺激物參數相關之資料,且例如可包括每天之治療持續時間、刺激物之強度、刺激物之類型及失焦資料。Treatment database 1612 may be configured to store treatment-related data. For example, data related to treatment may include treatment data and effect data. The effect data may include one or more of refractive data and axial length data. The refractive data may include refractive data, eg, longitudinal data, of the user's eye (eg, sphere, cylinder, and axis) at a point in time. Axial length data may include data such as OCT data collected at time points. Therapy data 1612 may include data related to stimulus parameters as described herein, and may include, for example, treatment duration per day, intensity of stimulus, type of stimulus, and defocus data.

在一些實施例中,諸如人工智慧、機器學習、神經網路或卷積神經網路之演算法用於處理資料以判定經改良治療參數,諸如治療持續時間、治療當天之時間、失焦、刺激物之形狀及強度、失焦之量、刺激物之空間頻率、刺激物對環境光之比率、刺激物之背景或與治療相關之任何其他參數。可調整此等參數以提供經改良治療且可在治療專業人員裝置上向治療專業人員建議此等參數以供治療專業人員將指令推送至使用者裝置。In some embodiments, algorithms such as artificial intelligence, machine learning, neural networks, or convolutional neural networks are used to process the data to determine improved treatment parameters, such as treatment duration, time of day, defocus, stimulation The shape and intensity of the object, the amount of defocus, the spatial frequency of the stimulus, the ratio of the stimulus to ambient light, the background of the stimulus, or any other parameter relevant to the treatment. These parameters can be adjusted to provide improved therapy and can be suggested to the treating professional on the treating professional device for the treating professional to push instructions to the user device.

雖然治療裝置1602 (諸如使用者裝置)可以許多方式經組態,但在一些實施例中,裝置1602包括用於偵測亮度或光譜資料之一或多者之一感測器1624,諸如一照度感測器或一分光光度計。感測器1624可經組態以量測並偵測受試者(諸如一佩戴者或使用者)之環境光曝露,且環境光可包括使用感測器1624量測之環境光。在一些實施例中,感測器支撐(例如,安裝)於如本文中描述之治療裝置(諸如眼鏡、一佩戴型裝置或一使用者裝置)上。Although therapeutic device 1602 (such as a user device) can be configured in many ways, in some embodiments device 1602 includes a sensor 1624 for detecting one or more of luminance or spectral data, such as an illuminance sensor or a spectrophotometer. Sensor 1624 may be configured to measure and detect ambient light exposure of a subject, such as a wearer or user, and ambient light may include ambient light measured using sensor 1624 . In some embodiments, sensors are supported (eg, mounted) on a therapeutic device as described herein, such as eyeglasses, a wearable device, or a user device.

例如,圖16之系統良好適合與臨床試驗一起使用以執行臨床試驗且產生效果資料。For example, the system of Figure 16 is well suited for use with clinical trials to conduct clinical trials and generate efficacy data.

實驗experiment

圖17描繪用於將刺激物702投射至視網膜33上之一光學系統1700。在所進行之研究中,系統1700包括一台式系統。雖然在一實驗系統之背景內容中參考光學系統1700,但系統1700可容易經組態以根據本發明進行治療,諸如兩個眼睛之治療。系統經組態以為了測試目的接納受試者之一左眼及一右眼。測試眼睛1702放置於一第一光束分離器1706前方且對照眼睛1704放置於一第二光束分離器1708前方。容許測試眼睛1702及對照眼睛1704類似地觀察在一被動背景1712前方之一中心顯示器1710。顯示器1710可包括一清晰中心視力區且展示適合內容且包括一電腦螢幕。在一些實施例中,中心視力區包括如由受試者透過具有展示於顯示器上之娛樂之清晰中心視力區看到之一娛樂區域。主動刺激系統包括具有頭及腮托之一桌上裝置。系統經組態以提供用於兩個眼睛之光學無限遠之一背景影像及用於中心(中央凹)視力之一視訊。一刺激物502展示於放置於一鏡片1722 (例如,一消色差鏡片)前方之一顯示器1720上以向測試眼睛提供具有一近視失焦之一覆疊刺激物影像。近視刺激物被投射於眼睛之視網膜前方。經顯示刺激物距鏡片1722之距離及鏡片1722之光學屈光度經組態以提供一適當量之失焦。刺激物502與中心顯示器1710覆疊且被動背景1712與第一光束分離器1706覆疊。第二光束分離器1708類似於第一光束分離器且背景光由一遮擋物1724阻擋。光束分離器包括各眼睛之50/50之一反射率及透射率以便透射50%之光且將50%耦合至刺激物。刺激物在距消色差鏡片之一適當距離處被提供於一螢幕(諸如顯示器1720)上。FIG. 17 depicts an optical system 1700 for projecting stimuli 702 onto the retina 33 . In the studies performed, system 1700 included a desktop system. Although reference is made to optical system 1700 in the context of an experimental system, system 1700 can be readily configured to perform treatments in accordance with the present invention, such as treatment of both eyes. The system was configured to admit one left eye and one right eye of the subject for testing purposes. The test eye 1702 is placed in front of a first beam splitter 1706 and the control eye 1704 is placed in front of a second beam splitter 1708 . The test eye 1702 and control eye 1704 are allowed to similarly view a central display 1710 in front of a passive background 1712 . Display 1710 may include a clear central vision area and display suitable content and include a computer screen. In some embodiments, the central vision zone includes an entertainment area as seen by the subject through the clear central vision zone with the entertainment displayed on the display. The active stimulation system includes a tabletop device with a head and chin rest. The system was configured to provide a background image for optical infinity of both eyes and a video for central (foveal) vision. A stimulus 502 is displayed on a display 1720 placed in front of a lens 1722 (eg, an achromatic lens) to provide the test eye with an overlay stimulus image with a myopic defocus. Myopic stimuli are projected in front of the retina of the eye. The distance of the stimulus from the lens 1722 was shown and the optical power of the lens 1722 was configured to provide an appropriate amount of defocus. The stimulus 502 overlays the center display 1710 and the passive background 1712 overlays the first beam splitter 1706 . The second beam splitter 1708 is similar to the first beam splitter and the ambient light is blocked by a shield 1724 . The beam splitter included a 50/50 ratio of reflectance and transmittance for each eye to transmit 50% of the light and couple 50% to the stimulus. The stimulus is provided on a screen, such as display 1720, at an appropriate distance from the achromat.

如本文中描述般調整以下參數,包含失焦之量值、刺激物在視網膜上之覆蓋範圍(例如,視網膜影像外殼)、背景影像之優勢(例如,對比度及亮度)及色度(例如,波長分佈)。Parameters including magnitude of defocus, coverage of stimuli on the retina (e.g., retinal image envelope), dominance of background images (e.g., contrast and brightness), and chromaticity (e.g., wavelength) were adjusted as described herein. distributed).

在此等實驗中亦考量背景圖案。背景圖案可包括一均勻圖案1730a或一圖案化背景1730b (例如,一柵格圖案)。背景圖案以遠視失焦1730投射至周邊視網膜上。在一些實施例中,提供此遠視失焦以便將遠處物件之焦點推向光學無限遠而非超焦點。與本發明相關之工作表明,根據一些實施例,一圖案化背景可與近視失焦刺激物競爭,且一均勻背景圖案可係較佳地。雖然背景可以許多方式呈現,但背景被呈現為具有一適當測試圖案之一海報。Background patterns were also considered in these experiments. The background pattern can include a uniform pattern 1730a or a patterned background 1730b (eg, a grid pattern). The background pattern is projected onto the peripheral retina with hyperopic defocus 1730 . In some embodiments, this hyperopic defocus is provided so as to push the focus of distant objects toward optical infinity rather than hyperfocus. Work related to the present invention shows that, according to some embodiments, a patterned background can compete with myopic out-of-focus stimuli and that a uniform background pattern can be preferred. While the background can be presented in many ways, the background is presented as a poster with an appropriate test pattern.

一相機1726可用於觀察一或多個眼睛。在所進行實驗中,右眼係測試眼睛1702,且對照眼睛1704係左眼。雖然圖8展示左眼作為測試眼睛且右眼作為對照眼睛,但此可藉由將消色差鏡片及顯示器耦合至右眼且向左眼提供遮擋器而容易地改變。例如,具有刺激物圖案之顯示器及消色差鏡片之位置可放置於右側,且遮擋器移動至左側。A camera 1726 may be used to observe one or more eyes. In the experiments performed, the right eye was the test eye 1702 and the control eye 1704 was the left eye. While Figure 8 shows the left eye as the test eye and the right eye as the control eye, this can easily be changed by coupling an achromat and a display to the right eye and providing a shutter to the left eye. For example, the position of a display with a pattern of stimuli and an achromatic lens can be placed on the right, and the shutter moved to the left.

成功地進行一臨床研究,其中在受試者上量測暫態改變。此等受試者係近視的且被診斷為具有逐漸加深之近視。可接著在一每日基礎上向其等提供類似主動刺激達大約每天(每週4至6天)之一類似週期以在四個月之一週期內量測軸向長度及屈光之暫態改變。一個月對全部受試者量測軸向長度及屈光一次。量測係單眼的,使用對側眼睛作為對照。據發現,受試者經歷測試眼睛相對於對照眼睛之一長期(4個月)屈光改變,及測試眼睛相對於對照眼睛之軸向長度之一長期改變。此相關性係在定義應用之長期刺激之後在關於測試眼睛之屈光狀態之暫態資料與長期(4個月)資料之間建立的。A clinical study was successfully conducted in which transient changes were measured in subjects. These subjects were myopic and diagnosed with progressive myopia. They can then be provided with similar active stimuli on a daily basis for a similar period of approximately daily (4-6 days per week) to measure transients in axial length and refraction over a period of four months Change. Axial length and refraction were measured once a month for all subjects. Measurements were monocular, using the contralateral eye as a control. It was found that the subjects experienced a long-term (4 months) change in refraction of the test eye relative to the control eye, and a long-term change in the axial length of the test eye relative to the control eye. This correlation was established between transient and long-term (4 months) data on the refractive state of the test eye after defining the applied long-term stimulus.

光學測試設備包括一不可佩戴擴增實境(「ANWAR」)設備,如本文中(例如)參考圖7至圖8B及圖17描述。設備包括用於兩個眼睛之2個部分反射鏡、一消色差鏡片(像差最小化鏡片)、一觀察孔隙、一腮托及一頭托以用於遞送精確光學會聚之目的。腮托及頭托經設計以對於使用可替換無乳膠敷料之受試者舒適的。周邊近視失焦之刺激物由將一影像投射至一像差最小化消色差鏡片(其折射刺激物影像)上之一監視器提供,且接著由鏡反射至周邊視網膜中。刺激物自7.5°之視網膜偏心率開始,向外移動以使右眼之周邊視場部分失焦,如本文中(例如)參考圖8B描述。左眼用作全部條件之一對照且不接收對經投射光刺激物之曝露。中心15°直徑之清晰觀察影像來自一電視螢幕,該螢幕用作一中心目標且根據亮度被調整。兩個部分反射鏡在兩個眼睛中類似地反射來自電視螢幕之光。存在15°中心目標區(TV監視器)周圍無任何圖案之一經均勻照明灰色海報。海報用作對照及測試眼睛兩者之視場中超過15°直徑之一額外背景刺激物。The optical test equipment includes a non-wearable augmented reality ("ANWAR") device, as described herein, for example, with reference to FIGS. 7-8B and FIG. 17 . The equipment includes 2 partial reflective mirrors for both eyes, an achromatic lens (aberration minimizing lens), a viewing aperture, a chin rest and a head rest for the purpose of delivering precise optical convergence. The chin rest and head rest are designed to be comfortable for subjects using alternative latex-free dressings. The stimulus for peripheral myopic defocus is provided by a monitor that projects an image onto an aberration-minimizing achromat (which refracts the stimulus image) and is then reflected by the mirror into the peripheral retina. Starting at a retinal eccentricity of 7.5°, the stimuli moved outward to partially defocus the peripheral field of the right eye, as described herein, for example, with reference to Figure 8B. The left eye served as one of the controls for all conditions and received no exposure to the projected light stimulus. The clear viewing image of the central 15° diameter comes from a television screen which is used as a central target and adjusted for brightness. The two partial reflectors similarly reflect light from the TV screen in both eyes. There is one uniformly illuminated gray poster without any pattern around a 15° central target area (TV monitor). The poster was used as an additional background stimulus over 15° diameter in the field of view of both control and test eyes.

刺激物實質上如參考圖7至圖8b描述般配置且使用此雙目裝置投射於周邊。使用一黑白刺激物以產生高對比度影像。另外,系統容許控制1)經投射近視失焦LED燈、2)電視監視器及3)灰色海報背景之亮度及照度。相較於灰色海報背景之照度,經投射失焦刺激物之測試照度條件大大約20倍。The stimuli were configured substantially as described with reference to Figures 7-8b and projected peripherally using the binocular device. A black and white stimulus was used to generate high contrast images. In addition, the system allows to control the brightness and illuminance of 1) projected myopic out-of-focus LED lights, 2) TV monitor and 3) gray poster background. The test illuminance conditions for projected out-of-focus stimuli were approximately 20 times greater than the illuminance of the gray poster background.

使用一市售WAM雙目開放場自動屈光計及一市售Nidek自動屈光計量測屈光。使用一Haag-Streit Lenstar APS光學相干斷層攝影量測系統量測軸向長度及脈絡膜厚度。Refraction was measured using a commercially available WAM binocular open-field automatic refractometer and a commercially available Nidek automatic refractometer. Axial length and choroidal thickness were measured using a Haag-Streit Lenstar APS optical coherence tomography measurement system.

失焦作業階段期間之受控條件之描述Description of controlled conditions during out-of-focus operations phase

由於脈絡膜係可回應於微小移動之視網膜之一極其血管化層,故在失焦作業階段及資料收集期間,受試者之頭及身體移動受限制。Because the choroid is an extremely vascularized layer of the retina that responds to small movements, subject's head and body movements were restricted during the out-of-focus session and during data collection.

為了最小化並捕獲脈絡膜隨著時間之自然、晝夜及固有可變性,對兩個眼睛進行完全距離矯正。僅將經投射周邊失焦應用至右眼且左眼用作一對照。在測試週期期間,將環境光位準維持在中等明視(自然)位準下。受試者舒適地坐著,並被指示使用大約4公尺遠之一彩色監視器顯示器觀看電視。在失焦作業階段期間,受試者將其等之身體移動保持至一最小值。To minimize and capture the natural, diurnal, and inherent variability of the choroid over time, both eyes were fully distance corrected. Only projected peripheral defocus was applied to the right eye and the left eye was used as a control. During the test period, the ambient light level was maintained at a medium photopic (natural) level. Subject is seated comfortably and instructed to watch television on a color monitor approximately 4 meters away. During the out-of-focus task session, subjects kept their body movement to a minimum.

統計方法statistical methods

在各回診時自各眼睛獲得之球面等效屈光不正及軸向長度之重複量測之均值用於判定主要結果量測(在下一章節中概述)。使用一般化線性模型化以評估累計差異與研究回診之間的關係。模型經建構以假定與處於零之y節距之一線性關係(例如,在基線回診時無治療差異)。此方法容許控制自同一研究受試者獲得之量測之間的固有相關性。初始模型調查各個別受試者與一最終模型內之線性關係以在一個模型中使用全部受試者判定複合效應。The mean of replicate measurements of spherical equivalent refractive error and axial length obtained from each eye at each visit was used to determine the primary outcome measure (summarized in the next section). Generalized linear modeling was used to assess the relationship between cumulative differences and study return. Models were constructed to assume a linear relationship with a y-pitch at zero (eg, no treatment difference at baseline visit). This method allows controlling for inherent correlations between measurements obtained from the same research subject. The initial model investigates the linear relationship within each individual subject and a final model to determine composite effects using all subjects in one model.

結果result

表1:經登記受試者使用ANWAR光學設備進行失焦作業階段之後之人口學特性及治療後睫狀肌麻痹屈光端點(n=7)。 受試者 # 4 62 63 66 67 69 70 年齡 24 21 29 32 24 28 22 性別 F M F F F F M 加深 失焦作業階段 56 77 79 79 80 77 76 失焦 之總小時數 84 115.5 118.5 118.5 120 115.5 114 球體 (OD) -1.25 -2 -1.25 -1.5 -5.25 -10.25 -5 圓柱體 (OD) -0.25 0 -0.75 0 -0.5 0 -1.25 球面等效 (OD) -1.375 -2 -1.625 -1.5 -5.5 -10.25 -5.625 球體 (OS) -1.25 -1.75 -1.5 -1.5 -3.75 -7.5 -4.75 圓柱體 (OS) 0 0 -1 0 -0.5 0 -0.5 球面等效 (OS) -1.25 -1.75 -2 -1.5 -4 -7.5 -5 Table 1: Demographic characteristics and post-treatment cycloplegic refractive endpoints of enrolled subjects after the out-of-focus working session with ANWAR optics (n=7). subject # 4 62 63 66 67 69 70 age twenty four twenty one 29 32 twenty four 28 twenty two gender f m f f f f m deepen yes no yes yes yes yes yes out of focus phase 56 77 79 79 80 77 76 Total hours out of focus 84 115.5 118.5 118.5 120 115.5 114 Sphere (OD) -1.25 -2 -1.25 -1.5 -5.25 -10.25 -5 Cylinder (OD) -0.25 0 -0.75 0 -0.5 0 -1.25 Spherical Equivalent (OD) -1.375 -2 -1.625 -1.5 -5.5 -10.25 -5.625 Sphere (OS) -1.25 -1.75 -1.5 -1.5 -3.75 -7.5 -4.75 Cylinder (OS) 0 0 -1 0 -0.5 0 -0.5 Spherical Equivalent (OS) -1.25 -1.75 -2 -1.5 -4 -7.5 -5

為了理解統計方法,吾人可回顧經調整治療效應及累計經調整治療效應之計算。若吾人假定治療(光曝露)僅給予右眼,則在對照眼睛中看到之任何改變將係歸因於該眼睛中之自然波動或可能近視加深。基線回診之任何眼睛間差異係屈光參差之一結果且在檢查治療效應使必須考量。因此,回診i (i=2、3或4個月)時之治療效應係該回診時之經觀察眼睛間差異減去基線回診時之屈光參差之位準。作為一實例,下文之表含有ID 66在每次研究回診時之均值球面等效屈光不正。在基線處,測試眼睛稍微更近視,其中一眼睛間差異為-0.096 D。此在第1月回診中被反轉,其中測試眼睛現在近視少0.428 D。因此,經調整差異係0.428 D-(-0.096 D) = 0.524 D。此等計算在各研究回診時繼續。第2月之累計差異被定義為第1月之累積差異加上第2月之經調整差異。 研究 回診 SPHEQ (OD 測試眼睛 ) SPHEQ (OS 對照眼睛 ) 眼睛 間差異 調整差異 累計 經調整差異 基線 -0.9185 -0.8230 -0.096 0 0 第1月 -0.85 -1.278 0.428 0.524 0.524 第2月 -0.8855 -0.9455 0.060 0.156 0.6795 第3月 -1.0965 -1.1935 0.097 0.193 0.872 第4月 -0.80 -0.6595 -0.141 -0.045 0.827 To understand the statistical method, one can review the calculation of the adjusted treatment effect and the cumulative adjusted treatment effect. If one assumes that the treatment (light exposure) is given to the right eye only, then any changes seen in the control eye would be due to natural fluctuations in that eye or possible progression of myopia. Any intereye differences at baseline visits are a result of anisometropia and must be considered when examining treatment effects. Thus, the treatment effect at visit i (i = 2, 3, or 4 months) is the magnitude of the observed inter-eye difference at that visit minus the anisometropia at the baseline visit. As an example, the table below contains the mean spherical equivalent refractive error for ID 66 at each study visit. At baseline, the test eyes were slightly more nearsighted, with an inter-eye difference of -0.096 D. This was reversed at the 1 month follow-up where the test eye was now 0.428 D less myopic. Therefore, the adjusted difference is 0.428 D - (-0.096 D) = 0.524 D. These calculations continued at each study visit. The cumulative variance for month 2 is defined as the cumulative variance for month 1 plus the adjusted variance for month 2. Research return visit SPHEQ (OD ; test eye ) SPHEQ (OS ; control eyes ) difference between eyes adjusted variance Cumulative Adjusted Difference baseline -0.9185 -0.8230 -0.096 0 0 first month -0.85 -1.278 0.428 0.524 0.524 February -0.8855 -0.9455 0.060 0.156 0.6795 March -1.0965 -1.1935 0.097 0.193 0.872 April -0.80 -0.6595 -0.141 -0.045 0.827

表2:ID 66在各研究回診時之球面等效屈光不正以及經調整治療效應及累計經調整治療效應。Table 2: The spherical equivalent refractive error, adjusted treatment effect and cumulative adjusted treatment effect of ID 66 at each study visit.

此方法考量在各回診期間看見之小改變且不偏向任何方向(例如,正或負改變)。鑑於經呈現刺激物之軛效應之相對未知性質,一趨勢分析而非一個別資料點提供關於治療是否有效之更佳指導。相對於百分比改變,選擇累計效應,此係因為百分比改變可導致非常誤導的發現。另外,累計改變通常用於表達治療效果。This method takes into account small changes seen between visits and is not biased in any direction (eg, positive or negative changes). Given the relatively unknown nature of the demonstrated yoke effect of stimuli, a trend analysis rather than an individual data point provides a better guide as to whether a treatment is effective. Cumulative effects were chosen as opposed to percent changes because percent changes can lead to very misleading findings. Additionally, cumulative changes are often used to express treatment effects.

分析 1 :在直視凝視中自 WAM 獲得之球面等效屈光不正 ID 斜率 P a 04 -0.015 .049 62 0.055 .013 63 0.216 .004 66 0.195 <.001 67 -0.117 .004 69 -0.027 .079 70 0.043 .007 斜率大於零之來自迴歸模型測試假設之 aP值 Analysis 1 : Spherical Equivalent Refractive Error from WAM in Direct Gaze ID slope P valuea _ 04 -0.015 .049 62 0.055 .013 63 0.216 .004 66 0.195 <.001 67 -0.117 .004 69 -0.027 .079 70 0.043 .007 a P-value from a regression model testing hypothesis with a slope greater than zero

表3:與累計經調整SPHEQ及研究月相關之斜率估計(按ID)。Table 3: Slope estimates (by ID) associated with cumulative adjusted SPHEQ and study month.

如表3中展示,7個研究受試者中之4者存在與累計效應及研究月相關之一正且統計上顯著斜率。此將暗示,持續治療導致此等受試者之測試眼睛之近視位準之一降低。在一線性模型中使用全部受試者,經估計治療效應每月治療改良0.068 D (95% CI:0.011至0.125;p = .011)。亦即,使用各月之治療,相較於對照眼睛,測試眼睛變得近視少0.068 D。鑑於與生物資料相關聯之高可變性,模型R 2在14.9%處可接受。使用經估計斜率,在12個月之後之經預測治療效應將係0.816 D,其具有真實效應落在0.132 D至1.5 D之間隔內之95%之可信度。此等計算假定自第5至第12月之與在第1至第4月中觀察到之相同之改良型樣。 As shown in Table 3, 4 of 7 study subjects had a positive and statistically significant slope associated with the cumulative effect and study month. This would suggest that continued treatment resulted in a reduction in the level of myopia in the test eyes of these subjects. Using all subjects in a linear model, the estimated treatment effect was 0.068 D of treatment improvement per month (95% CI: 0.011 to 0.125; p = .011). That is, with each month of treatment, the test eye became 0.068 D less myopic than the control eye. Given the high variability associated with biological data, model R 2 was acceptable at 14.9%. Using the estimated slope, the predicted treatment effect after 12 months would be 0.816 D with 95% confidence that the true effect falls within the interval of 0.132 D to 1.5 D. These calculations assume the same improvement pattern from months 5 to 12 as observed in months 1 to 4.

分析analyze 22 :在直視凝視中自: in direct gaze NidekNidek 獲得之球面等效屈光不正acquired spherical equivalent refractive error IDID 斜率slope PP value aa 04 04 -0.223 -0.223 <.001 <.001 62 62 0.078 0.078 .004 .004 63 63 -0.170 -0.170 <.001 <.001 66 66 0.046 0.046 .029 .029 67 67 0.142 0.142 <.001 <.001 69 69 0.748 0.748 <.001 <.001 70 70 0.205 0.205 0.001 0.001

斜率大於零之來自迴歸模型測試假設之 aP值 a P-value from a regression model testing hypothesis with a slope greater than zero

表4:與累計經調整球面等效(「SPHEQ」)及研究月相關之斜率估計(按ID)。Table 4: Slope Estimates (by ID) Associated with Cumulative Adjusted Spherical Equivalent ("SPHEQ") and Study Month.

如表4中展示,7個研究受試者中之5者存在與累計效應及研究月相關之一正且統計上顯著斜率。此將暗示,持續治療導致此等受試者之測試眼睛之近視位準之一降低。在一線性模型中使用全部受試者,經估計治療效應每月治療改良0.118 D (95% CI:0.014至0.223;p = .014)。亦即,使用各月之治療,相較於對照眼睛,測試眼睛變得近視少0.118 D。鑑於與生物資料相關聯之高可變性,模型R 2在13.7%處可接受。使用經估計斜率,在12個月之後之經預測治療效應將係1.42 D,其具有真實效應落在0.166 D至2.67 D之間隔內之95%之可信度。此等計算假定自第5至第12月之與在第1至第4月中觀察到之相同之改良型樣。 As shown in Table 4, 5 of 7 study subjects had a positive and statistically significant slope associated with the cumulative effect and study month. This would suggest that continued treatment resulted in a reduction in the level of myopia in the test eyes of these subjects. Using all subjects in a linear model, the estimated treatment effect was 0.118 D of treatment improvement per month (95% CI: 0.014 to 0.223; p = .014). That is, with each month of treatment, the test eye became 0.118 D less myopic than the control eye. Given the high variability associated with biological data, model R 2 was acceptable at 13.7%. Using the estimated slope, the predicted treatment effect after 12 months would be 1.42 D with 95% confidence that the true effect falls within the interval of 0.166 D to 2.67 D. These calculations assume the same improvement pattern from months 5 to 12 as observed in months 1 to 4.

在來自球面等效屈光不正之WAM及Nidek量測之經估計斜率值中存在差異。針對ID 63,WAM量測展示每月之一0.216 D改良(測試眼睛更少近視),而Nidek量測展示每月之一0.170降低(測試眼睛更近視)。在兩種例項中,斜率估計顯著不同於零。雖然ID 69顯示使用來自Nidek之量測之大改良(斜率= +0.748 D),但此相同參與者之WAM量測展示一非顯著負面治療效果(斜率= -0.027)。來自使用Nidek資料值(0.118)時之重複量測分析之複合斜率估計係在WAM資料中觀察到之接近兩倍(0.068)。此差異最可能與ID 69之經觀察改變相關。There was a difference in the estimated slope values from the WAM and Nidek measurements of spherical equivalent refractive error. For ID 63, the WAM measure showed a 0.216 D improvement per month (the test eye was less myopic), while the Nidek measure showed a 0.170 decrease per month (the test eye was more myopic). In both cases, the slope estimates differ significantly from zero. While ID 69 showed a large improvement using the measure from Nidek (slope=+0.748 D), the WAM measure for this same participant showed a non-significant negative treatment effect (slope=-0.027). The composite slope estimate from the repeated measures analysis when using the Nidek data value (0.118) was nearly twice that observed in the WAM data (0.068). This difference is most likely related to the observed change in ID 69.

結果指示在使用WAM或Nidek以量測屈光不正時之類似累計治療效應。與本發明相關之工作表明,相較於如同WAM之開放場自動屈光計,Nidek自動屈光計儀器持續產生更多負量測。此在吾人之資料檔案中被確認,此係因為大多數儀器間差異偏向於來自Nidek之一更負量測。另外,對於自測試眼睛獲得之量測,儀器間差異更大(Nidek更近視)。此因素可解釋何為相較於WAM,使用Nidek看見之端點相對更大。然而,吾人觀察到,趨勢中之相同極性展示使用運用兩種不同儀器之治療對屈光端點之一些效應,此係一顯著發現。Results indicated similar cumulative treatment effects when using WAM or Nidek to measure refractive error. Work related to the present invention showed that Nidek autorefractometer instruments consistently produced more negative measurements than open field autorefractometers like WAM. This is confirmed in our data files because most of the inter-instrument variance is biased towards one of the more negative measurements from Nidek. Also, for the measurements obtained from the test eyes, there is greater inter-instrument variability (Nidek is more nearsighted). This factor may explain why the endpoints seen with Nidek are relatively larger compared to WAM. However, we observed that the same polarity in the trends showed some effect on the refractive endpoints using treatment with two different instruments, which is a significant finding.

分析analyze 33 :直視凝視中之軸向長度: Axial length in direct gaze IDID 斜率slope PP value aa 04 04 12.733 12.733 .005 .005 62 62 -8.337 -8.337 <.001 <.001 63 63 -8.257 -8.257 .008 .008 66 66 -1.703 -1.703 .015 .015 67 67 4.413 4.413 .004 .004 69 69 16.373 16.373 .003 .003 70 70 27.130 27.130 <.001 <.001

斜率大於零之來自迴歸模型測試假設之 aP值 a P-value from a regression model testing hypothesis with a slope greater than zero

表5:與累計經調整軸向長度(微米)及研究月相關之斜率估計(按ID)。Table 5: Slope estimates (by ID) associated with cumulative adjusted axial length (microns) and study months.

如在球面等效屈光不正中,大多數個別斜率估計統計上顯著且係正的(7個受試者之4者,表5)。在一線性模型中使用全部受試者,經估計治療效應每月之治療改良6.051微米(95% CI:1.500至10.604微米;p = .006)。亦即,使用各月之治療,相較於對照眼睛,測試眼睛變得短6.051微米。鑑於與生物資料相關聯之高可變性,模型R 2在17.9%處可接受。使用經估計斜率,在12個月之後之經預測治療效應將係72.606微米,其具有真實效應落在18.0至127.25微米之間隔內之95%之可信度。此等計算假定自第5至第12月之與在第1至第4月中觀察到之相同之改良型樣。 As in spherical equivalent refractive error, most individual slope estimates were statistically significant and positive (4 of 7 subjects, Table 5). Using all subjects in a linear model, the estimated treatment effect was 6.051 microns of treatment improvement per month (95% CI: 1.500 to 10.604 microns; p = .006). That is, with each month of treatment, the test eye became 6.051 microns shorter compared to the control eye. Given the high variability associated with biological data, model R 2 was acceptable at 17.9%. Using the estimated slope, the predicted treatment effect after 12 months would be 72.606 microns with 95% confidence that the true effect falls within the interval of 18.0 to 127.25 microns. These calculations assume the same improvement pattern from months 5 to 12 as observed in months 1 to 4.

針對各參與者觀察到之軸向長度之改變型樣將似乎與自Nidek獲得之資料相關,惟ID 4除外。雖然此參與者展示其眼睛在4個月之治療週期期間之顯著縮短,但來自Nidek之資料指示一負面治療效應。The pattern of change in axial length observed for each participant would appear to correlate with data obtained from Nidek, with the exception of ID 4. Although this participant demonstrated a significant shortening of his eyes during the 4-month treatment cycle, data from Nidek indicated a negative treatment effect.

實驗計算Experimental calculation

基於WAM開放場自動屈光計結果,經估計治療效應每月之治療改良0.068 D (95% CI: 0.011至0.125;p = .011)。Based on WAM open-field autorefractometer results, the estimated treatment effect was 0.068 D of treatment improvement per month (95% CI: 0.011 to 0.125; p = .011).

基於NIDEK自動屈光計結果,經估計治療效應每月之治療改良0.118 D (95% CI:0.014至0.223;p = .014)。Based on NIDEK autorefractor results, the estimated treatment effect was 0.118 D of treatment improvement per month (95% CI: 0.014 to 0.223; p = .014).

針對由Lenstar APS量測之軸向長度,經估計治療效應每月之治療改良6.051微米(95% CI:1.500至10.604微米;p = .006)。For axial length as measured by Lenstar APS, the estimated treatment effect was a treatment improvement of 6.051 microns per month (95% CI: 1.500 to 10.604 microns; p = .006).

治療對屈光不正改變之經估計年度效應超過預期近視加深,如由Zhou等人報告。在該研究中,屈光之年度加深率係0.43 D。參見Zhou WJ、Zhang YY、Li H、Wu YF、Xu J、Lv S、Li G、Liu SC、Song SF之Five-year progression of refractive errors and incidence of myopia in school-aged children in western China, J Epidemiol,2016年7月5日;26(7):386-95,Epub 2016年2月13日。 The estimated annual effect of treatment on change in refractive error exceeded expected myopia progression, as reported by Zhou et al. In this study, the annual deepening rate of refraction was 0.43 D. See Zhou WJ, Zhang YY, Li H, Wu YF, Xu J, Lv S, Li G, Liu SC, Song SF Five-year progression of reactive errors and incidence of myopia in school-aged children in western China, J Epidemiol , 2016 Jul 5;26(7):386-95, Epub 2016 Feb 13.

本實驗研究之目的係判定使用如本文中描述之裝置對軸向長度及屈光之暫態改變是否將導致長期及可能永久改變。研究展示,治療效應持續至少4個月,且此外在至少一些例項中係統計上顯著的。鑑於相對小數目個受試者(n=7),相較於其他人之相關研究之非常短治療時間(5至7個小時/週)及短研究持續時間(4個月),此係非預期的。相對於受試者間比較,使用效應之受試者內估計緩解大受試者間可變性之影響。使用「累積經調整差異」之統計分析方法提供治療效應之一表示。The purpose of this experimental study was to determine whether transient changes to axial length and refraction using a device as described herein would result in long-term and possibly permanent changes. The study demonstrated that the treatment effect persisted for at least 4 months and was also statistically significant in at least some instances. Given the relatively small number of subjects (n=7), this is an important expected. Using within-subject estimates of effects mitigates the effect of large between-subject variability relative to between-subject comparisons. A statistical analysis method using the "cumulative adjusted difference" provides an indication of the treatment effect.

一般技術者將認知,可根據本發明進行額外研究,且可如本文中描述般調整治療參數以提供經改良治療結果。例如,可進行研究以量測軸向長度或屈光資料之一或多者在刺激及量測時間框之任何適當持續時間內的一暫態改變,諸如在治療之同一天在治療之前及之後量測眼睛。又,相較於本文中描述之臨床測試,受試者之數目可增加。Those of ordinary skill will recognize that additional studies can be performed in accordance with the present invention and that treatment parameters can be adjusted as described herein to provide improved treatment outcomes. For example, studies may be conducted to measure a transient change in one or more of axial length or refraction data over any suitable duration of stimulus and measurement time frame, such as before and after treatment on the same day as treatment Measure the eyes. Also, the number of subjects can be increased compared to the clinical tests described herein.

圖18展示減少一眼睛之屈光不正之一加深之一方法1800。Figure 18 shows a method 1800 of reducing the deepening of the refractive error of an eye.

在步驟1805,將眼睛診斷為具有一加深屈光不正。在一些實施例中,將眼睛診斷為具有每年在自0.25 D至1.5 D之一範圍內之屈光不正(諸如近視)之一加深且其中近視之加深減少至少0.25 D。在一些實施例中,屈光不正(諸如近視)之加深每年大於0.6 D,且其中近視之加深每年減少在自0.6 D至0.9 D之一範圍內之一量。At step 1805, the eye is diagnosed as having a deepening refractive error. In some embodiments, the eye is diagnosed as having a progression of a refractive error such as myopia in a range from 0.25 D to 1.5 D per year and wherein the progression of myopia decreases by at least 0.25 D. In some embodiments, the progression of the refractive error, such as myopia, is greater than 0.6 D per year, and wherein the progression of myopia decreases by an amount in the range from 0.6 D to 0.9 D per year.

在步驟1810處,在一第一時間量測眼睛之一光學性質。At step 1810, an optical property of the eye is measured at a first time.

在步驟1820處,向眼睛提供一第一光治療。At step 1820, a first light therapy is provided to the eye.

在步驟1830處,在一第二時間量測眼睛之光學性質。At step 1830, optical properties of the eye are measured at a second time.

光學性質可包括如本文中描述之任何適合光學性質。在一些實施例中,光學性質包括屈光資料、軸向長度資料或脈絡膜厚度資料之一或多者。在一些實施例中,光學性質包括一軸向長度、一雙目量測軸向長度、一屈光、一顯性屈光、一睫狀肌麻痹屈光、一自動屈光、一雙目自動屈光、一開放場自動屈光、一雙目開放場自動屈光、一掃描狹縫自動屈光、一波前圖、一波前係數、一球體係數、一圓柱體係數、一彗形像差、一球面像差或一三葉之一或多者。在一些實施例中,光學性質包括屈光資料且其中第一時間與第二時間之間的屈光資料的一改變對應於眼睛之軸向長度的一改變。在一些實施例中,回應於屈光資料之改變而判定軸向長度之改變。Optical properties may include any suitable optical properties as described herein. In some embodiments, the optical properties include one or more of refractive data, axial length data, or choroidal thickness data. In some embodiments, optical properties include an axial length, a binocular measured axial length, a refraction, a dominant refraction, a cycloplegic refraction, an automatic refraction, a binocular automatic Refraction, an open-field automatic refraction, a binocular open-field automatic refraction, a scanning slit automatic refraction, a wavefront map, a wavefront coefficient, a sphere coefficient, a cylinder coefficient, and a coma image one or more of aberration, a spherical aberration, or a trilobe. In some embodiments, the optical property includes refractive data and wherein a change in refractive data between the first time and the second time corresponds to a change in axial length of the eye. In some embodiments, a change in axial length is determined in response to a change in refractive data.

可使用呈現給眼睛之一固定刺激物量測光學性質以量測屈光資料。在一些實施例中,眼睛曝露至一雙目刺激物以在第一時間及第二時間量測光學性質。Optical properties can be measured using a fixed stimulus presented to the eye to measure refractive data. In some embodiments, the eye is exposed to a binocular stimulus to measure an optical property at a first time and a second time.

在步驟1840處,產生第一時間至第二時間之眼睛之光學性質之一比較。在一些實施例中,比較包括第二時間與第一時間之經量測性質之間的一差異。At step 1840, a comparison of the optical properties of the eye from the first time to the second time is generated. In some embodiments, the comparison includes a difference between the measured property at the second time and the first time.

在一些實施例中,比較包括第二光學性質與第一光學性質之間的一差異,且回應於差異而調整第二治療。In some embodiments, the comparison includes a difference between the second optical property and the first optical property, and the second treatment is adjusted in response to the difference.

可以許多方式判定差異。在一些實施例中,差異包括第一時間與第二時間之間的眼睛之光學性質的一暫態改變。在一些實施例中,第一時間發生在一第一天,第一光治療發生在第一天之後之複數週內之複數天,且第二時間發生在複數週之後且第二光治療發生在第二時間之後。第一時間發生在一第一天,第一光治療發生在第一天之後之複數天,第二時間發生在第一光治療之複數天之最後一天,且第二光治療發生在複數天之最後一天之後之一第二天。在一些實施例中,第一時間發生在一第一天,第二時間發生在第一天,第一光治療發生在第一天且第二光治療發生在第一天之後之一第二天。Differences can be determined in a number of ways. In some embodiments, the difference includes a transient change in an optical property of the eye between the first time and the second time. In some embodiments, the first time occurs on a first day, the first light treatment occurs on a plurality of days within the plurality of weeks after the first day, and the second time occurs on a plurality of weeks later and the second light treatment occurs on After the second time. The first time occurs on a first day, the first light treatment occurs on the plurality of days after the first day, the second time occurs on the last day of the plurality of days after the first light treatment, and the second light treatment occurs on the plurality of days One day after the last day. In some embodiments, the first time occurs on a first day, the second time occurs on the first day, the first light treatment occurs on the first day and the second light treatment occurs on a second day after the first day .

在步驟1850處,回應於比較而組態一第二光治療。At step 1850, a second light treatment is configured in response to the comparison.

第一及第二光治療可以如本文中描述之許多方式經組態。在一些實施例中,第一光治療將一第一影像投射至視網膜前方(或後方)之一焦點且第二光治療將一第二影像投射至視網膜前方(或後方)之一焦點。在一些實施例中,第一影像被聚焦於視網膜前方(或後方)之一第一距離處且第二影像被聚焦於視網膜前方(或後方)之一第二距離處,第一距離不同於第二距離。The first and second light treatments can be configured in a number of ways as described herein. In some embodiments, the first light therapy projects a first image to a focus in front (or behind) the retina and the second light therapy projects a second image to a focus in front (or behind) the retina. In some embodiments, the first image is focused at a first distance in front of (or behind) the retina and the second image is focused at a second distance in front of (or behind) the retina, the first distance being different from the first distance Two distances.

第一及第二影像可使用如本文中描述之任何適合光學結構聚焦。在一些實施例中,使用包括用於將第一影像聚焦於視網膜上之一第一清晰中心區及用於將第一影像聚焦於視網膜前方之一第一外部區之一第一鏡片投射第一影像,且使用包括用於將第二影像聚焦於視網膜上之一第二清晰區及用於將第二影像聚焦於視網膜前方之一第二外部區之一第二鏡片投射第二影像。The first and second images can be focused using any suitable optical structure as described herein. In some embodiments, the first lens is projected using a first lens comprising a first clear central region for focusing the first image on the retina and a first outer region for focusing the first image in front of the retina. The image is projected using a second lens including a second clear zone for focusing the second image on the retina and a second outer zone for focusing the second image in front of the retina.

第一及第二影像可包括如本文中描述之任何適合影像。在一些實施例中,第一影像及第二影像各包括透過鏡片觀察之一物件之影像。The first and second images may include any suitable images as described herein. In some embodiments, the first image and the second image each include an image of an object viewed through the lens.

在一些實施例中,第一外部區及第二外部區包括一非球面輪廓、複數個小透鏡或具有經增加光學屈光度及經減小光學屈光度之交替環形區之一或多者。In some embodiments, the first outer zone and the second outer zone include one or more of an aspheric profile, a plurality of lenslets, or alternating annular zones of increased and decreased optical power.

在一些實施例中,第一鏡片與第二鏡片因下列之一或多者而不同:以第一外部區之一第一光學屈光度與第二光學區之一第二光學屈光度之間的一差異;第一清晰區與第二清晰區之一直徑之間的一差異;第一外部區與第二外部區之一面積之間的一差異;第一清晰區之一第一面積對第一外部區之一第一面積之一第一比率與第二清晰區之一第二面積對第二外部區之一第二面積之一第二比率之間的一差異;第一外部區之小透鏡之一第一數目與第二外部區之小透鏡之一第二數目之間的一差異;第一外部區之第一複數個小透鏡之一第一光學屈光度與一第二外部區之第二複數個小透鏡之一第二光學屈光度之間的一差異;用於將第一影像提供至視網膜前方之焦點之第一外部區之一第一區域之一第一百分比與用於將第二影像提供至視網膜前方之焦點之第二外部區之一第二區域之一第二百分比之間的一差異。In some embodiments, the first lens and the second lens differ by one or more of: a difference between a first optical power of the first outer zone and a second optical power of the second optical zone ; a difference between a diameter of a first clear zone and a diameter of a second clear zone; a difference between an area of a first outer zone and a second outer zone; a first area of a first clear zone versus a first outer A difference between a first ratio of a first area of a first area and a second ratio of a second area of a second clear area to a second area of a second outer area; the ratio of the lenslets of the first outer area A difference between a first number and a second number of lenslets of the second outer zone; a first optical power of the first plurality of lenslets of the first outer zone and a second complex number of the second outer zone A difference between a second optical power of a lenslet; a first percentage of a first area of a first outer zone for providing a first image to the focal point in front of the retina and a first percentage for providing a second The image provides a difference between a second percentage of a second area of a second outer region of focus to the front of the retina.

在一些實施例中,第一影像以相對於眼睛之一光軸之一第一角度被聚焦且第二影像以相對於眼睛之光軸之一第二角度遠離中央凹被聚焦。第一角度及第二角度之各者可在自5度至35度之一範圍內且視情況在自約15度至35度之一範圍內。在一些實施例中,回應於比較而將第二角度調整至不同於第一角度的一角度。In some embodiments, the first image is focused at a first angle relative to an optical axis of the eye and the second image is focused away from the fovea at a second angle relative to the optical axis of the eye. Each of the first and second angles may be within a range of from 5 degrees to 35 degrees, and optionally within a range of from about 15 degrees to 35 degrees. In some embodiments, the second angle is adjusted to an angle different from the first angle in response to the comparison.

刺激物之失焦之量可包括如本文中描述之聚焦之任何適合量且可聚焦於視網膜前方或後方。在一些實施例中,第一影像被聚焦於視網膜前方達在自3 D至10 D之一範圍內之一第一量且第二影像被聚焦於視網膜前方達在自3 D至10 D之一範圍內且視情況在自4.5 D至8 D之範圍內之一第二量。在一些實施例中,回應於比較而將第二量調整至不同於第一量之一量。The amount of out-of-focus of the stimulus can include any suitable amount of focus as described herein and can be focused in front of or behind the retina. In some embodiments, the first image is focused in front of the retina by a first amount in a range from 3D to 10D and the second image is focused in front of the retina by a range from 3D to 10D A second amount in the range and optionally in the range from 4.5 D to 8 D. In some embodiments, the second amount is adjusted to an amount different from the first amount in response to the comparison.

刺激物可以如本文中描述之任何適合方式經組態。在一些實施例中,第一光治療包括一第一光刺激物且第二光治療包括一第二刺激物,且第二光刺激物係回應於比較而經組態。第二光刺激物可回應於比較而以許多方式經組態且可不同於第一刺激物。在一些實施例中,第一光刺激物包括一位置、一大小、一空間頻率分佈、一強度或相對於一顯示器上之一背景之一強度之一或多者。第二光刺激物包括一位置、一大小、一空間頻率分佈、一強度或相對於一顯示器上之一背景之一強度之一第二一或多者,且第二光刺激物以位置、大小、空間頻率分佈、強度或相對於顯示器上之背景之強度之一或多者之一差異不同於第一光刺激物。Stimuli may be configured in any suitable manner as described herein. In some embodiments, the first light treatment includes a first light stimulus and the second light treatment includes a second light stimulus, and the second light stimulus is configured in response to the comparison. The second light stimulus can be configured in many ways and can be different from the first stimulus in response to the comparison. In some embodiments, the first optical stimulus includes one or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on a display. The second optical stimulus includes a position, a size, a spatial frequency distribution, an intensity, or a second one or more of an intensity relative to a background on a display, and the second optical stimulus is characterized by position, size A difference in one or more of , spatial frequency distribution, intensity, or intensity relative to a background on the display differs from the first optical stimulus.

在一些實施例中,第一影像包括一第一背景上之一第一刺激物且第二影像包括一第二刺激物及一第二背景。在一些實施例中,第一刺激物之一第一強度對第一刺激物之第一背景之一第一強度之一第一比率在自10至50之一範圍內,且第二刺激物對一第二背景之一第二強度之一第二比率在自10至50之一範圍內且視情況在自10至30之範圍內。在一些實施例中,回應於比較而將第二比率調整至不同於第一比率之一值。在一些實施例中,使用一顯示器將第一刺激物及第二刺激物投射至視網膜上。In some embodiments, the first image includes a first stimulus on a first background and the second image includes a second stimulus and a second background. In some embodiments, a first ratio of a first intensity of the first stimulus to a first intensity of the first background of the first stimulus is in a range from 10 to 50, and the second stimulus is to A second ratio of a second intensity of a second background is in a range from 10 to 50 and optionally in a range from 10 to 30. In some embodiments, the second ratio is adjusted to a value different from the first ratio in response to the comparison. In some embodiments, a display is used to project the first and second stimuli onto the retina.

在一些實施例中,刺激物之一強度與環境照明之一量相關。在一些實施例中,眼睛曝露至在聚焦第一影像時之一第一環境照明及在聚焦第二影像時之一第二環境照明。在一些實施例中,第一刺激物之一第一強度對第一環境照明之一第一比率在自1.5至10之一範圍內且其中第二刺激物之一第二強度對第二環境照明之一第二比率在自1.5至10之一範圍內且視情況在自2.5至5之範圍內。在一些實施例中,回應於比較而將第二比率調整至不同於第一比率之一值。In some embodiments, an intensity of one of the stimuli correlates to an amount of ambient lighting. In some embodiments, the eye is exposed to a first ambient illumination when focusing on the first image and a second ambient illumination while focusing on the second image. In some embodiments, a first ratio of a first intensity of the first stimulus to the first ambient lighting is in a range from 1.5 to 10 and wherein a second intensity of the second stimulus is to the second ambient lighting A second ratio is in a range from 1.5 to 10 and optionally in a range from 2.5 to 5. In some embodiments, the second ratio is adjusted to a value different from the first ratio in response to the comparison.

刺激物可包括可以如本文中描述之任何方式經組態之複數個刺激物。在一些實施例中,第一治療及第二治療各包括分佈於遠離眼睛之一中央凹定位之視網膜之複數個區域上方之複數個刺激物,複數個刺激物之各者成像於視網膜前方且在視網膜上模糊,其中複數個刺激物經配置以界定視網膜上之一治療區域。在一些實施例中,第一治療包括在視網膜之一第一百分比內之一第一治療區域且第二治療包括在視網膜之一第二百分比內之一第二治療區域且其中回應於比較而將第二治療區域調整至不同於第一治療區域之一量。在一些實施例中,第一治療區域包括視網膜之一總面積之一第一百分比且第二治療區域包括視網膜之總面積之一第二百分比且其中回應於比較而將第二百分比調整至不同於第一百分比之一量且視情況其中第一百分比及第二百分比在視網膜之總面積之自約15%至約65%之一範圍內。在一些實施例中,第一治療區域及第二治療區域包括環形區域,該等環形區域具有定位於該等環形區域外部之中央凹。A stimulus may include a plurality of stimuli that may be configured in any manner as described herein. In some embodiments, the first and second treatments each comprise a plurality of stimuli distributed over regions of the retina located away from a fovea of the eye, each of the plurality of stimuli imaged in front of the retina and in Blurring on the retina where the stimuli are configured to define a treatment area on the retina. In some embodiments, the first treatment includes a first treatment area within a first percentage of the retina and the second treatment includes a second treatment area within a second percentage of the retina and wherein the response In comparison, the second treatment area is adjusted to an amount different from the first treatment area. In some embodiments, the first treatment area comprises a first percentage of the total area of the retina and the second treatment area comprises a second percentage of the total area of the retina and wherein the second hundred The fraction is adjusted to an amount different from the first percentage and optionally wherein the first percentage and the second percentage range from about 15% to about 65% of the total area of the retina. In some embodiments, the first treatment area and the second treatment area comprise annular areas having a fovea positioned outside the annular areas.

第一刺激物及第二刺激物可包括任何適合波長且可如本文中描述般調整波長。在一些實施例中,第一治療包括對應於眼睛之錐體之一第一峰值靈敏度之光之一第一波長且第二治療包括對應於眼睛之錐體之一第二峰值靈敏度之光之一第二波長且視情況其中錐體之峰值靈敏度對應於在自約420 nm至約440 nm、自約534 nm至約545 nm或564至約580 nm之一範圍內之一波長下之光。在一些實施例中,第一峰值對應於一第一範圍且第二峰值對應於回應於比較而不同於第一範圍之一第二範圍。在一些實施例中,第一光治療包括波長之一第一分佈且第二光治療包括波長之一第二分佈,其中回應於比較,第二分佈不同於第一分佈。The first and second stimuli can comprise any suitable wavelength and the wavelength can be tuned as described herein. In some embodiments, the first treatment comprises a first wavelength of light corresponding to a first peak sensitivity of the cone of the eye and the second treatment comprises one of light corresponding to a second peak sensitivity of the cone of the eye The second wavelength and optionally wherein the peak sensitivity of the cone corresponds to light at a wavelength within a range of from about 420 nm to about 440 nm, from about 534 nm to about 545 nm, or 564 to about 580 nm. In some embodiments, the first peak corresponds to a first range and the second peak corresponds to a second range that differs from the first range in response to the comparison. In some embodiments, the first light treatment includes a first distribution of wavelengths and the second light treatment includes a second distribution of wavelengths, wherein the second distribution is different from the first distribution responsive to the comparison.

在一些實施例中,波長之第一分佈對應於一第一溫度且第二分佈對應於一第二溫度,且視情況其中第一溫度及第二溫度在自約凱氏5000度至約凱氏11,000度之一範圍內。In some embodiments, the first distribution of wavelengths corresponds to a first temperature and the second distribution corresponds to a second temperature, and optionally wherein the first temperature and the second temperature are between about 5000 Kelvin and about Within one range of 11,000 degrees.

在一些實施例中,第一影像或第二影像之一或多者經投射至眼睛中且像散之一量由一光學結構提供,如本文中描述。在一些實施例中,第一治療以一第一量之像散將一刺激物之一第一影像投射於視網膜前方且第二治療以一第二量之像散將一第二影像投射於視網膜前方。在一些實施例中,回應於比較,像散之第一量不同於像散之第二量。在一些實施例中,像散之第一量在自0.5 D至4 D之一第一範圍內且像散之第二量在自0.5 D至4 D之一第二範圍內。In some embodiments, one or more of the first image or the second image is projected into the eye and the amount of astigmatism is provided by an optical structure, as described herein. In some embodiments, the first treatment projects a first image of a stimulus with a first amount of astigmatism in front of the retina and the second treatment projects a second image with a second amount of astigmatism onto the retina ahead. In some embodiments, the first amount of astigmatism is different from the second amount of astigmatism responsive to the comparison. In some embodiments, the first amount of astigmatism is in a first range from 0.5D to 4D and the second amount of astigmatism is in a second range from 0.5D to 4D.

刺激物之強度可包括如本文中描述之任何適合強度。在一些實施例中,第一治療包括以一第一強度投射於視網膜前方之一第一刺激物且第二治療包括以一第二強度投射於視網膜前方之一第二刺激物。在一些實施例中,回應於比較,第二強度不同於第一強度。在一些實施例中,第一強度及第二強度各包括在1至1000托朗(Troland)之一範圍內之一亮度。在一些實施例中,第一強度及第二強度各包括在自100至50,000尼特(nit)之一範圍內或在自1至10,000尼特之一範圍內之一照度。The intensity of the stimulus may include any suitable intensity as described herein. In some embodiments, the first treatment includes projecting a first stimulus at a first intensity in front of the retina and the second treatment includes projecting a second stimulus at a second intensity in front of the retina. In some embodiments, responsive to the comparison, the second intensity is different from the first intensity. In some embodiments, the first intensity and the second intensity each comprise a brightness in a range of 1 to 1000 Troland. In some embodiments, the first intensity and the second intensity each comprise an illuminance in a range of from 100 to 50,000 nits or in a range of from 1 to 10,000 nits.

刺激物可包括如本文中描述之任何適合空間頻率性質。在一些實施例中,第一治療包括以一第一空間頻率分佈投射於視網膜前方之第一複數個刺激物且其中第二治療包括以一第二空間頻率分佈投射於視網膜前方之第二複數個刺激物。在一些實施例中,回應於比較,第二空間頻率分佈不同於第一空間頻率分佈。在一些實施例中,第一及第二複數個刺激物之各者包括一長度、邊緣及一强度輪廓分佈以產生如在視網膜前方或後方成像至眼睛中之在1X10 -1至2.5X10 1循環/度之一範圍中且視情況在自1X10 -1至1X10 1循環/度之一範圍內之空間頻率。在一些實施例中,如成像於眼睛中之第一及第二複數個刺激物之各者包括以自約1X10 -1至約2.5X10 1循環/度且視情況自1X10 -1至約5X10 0循環/度之一空間頻率範圍之空間頻率之一增加提供空間頻率振幅之一減小之一空間頻率分佈。在一些實施例中,空間頻率強度之減小針對任意單位之空間頻率振幅在自1/(空間頻率) 0.5至1/(空間頻率) 2之一範圍內且視情況針對任意單位之空間頻率振幅自1/(空間頻率)至1/(空間頻率) 2。在一些實施例中,空間頻率之範圍係自約3X10 -1至約1.0X10 1循環/度且視情況在自約3X10 -1至約2.0X10 0之一範圍內且進一步視情況自約3X10 -1至約1.0X10 0Stimuli may include any suitable spatial frequency properties as described herein. In some embodiments, the first treatment comprises a first plurality of stimuli projected in front of the retina with a first spatial frequency distribution and wherein the second treatment comprises a second plurality of stimuli projected in front of the retina with a second spatial frequency distribution. irritant. In some embodiments, responsive to the comparison, the second spatial frequency distribution is different from the first spatial frequency distribution. In some embodiments, each of the first and second plurality of stimuli includes a length, edge, and an intensity profile to produce a cycle between 1×10 −1 and 2.5×10 1 as imaged into the eye in front of or behind the retina Spatial frequency in a range of /degree and optionally in a range from 1×10 −1 to 1×10 1 cycles/degree. In some embodiments, each of the first and second plurality of stimuli as imaged in the eye comprises from about 1×10 −1 to about 2.5×10 1 cycles/degree, and optionally from 1×10 −1 to about 5×10 0 An increase in spatial frequency of a spatial frequency range of cycles/degree provides a spatial frequency distribution of a decrease in spatial frequency amplitude. In some embodiments, the reduction in spatial frequency intensity is in a range from 1/(spatial frequency) 0.5 to 1/(spatial frequency) 2 for arbitrary units of spatial frequency amplitude and optionally for arbitrary units of spatial frequency amplitude From 1/(spatial frequency) to 1/(spatial frequency) 2 . In some embodiments, the spatial frequency ranges from about 3×10 −1 to about 1.0×10 1 cycles/degree and optionally within a range from about 3×10 −1 to about 2.0×10 0 and further optionally from about 3×10 −1 1 to about 1.0X10 0 .

光刺激物可包括如本文中描述之任何適合刺激物且可包括一脈衝刺激物或一連續刺激物。在一些實施例中,第一光治療投射一第一脈衝刺激物之一第一影像且其中第二光治療投射一第二脈衝刺激物之一第二影像。在一些實施例中,第一脈衝刺激物包括一第一負載循環且第二脈衝刺激物包括一第二負載循環,回應於比較,第二負載循環不同於第一負載循環。在一些實施例中,第一脈衝刺激物包括一第一頻率且第二脈衝刺激物包括回應於比較而不同於第一頻率之一第二頻率。The light stimulus can include any suitable stimulus as described herein and can include a pulsed stimulus or a continuous stimulus. In some embodiments, the first light therapy projects a first image of a first pulsed stimulus and wherein the second light therapy projects a second image of a second pulsed stimulus. In some embodiments, the first pulse stimulus includes a first duty cycle and the second pulse stimulus includes a second duty cycle, the second duty cycle being different than the first duty cycle in response to the comparison. In some embodiments, the first pulsatile stimulus includes a first frequency and the second pulsatile stimulus includes a second frequency that is different from the first frequency in response to the comparison.

經投射刺激物之影像可投射於視網膜前方或後方,且可回應於比較而將位置自前方改變至後方或反之亦然。在一些實施例中,第一光治療將一第一刺激物之一第一影像投射至視網膜前方或後方之一第一位置,且第二光治療將一第二刺激物投射於視網膜前方或後方之一第二位置處。在一些實施例中,回應於比較,第二位置不同於第一位置。在一些實施例中,第一位置在視網膜之一第一側上且回應於比較,第二位置在視網膜之與第一側相對之一第二側上。The image of the projected stimulus can be projected either in front or behind the retina, and can change position from anterior to posterior or vice versa in response to the comparison. In some embodiments, the first phototherapy projects a first image of a first stimulus to a first location in front of or behind the retina, and the second phototherapy projects a second stimulus in front of or behind the retina One of the second positions. In some embodiments, responsive to the comparison, the second location is different than the first location. In some embodiments, the first location is on a first side of the retina and responsive to the comparison, the second location is on a second side of the retina opposite the first side.

在步驟1860處,回應於比較而向眼睛提供第二光治療。At step 1860, a second light therapy is provided to the eye in response to the comparison.

在一些實施例中,第一光治療包括第一光刺激物且第二光治療包括一第二光刺激物。In some embodiments, the first light therapy includes a first light stimulus and the second light therapy includes a second light stimulus.

第一及第二光治療可以如本文中描述之任何適合方式向眼睛提供。在一些實施例中,第一治療包括一第一天之一第一持續時間且第二治療包括一第二天之一第二持續時間,回應於比較,第二持續時間不同於第一持續時間。在一些實施例中,第一持續時間在自1小時至8小時之一範圍內且第二持續時間在自1小時至8小時之一範圍內且視情況在自1.5至3小時之範圍內。The first and second light treatments may be provided to the eye in any suitable manner as described herein. In some embodiments, the first treatment includes a first day for a first duration and the second treatment includes a second day for a second duration, the second duration being different from the first duration in response to the comparison . In some embodiments, the first duration is in the range of one from 1 hour to 8 hours and the second duration is in the range of one from 1 hour to 8 hours and optionally in the range of from 1.5 to 3 hours.

在一些實施例中,第一治療發生在一天之一第一本地時間且第二光治療發生在回應於比較而不同於一天之第一時間之一天之一第二時間。第一治療可在第一本地時間發生達一第一持續時間且第二治療可在第二本地時間發生達一第二持續時間,回應於比較,第一天之第一本地時間之第一持續時間不與第二天之第二本地時間之第二持續時間重疊。在一些實施例中,一天中之時間在自7 am至中午本地時間之一範圍內或在自5 pm至子夜本地時間之一範圍內。在一些實施例中,回應於比較,一天之第二本地時間不同於一天之第一本地時間。In some embodiments, the first treatment occurs at a first local time of day and the second light treatment occurs at a second time of day that differs from the first time of day in response to the comparison. A first treatment may occur at a first local time for a first duration and a second treatment may occur at a second local time for a second duration, responsive to comparing the first duration of the first day's first local time The time does not overlap with the second duration of the second local time of the next day. In some embodiments, the time of day is within a range of one of from 7 am to noon local time or within a range of one of from 5 pm to midnight local time. In some embodiments, responsive to the comparison, the second local time of day is different from the first local time of day.

雖然參考一眼睛之治療及量測,但亦可治療及量測對側眼睛。在一些實施例中,針對第一治療及第二治療使用一對側眼睛治療眼睛。Although reference is made to the treatment and measurement of one eye, the contralateral eye can also be treated and measured. In some embodiments, the eye is treated using a pair of eyes for the first treatment and the second treatment.

在一些實施例中,在治療期間使用適當鏡片矯正眼睛之屈光不正,如本文中描述。在一些實施例中,在第一治療期間使用一第一屈光矯正來矯正眼睛之一第一屈光不正以提供一第一清晰中心區上之觀察且針對第二治療在一第二清晰中心區上使用一第二屈光矯正來矯正眼睛之一第二屈光不正。在一些實施例中,回應於比較,第一屈光矯正不同於第二屈光矯正。In some embodiments, the refractive error of the eye is corrected using appropriate lenses during treatment, as described herein. In some embodiments, a first refractive correction is used during the first treatment to correct a first refractive error of the eye to provide a view on a first clear center zone and for a second treatment on a second clear center A second refractive error of the eye is corrected regionally using a second refractive correction. In some embodiments, the first refractive correction is different from the second refractive correction responsive to the comparison.

雖然參考減少一眼睛之屈光不正之一加深之一方法1800,但一般技術者將認知許多調適及變化。例如,可以任何適合順序執行步驟,且可移除一些步驟且重複一些步驟。又,如本文中描述之處理器可經組態以具有指令以執行方法1800之任何一或多個步驟。替代地或組合地,光學組件、光學結構、顯示器、治療裝置及系統之任何者可根據方法1800經組態,諸如系統1600、治療裝置1602或系統1700及此等組件可容易根據本發明互換,如一般技術則將理解。While reference is made to a method 1800 of reducing the deepening of the refractive error of an eye, many adaptations and variations will be recognized by those of ordinary skill. For example, steps may be performed in any suitable order, and some steps may be removed and some steps repeated. Also, a processor as described herein may be configured with instructions to perform any one or more steps of method 1800 . Alternatively or in combination, any of optical components, optical structures, displays, treatment devices and systems may be configured according to method 1800, such as system 1600, treatment device 1602 or system 1700 and such components may be readily interchanged according to the present invention, It will be understood as normal technology.

如本文中描述,本文中描述及/或繪示之運算裝置及系統廣泛地表示能夠執行電腦可讀指令(諸如本文中描述之模組內含有之電腦可讀指)之任何類型或形式之運算裝置或系統。在其等最基本組態中,此(等)運算裝置可各包括至少一個記憶體裝置及至少一個實體處理器。As described herein, computing devices and systems described and/or illustrated herein broadly represent any type or form of computing capable of executing computer-readable instructions, such as those contained within the modules described herein. device or system. In their most basic configurations, the computing device(s) may each include at least one memory device and at least one physical processor.

如本文中使用之術語「記憶體」或「記憶體裝置」大體上表示能夠儲存資料及/或電腦可讀指令之任何類型或形式之揮發性或非揮發性儲存裝置或媒體。在一個實例中,一記憶體裝置可儲存、載入及/或維持本文中描述之一或多個模組。記憶體裝置之實例包括(但不限於)隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體、硬碟機(HDD)、固態硬碟(SSD)、光碟機、快取區、其等之一或多者之變化或組合或任何其他適合儲存記憶體。The term "memory" or "memory device" as used herein generally refers to any type or form of volatile or non-volatile storage device or media capable of storing data and/or computer readable instructions. In one example, a memory device can store, load and/or maintain one or more modules described herein. Examples of memory devices include, but are not limited to, random access memory (RAM), read only memory (ROM), flash memory, hard disk drives (HDD), solid state drives (SSD), optical drives, Cache, variation or combination of one or more of them or any other suitable storage memory.

另外,如本文中使用,術語「處理器」或「實體處理器」大體上係指能夠解譯及/或執行電腦可讀指令之任何類型或形式之硬體實施處理單元。在一個實例中,一實體處理器可存取及/或修改儲存於上述記憶體裝置中之一或多個模組。實體處理器之實例包括(但不限於)微處理器、微控制器、中央處理單元(CPU)、實施軟體處理器之場可程式化閘陣列(FPGA)、特定應用積體電路(ASIC)、其等之一或多者之部分、其等之一或多者之變化或組合或任何其他適合實體處理器。處理器可包括一分散式處理器系統(例如,運行平行處理器)或一遠端處理器(諸如一伺服器)及其等之組合。Additionally, as used herein, the terms "processor" or "physical processor" generally refer to any type or form of hardware-implemented processing unit capable of interpreting and/or executing computer-readable instructions. In one example, a physical processor can access and/or modify one or more modules stored in the aforementioned memory device. Examples of physical processors include, but are not limited to, microprocessors, microcontrollers, central processing units (CPUs), field programmable gate arrays (FPGAs) implementing software processors, application specific integrated circuits (ASICs), A portion of one or more of them, a variation or combination of one or more of them, or any other suitable physical processor. The processor may include a distributed processor system (eg, running parallel processors) or a remote processor (such as a server) and combinations thereof.

雖然被繪示為分開之元件,但本文中描述及/或揭示之方法步驟可表示一單一應用之部分。另外,在一些實施例中,此等步驟之一或多者可表示或對應於在藉由一運算裝置執行時可引起運算裝置執行一或多個任務(諸如方法步驟)之一或多個軟體應用程式或程式。Although shown as separate elements, method steps described and/or disclosed herein may represent part of a single application. Additionally, in some embodiments, one or more of these steps may represent or correspond to one or more software programs that, when executed by a computing device, cause the computing device to perform one or more tasks, such as method steps. application or program.

另外,本文中描述之一或多個裝置可將資料、實體裝置及/或實體裝置之表示自一個形式變換為另一形式。另外或替代地,本文中敘述之一或多個模組可藉由在運算裝置上執行、將資料儲存於運算裝置上及/或以其他方式與運算裝置互動而將一處理器、揮發性記憶體、非揮發性記憶體及/或一實體運算裝置之任何其他部分自一個形式之運算裝置變換為另一形式之運算裝置。Additionally, one or more of the devices described herein can transform data, a physical device, and/or a representation of a physical device from one form to another. Additionally or alternatively, one or more of the modules described herein can connect a processor, volatile memory, memory, non-volatile memory, and/or any other portion of a physical computing device from one form of computing device to another form of computing device.

如本文中使用,術語「電腦可讀媒體」大體上係指能夠儲存或實行電腦可讀指令之任何形式之裝置、載體或媒體。電腦可讀媒體之實例包括(但不限於):傳輸類型媒體,諸如載波;及非暫時性類型媒體,諸如磁性儲存媒體(例如,硬碟機、磁帶機及軟碟)、光學儲存媒體(例如,光碟(CD)、數位視訊光碟(DVD)及藍光光碟)、電子儲存媒體(例如,固態硬碟及快閃媒體)及其他分佈系統。As used herein, the term "computer-readable medium" generally refers to any form of device, carrier, or medium that is capable of storing or executing computer-readable instructions. Examples of computer-readable media include, but are not limited to: transmission-type media, such as carrier waves; and non-transitory-type media, such as magnetic storage media (e.g., hard disk drives, tape drives, and floppy disks), optical , compact discs (CDs), digital video discs (DVDs) and Blu-ray discs), electronic storage media (eg, solid state drives and flash media) and other distribution systems.

一般技術者將認知,本文中揭示之任何程序或方法可以許多方式修改。本文中描述及/或揭示之程序參數及序列僅藉由實例給出且可如期望般變化。例如,雖然本文中繪示及/或描述之步驟可以一特定順序展示或論述,但此等步驟不一定需要以所繪示或論述之順序執行。Those of ordinary skill will recognize that any procedure or method disclosed herein may be modified in numerous ways. Program parameters and sequences described and/or disclosed herein are given by way of example only and may be varied as desired. For example, although steps shown and/or described herein may be shown or discussed in a particular order, the steps do not necessarily need to be performed in the order shown or discussed.

本文中描述及/或揭示之各種例示性方法亦可省略本文中描述或論述之一或多個步驟或亦可包括除所揭示步驟之外之額外步驟。此外,如本文中揭示之任何方法之一步驟可與任何其他方法之任何一或多個步驟組合,如本文中揭示。Various exemplary methods described and/or disclosed herein may also omit one or more steps described or discussed herein or may also include additional steps in addition to the disclosed steps. Furthermore, one step of any method as disclosed herein may be combined with any one or more steps of any other method, as disclosed herein.

如本文中描述之處理器可經組態以執行本文中揭示之任何方法之一或多個步驟。替代地或組合地,處理器可經組態以組合如本文中揭示之一或多個方法之一或多個步驟。A processor as described herein may be configured to perform one or more steps of any method disclosed herein. Alternatively or in combination, the processor may be configured to combine one or more steps of one or more methods as disclosed herein.

除非另外說明,否則如本說明書及發明申請專利範圍中使用之術語「連接至」及「耦合至」應解釋為允許直接及間接(例如,經由其他元件或組件)連接兩者。另外,如本說明書及發明申請專利範圍中使用之術語「一」或「一個」應被解釋為意謂「...之至少一者」。最終,為了易於使用,如本說明書及發明申請專利範圍中使用之術語「包含」及「具有」 (及其等派生詞)可與字詞「包括」互換地使用且應具有與字詞「包括」相同之含義。Unless otherwise stated, the terms "connected to" and "coupled to" as used in this specification and claims should be interpreted to allow both direct and indirect (eg, via other elements or components) connection. In addition, the term "a" or "an" as used in this specification and the scope of claims of invention should be interpreted as meaning "at least one of...". Finally, for ease of use, the terms "comprising" and "having" (and their derivatives) as used in this specification and claims of invention may be used interchangeably with the word "comprising" and shall have the same meaning as the word "comprising" "Same meaning.

如本文中揭示之處理器可經組態以具有指令以執行如本文中揭示之任何方法之任何一或多個步驟。A processor as disclosed herein may be configured with instructions to perform any one or more steps of any method as disclosed herein.

應理解,雖然術語「第一」、「第二」、「第三」等可在本文中用於描述各種層、元件、組件、區域或區段而不提及事件之任何特定順序或序列。此等術語僅用於區分一個層、元件、組件、區域或區段與另一層、元件、組件、區域或區段。可將如本文中描述之一第一層、元件、組件、區域或區段稱為一第二層、元件、組件、區域或區段而不脫離本發明之教示。It should be understood that although the terms "first", "second", "third", etc. may be used herein to describe various layers, elements, components, regions or sections without implying any particular order or sequence of events. These terms are only used to distinguish one layer, element, component, region or section from another layer, element, component, region or section. A first layer, element, component, region or section as described herein could be termed a second layer, element, component, region or section without departing from the teachings of the present invention.

如本文中使用,術語「或」包含性地用於替代地及組合地指代品項。As used herein, the term "or" is used inclusively to refer to items both alternatively and in combination.

如本文中使用,諸如數字之字元係指相同元件。As used herein, characters such as numbers refer to the same element.

本發明包含以下編號條項。The invention consists of the following numbered clauses.

條項1.一種治療一眼睛以減少近視之一加深之方法,該方法包括:在一第一時間量測該眼睛之一光學性質;向該眼睛提供一第一光治療以減少近視之該加深;在該第一光治療之後之一第二時間量測該眼睛之該光學性質;產生該第二時間之該眼睛之該光學性質與該第一時間之該眼睛之該光學性質之一比較;及回應於該比較而向該眼睛提供一第二光治療。Clause 1. A method of treating an eye to reduce the progression of myopia, the method comprising: measuring an optical property of the eye at a first time; providing a first light therapy to the eye to reduce the progression of myopia ; measuring the optical property of the eye at a second time after the first light treatment; comparing the optical property of the eye at the second time with one of the optical properties of the eye at the first time; and providing a second light therapy to the eye in response to the comparison.

條項2.如條項1之方法,其中該第一光治療包括一第一光刺激物且該第二光治療包括一第二刺激物,且其中該第二光刺激物係回應於該比較而經組態。Clause 2. The method of Clause 1, wherein the first light treatment comprises a first light stimulus and the second light treatment comprises a second stimulus, and wherein the second light stimulus is responsive to the comparison And configured.

條項3.如條項2之方法,其中該第一光刺激物包括一位置、一大小、一空間頻率分佈、一強度或相對於一顯示器上之一背景之一強度之一或多者,且該第一光刺激物以該第一光刺激物與該第二光刺激物之間的該位置、該大小、該空間頻率分佈、該強度或相對於該顯示器上之該背景之該強度之該一或多者之一差異不同於該第二光刺激物。Clause 3. The method of Clause 2, wherein the first optical stimulus comprises one or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on a display, and the first photostimulant is based on the position between the first photostimulus and the second photostimulus, the size, the spatial frequency distribution, the intensity, or the intensity relative to the background on the display The one or more differ from the second photostimulant.

條項4.如條項1之方法,其中該比較包括該第二時間與該第一時間的該經量測光學性質之間的一差異且其中回應於該差異而調整該第二治療。Clause 4. The method of Clause 1, wherein the comparison includes a difference between the measured optical property at the second time and the first time and wherein the second treatment is adjusted in response to the difference.

條項5.如條項4之方法,其中該差異包括該第一時間與該第二時間之間的該眼睛之該光學性質的一暫態改變且視情況其中該暫態改變包括該眼睛之脈絡膜厚度的一改變。Clause 5. The method of Clause 4, wherein the difference comprises a transient change in the optical property of the eye between the first time and the second time and optionally wherein the transient change comprises a A change in choroidal thickness.

條項6.如條項5之方法,其中第一時間發生在一第一天,該第一光治療發生在該第一天或之後之複數週內之複數天,且該第二時間發生在該複數週之後且該第二光治療發生在該第二時間或之後。Clause 6. The method of clause 5, wherein the first time occurs on a first day, the first phototherapy occurs on days within a plurality of weeks on or after the first day, and the second time occurs on The plurality of weeks is later and the second light treatment occurs at or after the second time.

條項7.如條項5之方法,其中該第一時間發生在一第一天,該第一光治療發生在該第一天或之後之複數天,該第二時間發生在該第一光治療之該複數天之最後一天,且該第二光治療發生在該複數天之該最後一天之後之一第二天。Clause 7. The method of clause 5, wherein the first time occurs on a first day, the first phototherapy occurs on or after the first day, and the second time occurs on the first day The last day of the plurality of days of treatment, and the second light treatment occurs on a second day after the last day of the plurality of days.

條項8.如條項5之方法,其中該第一時間發生在一第一天,該第二時間發生在該第一天,該第一光治療發生在該第一天且該第二光治療發生在該第一天之後之一第二天。Clause 8. The method of clause 5, wherein the first time occurs on a first day, the second time occurs on the first day, the first phototherapy occurs on the first day and the second phototherapy occurs on the first day Treatment occurs on one of the second days following the first day.

條項9.如條項1之方法,其中該光學性質包括屈光資料、軸向長度資料或脈絡膜厚度資料之一或多者。Clause 9. The method of Clause 1, wherein the optical property comprises one or more of refractive data, axial length data, or choroidal thickness data.

條項10.如條項1之方法,其中該第一光治療將一第一影像投射於該視網膜前方之一焦點,且該第二光治療將一第二影像投射於該視網膜前方之一焦點。Clause 10. The method of Clause 1, wherein the first light therapy projects a first image at a focal point in front of the retina, and the second light therapy projects a second image at a focal point in front of the retina .

條項11.如條項10之方法,其中該第一影像被聚焦於該視網膜前方之一第一距離處,且該第二影像被聚焦於該視網膜前方之一第二距離處,該第一距離不同於該第二距離。Clause 11. The method of Clause 10, wherein the first image is focused at a first distance in front of the retina, and the second image is focused at a second distance in front of the retina, the first The distance is different from the second distance.

條項12.如條項10之方法,其中使用包括用於將該第一影像聚焦於該視網膜上之一第一清晰中心區及用於將該第一影像聚焦於該視網膜前方之一第一外部區之一第一鏡片投射該第一影像,且使用包括用於將該第二影像聚焦於該視網膜上之一第二清晰區及用於將該第二影像聚焦於該視網膜前方之一第二外部區之一第二鏡片投射該第二影像。Clause 12. The method of Clause 10, wherein using a first central region of focus for focusing the first image on the retina and a first region for focusing the first image in front of the retina is used. A first lens in the outer zone projects the first image and uses a second clear zone for focusing the second image on the retina and a first lens for focusing the second image in front of the retina. The second lens, one of the two outer regions, projects the second image.

條項13.如條項12之方法,其中該第一影像及該第二影像包括透過該鏡片觀察之一物件之影像。Clause 13. The method of Clause 12, wherein the first image and the second image comprise images of an object viewed through the lens.

條項14.如條項12之方法,其中該第一外部區及該第二外部區包括一非球面輪廓、複數個小透鏡或具有經增加光學屈光度及經減小光學屈光度之交替環形區之一或多者。Clause 14. The method of Clause 12, wherein the first outer zone and the second outer zone comprise an aspheric profile, a plurality of lenslets, or alternating annular zones of increased optical power and decreased optical power one or more.

條項15.如條項12之方法,其中該第一鏡片與該第二鏡片因下列之一或多者而不同:該第一外部區之一第一光學屈光度與該第二光學區之一第二光學屈光度之間的一差異;該第一清晰區與該第二清晰區之一直徑之間的一差異;該第一外部區與該第二外部區之一面積之間的一差異;該第一清晰區之一第一面積對該第一外部區之一第一面積之一第一比率與該第二清晰區之一第二面積對該第二外部區之一第二面積之一第二比率之間的一差異;該第一外部區之小透鏡之一第一數目與該第二外部區之小透鏡之一第二數目之間的一差異;該第一外部區之第一複數個小透鏡之一第一光學屈光度與一第二外部區之第二複數個小透鏡之一第二光學屈光度之間的一差異;用於將該第一影像提供至該視網膜前方之該焦點之該第一外部區之一第一區域之一第一百分比與用於將該第二影像提供至該視網膜前方之該焦點之該第二外部區之一第二區域之一第二百分比之間的一差異。Clause 15. The method of clause 12, wherein the first lens and the second lens differ by one or more of: a first optical power of the first outer zone and a first optical power of the second optical zone a difference between the second optical powers; a difference between a diameter of the first clear zone and the second clear zone; a difference between an area of the first outer zone and the second outer zone; A first ratio of a first area of the first clear zone to a first area of the first outer zone and a second area of the second clear zone to a second area of the second outer zone A difference between the second ratio; a difference between a first number of lenslets of the first outer zone and a second number of lenslets of the second outer zone; a first ratio of the first outer zone a difference between a first optical power of a plurality of lenslets and a second optical power of a second plurality of lenslets of a second outer zone; for providing the first image to the focal point in front of the retina A first percentage of a first area of the first outer zone and a second hundred of a second area of the second outer zone for providing the second image to the focal point in front of the retina A difference between the scores.

條項16.如條項10之方法,其中該第一影像以相對於該眼睛之一光軸之一第一角度被聚焦且該第二影像以相對於該眼睛之該光軸之一第二角度遠離中央凹被聚焦。Clause 16. The method of Clause 10, wherein the first image is focused at a first angle relative to an optical axis of the eye and the second image is focused at a second angle relative to the optical axis of the eye Angles away from the fovea are focused.

條項17.如條項16之方法,其中該第一角度及該第二角度之各者在自5度至35度之一範圍內且視情況在自約15度至35度之一範圍內。Clause 17. The method of Clause 16, wherein each of the first angle and the second angle is in a range from 5 degrees to 35 degrees and optionally in a range from about 15 degrees to 35 degrees .

條項18.如條項16之方法,其中回應於該比較而將該第二角度調整至不同於該第一角度的一角度。Clause 18. The method of Clause 16, wherein the second angle is adjusted to an angle different from the first angle in response to the comparison.

條項19.如條項10之方法,其中該第一影像被聚焦於該視網膜前方達在自3 D至10 D之一範圍內之一第一量且該第二影像被聚焦於該視網膜前方達在自3 D至10 D之一範圍內且視情況在自4.5 D至8 D之範圍內之一第二量。Clause 19. The method of Clause 10, wherein the first image is focused in front of the retina by a first amount in a range from 3D to 10D and the second image is focused in front of the retina Up to a second amount in the range of from 3 D to 10 D, and optionally in the range of from 4.5 D to 8 D.

條項20.如條項19之方法,其中回應於該比較而將該第二量調整至不同於該第一量之一量。Clause 20. The method of Clause 19, wherein the second amount is adjusted to an amount different from the first amount in response to the comparison.

條項21.如條項10之方法,其中該第一影像包括一第一背景上之一第一刺激物且該第二影像包括一第二刺激物及一第二背景。Clause 21. The method of Clause 10, wherein the first image includes a first stimulus on a first background and the second image includes a second stimulus and a second background.

條項22.如條項21之方法,其中該第一刺激物之一第一強度對該第一刺激物之該第一背景之一第一強度之一第一比率在自10至50之一範圍內且其中該第二刺激物對一第二背景之一第二強度之一第二比率在自10至50之一範圍內且視情況在自10至30之範圍內。Clause 22. The method of Clause 21, wherein a first ratio of a first intensity of the first stimulus to a first intensity of the first background of the first stimulus is in the range of from 10 to 50 range and wherein a second ratio of the second stimulus to a second intensity of a second background is in a range from 10 to 50 and optionally in a range from 10 to 30.

條項23.如條項22之方法,其中回應於該比較而將該第二比率調整至不同於第一比率之一值。Clause 23. The method of Clause 22, wherein the second ratio is adjusted to a value different from the first ratio in response to the comparison.

條項24.如條項21之方法,其中使用一顯示器將該第一刺激物及該第二刺激物投射至該視網膜上。Clause 24. The method of Clause 21, wherein a display is used to project the first stimulus and the second stimulus onto the retina.

條項25.如條項10之方法,其中該眼睛曝露至在聚焦該第一影像時之一第一環境照明及在聚焦該第二影像時之一第二環境照明。Clause 25. The method of Clause 10, wherein the eye is exposed to a first ambient lighting while focusing on the first image and a second ambient lighting while focusing on the second image.

條項26.如條項25之方法且其中該第一刺激物之一第一強度對該第一環境照明之一第一比率在自1.5至10之一範圍內且其中該第二刺激物之一第二強度對該第二環境照明之一第二比率在自1.5至10之一範圍內且視情況在自2.5至5之範圍內。Clause 26. The method of Clause 25 and wherein the first ratio of the first intensity of the first stimulus to the first ambient lighting is in a range from 1.5 to 10 and wherein the ratio of the second stimulus to A second ratio of a second intensity to the second ambient lighting is in a range from 1.5 to 10 and optionally in a range from 2.5 to 5.

條項27.如條項26之方法,其中回應於該比較而將該第二比率調整至不同於第一比率之一值。Clause 27. The method of Clause 26, wherein the second ratio is adjusted to a value different from the first ratio in response to the comparison.

條項28.如條項1之方法,其中該第一治療及該第二治療各包括分佈於遠離該眼睛之一中央凹定位之該視網膜之複數個區域上方之複數個刺激物,該複數個刺激物之各者成像於該視網膜前方且在該視網膜上模糊,其中該複數個刺激物經配置以界定該視網膜上之一治療區域。Clause 28. The method of Clause 1, wherein the first treatment and the second treatment each comprise a plurality of stimuli distributed over regions of the retina located away from a fovea of the eye, the plurality of Each of the stimuli is imaged in front of and blurred on the retina, wherein the plurality of stimuli are configured to define a treatment area on the retina.

條項29.如條項28之方法,其中該第一治療包括在該視網膜之一第一百分比內之一第一治療區域,且該第二治療包括在該視網膜之一第二百分比內之一第二治療區域且其中回應於該比較而將該第二治療區域調整至不同於該第一治療區域之一量。Clause 29. The method of clause 28, wherein the first treatment includes a first treatment area within a first percentage of the retina, and the second treatment includes a second percent of the retina within a second treatment area and wherein the second treatment area is adjusted by an amount different from the first treatment area in response to the comparison.

條項30.如條項29之方法,其中該第一治療區域包括該視網膜之一總面積之一第一百分比且該第二治療區域包括該視網膜之該總面積之一第二百分比且其中回應於該比較而將該第二百分比調整至不同於該第一百分比之一量且視情況其中該第一百分比及該第二百分比在該視網膜之該總面積之自約15%至約65%之一範圍內。Clause 30. The method of Clause 29, wherein the first treatment area comprises a first percentage of a total area of the retina and the second treatment area comprises a second percent of the total area of the retina ratio and wherein the second percentage is adjusted to an amount different from the first percentage in response to the comparison and optionally wherein the first percentage and the second percentage are at the retinal The total area ranges from about 15% to about 65%.

條項31.如條項29之方法,其中該第一治療區域及該第二治療區域包括環形區域,該等環形區域具有定位於該等環形區域外部之該中央凹。Clause 31. The method of Clause 29, wherein the first treatment region and the second treatment region comprise annular regions having the fovea positioned outside the annular regions.

條項32.如條項1之方法,其中該第一治療包括對應於該眼睛之錐體之一第一峰值靈敏度之光之一第一波長且該第二治療包括對應於該眼睛之該等錐體之一第二峰值靈敏度之光之一第二波長且視情況其中該等錐體之該峰值靈敏度對應於在自約420 nm至約440 nm、自約534 nm至約545 nm或564至約580 nm之一範圍內之一波長下之光。Clause 32. The method of Clause 1, wherein the first treatment comprises a first wavelength of light corresponding to a first peak sensitivity of a cone of the eye and the second treatment comprises a first wavelength corresponding to the A second wavelength of light of a second peak sensitivity of the cones and optionally wherein the peak sensitivity of the cones corresponds to a wavelength from about 420 nm to about 440 nm, from about 534 nm to about 545 nm, or from 564 nm to Light at a wavelength in the range of about 580 nm.

條項33.如條項32之方法,其中該第一峰值對應於一第一範圍且該第二峰值對應於回應於該比較而不同於該第一範圍之一第二範圍。Clause 33. The method of Clause 32, wherein the first peak value corresponds to a first range and the second peak value corresponds to a second range that differs from the first range in response to the comparison.

條項34.如條項1之方法,其中該第一光治療包括波長之一第一分佈且該第二光治療包括波長之一第二分佈,其中回應於該比較,該第二分佈不同於該第一分佈。Clause 34. The method of Clause 1, wherein the first phototherapy comprises a first distribution of wavelengths and the second phototherapy comprises a second distribution of wavelengths, wherein responsive to the comparison, the second distribution is different from the first distribution.

條項35.如條項34之方法,其中波長之該第一分佈對應於一第一溫度且該第二分佈對應於一第二溫度,且視情況其中該第一溫度及該第二溫度在自約凱氏5000度至約凱氏11,000度之一範圍內。Clause 35. The method of Clause 34, wherein the first distribution of wavelengths corresponds to a first temperature and the second distribution corresponds to a second temperature, and optionally wherein the first temperature and the second temperature are between From about 5000 degrees Kelvin to about 11,000 degrees Kelvin.

條項36.如條項1之方法,其中該第一治療包括一第一天之一第一持續時間且該第二治療包括一第二天之一第二持續時間,回應於該比較,該第二持續時間不同於該第一持續時間。Clause 36. The method of Clause 1, wherein the first treatment includes a first day for a first duration and the second treatment includes a second day for a second duration, responsive to the comparison, the The second duration is different than the first duration.

條項37.如條項36之方法,其中該第一持續時間在自1小時至8小時之一範圍內且該第二持續時間在自1小時至8小時之一範圍內且視情況在自1.5至3小時之範圍內。Clause 37. The method of Clause 36, wherein the first duration is in a range from 1 hour to 8 hours and the second duration is in a range from 1 hour to 8 hours and optionally in a range from In the range of 1.5 to 3 hours.

條項38.如條項1之方法,其中該第一治療發生在一天之一第一本地時間且該第二光治療發生在回應於該比較而不同於一天之該第一時間之一天之一第二時間。Clause 38. The method of Clause 1, wherein the first treatment occurs at a first local time of day and the second light treatment occurs at one of the days that differs from the first time of day in response to the comparison Second time.

條項39.如條項38之方法,其中該第一治療在該第一本地時間發生達一第一持續時間且該第二治療在該第二本地時間發生達一第二持續時間,回應於該比較,該第一天之該第一本地時間之該第一持續時間不與該第二天之該第二本地時間之該第二持續時間重疊。Clause 39. The method of clause 38, wherein the first treatment occurs at the first local time for a first duration and the second treatment occurs at the second local time for a second duration, in response to The comparison, the first duration of the first local time of the first day does not overlap with the second duration of the second local time of the second day.

條項40.如條項38之方法,其中一天中之時間在自7 am至中午本地時間之一範圍內或在自5 pm至子夜本地時間之一範圍內。Clause 40. The method of Clause 38, wherein the time of day is within a range from 7 am to noon local time or within a range from 5 pm to midnight local time.

條項41.如條項38之方法,其中回應於該比較,一天之該第二本地時間不同於一天之該第一本地時間。Clause 41. The method of Clause 38, wherein the second local time of day is different from the first local time of day in response to the comparison.

條項42.如條項1之方法,其中該第一治療以一第一量之像散將一刺激物之一第一影像投射於該視網膜前方,且該第二治療以一第二量之像散將一第二影像投射於該視網膜前方。Clause 42. The method of Clause 1, wherein the first treatment projects a first image of a stimulus in front of the retina with a first amount of astigmatism, and the second treatment projects a first image of a stimulus with a second amount of astigmatism. Astigmatism projects a second image in front of the retina.

條項43.如條項42之方法,其中回應於該比較,像散之該第一量不同於像散之該第二量。Clause 43. The method of Clause 42, wherein responsive to the comparison, the first amount of astigmatism is different than the second amount of astigmatism.

條項44.如條項42之方法,其中像散之該第一量在自0.5 D至4 D之一第一範圍內,且像散之該第二量在自0.5 D至4 D之一第二範圍內。Clause 44. The method of Clause 42, wherein the first amount of astigmatism is in a first range from 0.5 D to 4 D, and the second amount of astigmatism is in a range from 0.5 D to 4 D within the second range.

條項45.如條項1之方法,其中該眼睛已被診斷為具有每年在自0.25 D至1.5 D之一範圍內之近視之一加深,且其中近視之該加深減少至少0.25 D。Clause 45. The method of Clause 1, wherein the eye has been diagnosed with a progression of myopia in a range from 0.25 D to 1.5 D per year, and wherein the progression of myopia is reduced by at least 0.25 D.

條項46.如條項45之方法,其中近視之該加深每年大於0.6 D,且其中近視之該加深每年減少在自0.6 D至0.9 D之一範圍內之一量。Clause 46. The method of Clause 45, wherein the progression of myopia is greater than 0.6 D per year, and wherein the progression of myopia decreases by an amount in the range from 0.6 D to 0.9 D per year.

條項47.如條項1之方法,其中該第一治療包括以一第一強度投射於該視網膜前方之一第一刺激物,且該第二治療包括以一第二強度投射於該視網膜前方之一第二刺激物。Clause 47. The method of Clause 1, wherein the first treatment comprises projecting a first stimulus in front of the retina at a first intensity, and the second treatment comprises projecting in front of the retina at a second intensity One of the secondary stimuli.

條項48.如條項47之方法,其中回應於該比較,該第二強度不同於該第一強度。Clause 48. The method of Clause 47, wherein responsive to the comparison, the second intensity is different from the first intensity.

條項49.如條項47之方法,該第一強度及該第二強度各包括在1至1000托朗之一範圍內之一亮度。Clause 49. The method of Clause 47, the first intensity and the second intensity each comprising a brightness in the range of 1 to 1000 torrents.

條項50.如條項47之方法,其中該第一強度及該第二強度各包括在自100至50,000尼特之一範圍內或在自1至10,000尼特之一範圍內之一照度。Clause 50. The method of Clause 47, wherein the first intensity and the second intensity each comprise an illuminance in a range from 100 to 50,000 nits or in a range from 1 to 10,000 nits.

條項51.如條項1之方法,其中該第一治療包括以一第一空間頻率分佈投射於該視網膜前方之第一複數個刺激物,且其中該第二治療包括以一第二空間頻率分佈投射於該視網膜前方之第二複數個刺激物。Clause 51. The method of Clause 1, wherein the first treatment comprises projecting a first plurality of stimuli in front of the retina at a first spatial frequency distribution, and wherein the second treatment comprises projecting at a second spatial frequency Distributing the second plurality of stimuli projected in front of the retina.

條項52.如條項51之方法,其中回應於該比較,該第二空間頻率分佈不同於該第一空間頻率分佈。Clause 52. The method of Clause 51, wherein responsive to the comparison, the second spatial frequency distribution is different from the first spatial frequency distribution.

條項53.如條項52之方法,其中該等第一及第二複數個刺激物之各者包括一長度、邊緣及一强度輪廓分佈以產生如在該視網膜前方或後方成像至該眼睛中之在1X10 -1至2.5X10 1循環/度之一範圍中且視情況在自1X10 -1至1X10 1循環/度之一範圍內之空間頻率。 Clause 53. The method of Clause 52, wherein each of the first and second plurality of stimuli comprises a length, an edge, and an intensity profile to produce an image into the eye such as in front of or behind the retina Its spatial frequency is in the range of 1X10 −1 to 2.5X10 1 cycles/degree and optionally in the range of from 1×10 −1 to 1×10 1 cycles/degree.

條項54.如條項51之方法,其中如成像於該眼睛中之該等第一及第二複數個刺激物之各者包括以自約1X10 -1至約2.5X10 1循環/度且視情況自1X10 -1至約5X10 0循環/度之一空間頻率範圍之空間頻率之一增加提供空間頻率振幅之一減小之一空間頻率分佈。 Clause 54. The method of Clause 51, wherein each of the first and second plurality of stimuli as imaged in the eye comprises cycling/degree from about 1×10 −1 to about 2.5×10 1 and depending on An increase in spatial frequency for a spatial frequency range from 1×10 −1 to about 5×10 0 cycles/degree provides a spatial frequency distribution with a decrease in spatial frequency amplitude.

條項55.如條項54之方法,其中空間頻率強度之減小針對任意單位之該空間頻率振幅在自1/(空間頻率) 0.5至1/(空間頻率) 2之一範圍內且視情況針對任意單位之該空間頻率振幅自1/(空間頻率)至1/(空間頻率) 2Clause 55. The method of Clause 54, wherein the reduction in spatial frequency intensity is in a range from 1/(spatial frequency) 0.5 to 1/(spatial frequency) 2 for arbitrary units of the spatial frequency amplitude and optionally The spatial frequency amplitude for arbitrary units is from 1/(spatial frequency) to 1/(spatial frequency) 2 .

條項56.如條項54之方法,其中空間頻率之該範圍係自約3X10 -1至約1.0X10 1循環/度且視情況在自約3X10 -1至約2.0X10 0之一範圍內且進一步視情況自約3X10 -1至約1.0X10 0Clause 56. The method of Clause 54, wherein the range of spatial frequencies is from about 3×10 −1 to about 1.0×10 1 cycles/degree and optionally in a range from about 3×10 −1 to about 2.0×10 0 and Further optionally from about 3X10 -1 to about 1.0X10 0 .

條項57.如條項1之方法,其中該第一光治療投射一第一脈衝刺激物之一第一影像且其中該第二光治療投射一第二脈衝刺激物之一第二影像。Clause 57. The method of Clause 1, wherein the first phototherapy projects a first image of a first pulsatile stimulus and wherein the second phototherapy projects a second image of a second pulsatile stimulus.

條項58.如條項57之方法,其中第一脈衝刺激物包括一第一負載循環且該第二脈衝刺激物包括一第二負載循環,回應於該比較,該第二負載循環不同於該第一負載循環。Clause 58. The method of Clause 57, wherein the first pulsatile stimulus comprises a first duty cycle and the second pulsatile stimulus comprises a second duty cycle, the second duty cycle being different from the first duty cycle.

條項59.如條項57之方法,其中該第一脈衝刺激物包括一第一頻率且該第二脈衝刺激物包括回應於該比較而不同於該第一頻率之一第二頻率。Clause 59. The method of Clause 57, wherein the first pulsatile stimulus comprises a first frequency and the second pulsatile stimulus comprises a second frequency different from the first frequency in response to the comparison.

條項60.如條項1之方法,其中該第一光治療將一第一刺激物之一第一影像投射至該視網膜前方或後方之一第一位置,且其中該第二光治療將一第二刺激物投射於該視網膜前方或後方之一第二位置處。Clause 60. The method of Clause 1, wherein the first light therapy projects a first image of a first stimulus to a first location in front of or behind the retina, and wherein the second light therapy projects a first image of a first stimulus A second stimulus is projected at a second location in front or behind the retina.

條項61.如條項60之方法,其中回應於該比較,該第二位置不同於該第一位置。Clause 61. The method of Clause 60, wherein responsive to the comparison, the second location is different from the first location.

條項62.如條項61之方法,其中該第一位置在該視網膜之一第一側上且回應於該比較,該第二位置在該視網膜之與該第一側相對之一第二側上。Clause 62. The method of Clause 61, wherein the first location is on a first side of the retina and responsive to the comparison, the second location is on a second side of the retina opposite the first side superior.

條項63.如條項1之方法,其中該光學性質包括一軸向長度、一雙目量測軸向長度、一屈光、一顯性屈光、一睫狀肌麻痹屈光、一自動屈光、一雙目自動屈光、一開放場自動屈光、一雙目開放場自動屈光、一掃描狹縫自動屈光、一波前圖、一波前係數、一球體係數、一圓柱體係數、一彗形像差、一球面像差或一三葉之一或多者。Clause 63. The method of Clause 1, wherein the optical property comprises an axial length, a binocular axial length, a refraction, a manifest refraction, a cycloplegic refraction, an automatic Refraction, one binocular automatic refraction, one open field automatic refraction, one binocular open field automatic refraction, one scanning slit automatic refraction, one wavefront map, one wavefront coefficient, one sphere coefficient, one cylinder One or more of system coefficient, a coma aberration, a spherical aberration or a trefoil.

條項64.如條項63之方法,其中該光學性質包括屈光資料,且其中該第一時間與該第二時間之間的該屈光資料的一改變對應於該眼睛之軸向長度的一改變。Clause 64. The method of Clause 63, wherein the optical property comprises refractive data, and wherein a change in the refractive data between the first time and the second time corresponds to a change in axial length of the eye one change.

條項65.如條項64之方法,其中回應於該屈光資料之該改變而判定軸向長度之該改變。Clause 65. The method of Clause 64, wherein the change in axial length is determined in response to the change in the refractive data.

條項66.如條項1之方法,其中向該眼睛提供一雙目固定刺激物以在該第一時間及該第二時間量測該光學性質。Clause 66. The method of Clause 1, wherein a binocular fixed stimulus is provided to the eye to measure the optical property at the first time and the second time.

條項67.如條項1之方法,其中針對該第一治療及該第二治療使用一對側眼睛治療該眼睛。Clause 67. The method of Clause 1, wherein the eye is treated using a pair of eyes for the first treatment and the second treatment.

條項68.如條項1之方法,其中在該第一治療期間使用一第一屈光矯正來矯正該眼睛之一第一屈光不正以提供一第一清晰中心區上之觀察且針對該第二治療在一第二清晰中心區上使用一第二屈光矯正來矯正該眼睛之一第二屈光不正。Clause 68. The method of Clause 1, wherein during the first treatment a first refractive correction is used to correct a first refractive error of the eye to provide a vision on a first clear central zone and for the The second treatment corrects a second refractive error of the eye using a second refractive correction on a second clear central zone.

條項69.如條項68之方法,其中回應於該比較,該第一屈光矯正不同於該第二屈光矯正。Clause 69. The method of Clause 68, wherein responsive to the comparison, the first refractive correction is different than the second refractive correction.

條項70.一種用於減少一眼睛之近視之一加深之設備,該設備包括:一光源,其用於將一第一刺激物之一影像提供於該眼睛之一視網膜前方於遠離該視網膜之一位置處;及一處理器,其可操作地耦合至該光源以回應於來自該第一刺激物對該眼睛之一光學性質的一改變而將該刺激物調整至一第二刺激物。Clause 70. An apparatus for reducing the progression of myopia in an eye, the apparatus comprising: a light source for providing an image of a first stimulus in front of a retina of the eye away from the retina a location; and a processor operatively coupled to the light source to adjust the stimulus to a second stimulus in response to a change in an optical property of the eye from the first stimulus.

條項71.如條項70之設備,其中該處理器經組態以產生使用該第一刺激物之一第一光治療之前之一第一時間之該眼睛之該光學性質與在該第一光治療之後之一第二時間之該眼睛之該光學性質之一比較且回應於該比較而組態該第二刺激物。Clause 71. The apparatus of Clause 70, wherein the processor is configured to generate the optical property of the eye at a first time prior to a first light treatment with the first stimulus and at the first A comparison of the optical properties of the eye at a second time after light treatment and the second stimulus is configured in response to the comparison.

條項72.如條項71之設備,其中該光源包括一顯示器且該第一刺激物及該第二刺激物各呈現於該顯示器上且其中回應於該比較,呈現於該顯示器上之該第二刺激物經組態以具有一位置、一大小、一空間頻率分佈、一強度或相對於該顯示器上之一背景之一強度之一或多者。Clause 72. The apparatus of clause 71, wherein the light source comprises a display and the first stimulus and the second stimulus are each presented on the display and wherein responsive to the comparison, the second stimulus presented on the display Two stimuli are configured to have one or more of a location, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on the display.

條項73.如條項72之設備,其中該第二刺激物之該位置、該大小、該空間頻率分佈、該強度或相對於該顯示器上之一背景之該強度之該一或多者不同於該第一刺激物之一位置、一大小、一空間頻率分佈、一強度或相對於該顯示器上之一背景之一強度之一或多者。Clause 73. The device of Clause 72, wherein the one or more of the location, the size, the spatial frequency distribution, the intensity, or the intensity of the second stimulus relative to a background on the display is different One or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on the display on the first stimulus.

條項74.如條項72之設備,其中該第一刺激物包括複數個第一刺激物,且該第二刺激物包括複數個第二刺激物,且其中該第二複數個刺激物之各者係回應於該比較而經組態。Clause 74. The apparatus of Clause 72, wherein the first stimulus comprises a plurality of first stimuli, and the second stimulus comprises a plurality of second stimuli, and wherein each of the second plurality of stimuli is configured in response to the comparison.

條項75.如條項70之設備,其進一步包括用於將該第一刺激物及該第二刺激物之該影像投射於該視網膜前方且遠離該中央凹以在該視網膜上提供該第一刺激物及該第二刺激物之一模糊影像之一或多個光學結構。Clause 75. The apparatus of Clause 70, further comprising a device for projecting the image of the first stimulus and the second stimulus in front of the retina and away from the fovea to provide the first stimulus on the retina One or more optical structures blurring images of the stimulus and the second stimulus.

條項76.如條項75之設備,其中該一或多個光學結構包括一鏡片、一稜鏡、一楔、一光學玻璃片、一繞射光學器件、一菲涅爾鏡片、複數個階梯光柵、一非球面輪廓、一液晶、複數個小透鏡、正光學屈光度之複數個區域、具有經增加光學屈光度之複數個環形區域或在具有經增加光學屈光度之區域之間延伸之複數個間隙之一或多者。Clause 76. The apparatus of Clause 75, wherein the one or more optical structures comprise a lens, a disc, a wedge, an optical glass plate, a diffractive optic, a Fresnel lens, a plurality of steps of gratings, an aspheric profile, a liquid crystal, lenslets, areas of positive optical power, annular areas of increased optical power, or gaps extending between areas of increased optical power one or more.

條項77.如條項75之設備,其中該一或多個光學結構包括用於提供該第一刺激物之一第一光學結構及用於提供該第二刺激物之一第二光學結構,該第二光學結構回應於該比較而經組態。Clause 77. The apparatus of Clause 75, wherein the one or more optical structures comprise a first optical structure for providing the first stimulus and a second optical structure for providing the second stimulus, The second optical structure is configured in response to the comparison.

條項78.如條項77之設備,其中該第二光學結構回應於該比較而經組態以具有一焦距、一傾斜角、一繞射圖案、一階梯光柵圖案、一非球面輪廓、一液晶折射率改變、正光學屈光度之區域之位置或間隙之一或多者。Clause 78. The apparatus of Clause 77, wherein the second optical structure is configured responsive to the comparison to have a focal length, a tilt angle, a diffraction pattern, an echelle pattern, an aspheric profile, an One or more of liquid crystal refractive index change, position of region of positive optical diopter, or gap.

條項79.如條項70之設備,其中該處理器經組態以具有用於執行前述方法條項中任一項之方法之指令。Clause 79. The apparatus of Clause 70, wherein the processor is configured with instructions for performing the method of any one of the preceding method clauses.

本發明之實施例已如本文中闡述般展示且描述且僅藉由實例提供。一般技術者將認知許多調適、改變、變化及取代而不脫離本發明之範疇。可利用本文中揭示之實施例之若干替代例及組合而不脫離本發明及本文中揭示之發明之範疇。因此,本揭示發明之範疇應僅由隨附發明申請專利範圍及其等效物之範疇定義。Embodiments of the invention have been shown and described as set forth herein and are provided by way of example only. Those of ordinary skill will recognize many adaptations, changes, changes and substitutions without departing from the scope of the present invention. Several alternatives and combinations of the embodiments disclosed herein may be utilized without departing from the scope of the invention and the inventions disclosed herein. Accordingly, the scope of the disclosed invention should be defined only by the scope of the appended patent claims and their equivalents.

10: 鏡片 12: 投影單元 13: 直徑 14: 中心光學區 15: 半徑 16: 周邊區 17: 距離 18: 最外邊緣區/光投影單元 19: 橫跨距離 20: 電池 21: 電源功能 22: 感測器 23: 啟動功能 24: 撓曲印刷電路板(PCB) 25: 控制功能 27: 光強度設定 29: 光開關 30: 光源 31: 投影功能 32: 光學器件 33: 視網膜 41: 天線 70: 眼鏡 72: 顯示器/近眼顯示器 74: 眼鏡鏡片 76: 眼鏡框 94: 主動像素 94a: 像素 94b: 像素 94c: 像素 400: 鏡片 410: 清晰內部區 412: 中心 420: 外部區 430: 小透鏡 432: 間隙 440: 正區 442: 間隙 502: 刺激物 702: 刺激物 704: 影像 706: 顯示器 708: 亮圖案 710: 暗背景 800: 螢幕 802: 橫跨距離 804: 清晰中心視場/未中斷中心視場 806: 橫跨距離 812: 角度照明 814: 橫跨距離/中心視場 900: 自然場景 1100: 影像 1200: 影像 1600: 系統 1602: 治療裝置 1604: 伺服器 1606: 安全雙向通訊協定 1608: 治療專業人員裝置 1610: 照護者裝置 1612: 治療資料庫 1614: 臨床量測裝置 1620: 顯示器 1622: 小透鏡陣列 1700: 光學系統 1702: 測試眼睛 1704: 對照眼睛 1706: 第一光束分離器 1708: 第二光束分離器 1710: 中心顯示器 1712: 被動背景 1720: 顯示器 1724: 遮擋物 1726: 相機 1730a: 均勻圖案 1800: 方法 1805: 步驟 1810: 步驟 1820: 步驟 1830: 步驟 1840: 步驟 1850: 步驟 1860: 步驟 10: Lens 12: Projection unit 13: Diameter 14: Central optical zone 15: Radius 16: Surrounding area 17: Distance 18: Outermost peripheral area/light projection unit 19: Distance across 20: battery 21: Power Function 22: Sensor 23: Start function 24: Flex Printed Circuit Board (PCB) 25: Control functions 27: Light intensity setting 29: Optical switch 30: light source 31: Projection function 32: Optics 33: retina 41: Antenna 70: Glasses 72: Display/Near Eye Display 74: Spectacle lenses 76: Spectacle frame 94: active pixel 94a: Pixels 94b: pixels 94c: Pixels 400: lens 410: Clear Internal Area 412: center 420: Outer area 430: small lens 432: Clearance 440: positive area 442: Clearance 502: Irritant 702: Irritant 704: Image 706: Display 708: Bright pattern 710: dark background 800: screen 802: Distance across 804: Clear Central Field/Uninterrupted Central Field 806: Distance across 812: Angle Lighting 814: Spanning Distance/Central Field of View 900: Natural scenes 1100: Image 1200: video 1600: System 1602: Therapeutic Devices 1604: Server 1606: Secure Two-Way Communication Protocol 1608: Therapy Professional Devices 1610: Caregiver Devices 1612: Healing Database 1614: Clinical measuring devices 1620: display 1622: Lenslet Array 1700: Optical system 1702: Test the eyes 1704: Control eyes 1706: First beam splitter 1708: Second beam splitter 1710: Center Display 1712: Passive background 1720: Monitor 1724: Occlusion 1726: camera 1730a: uniform pattern 1800: method 1805: Steps 1810: steps 1820: steps 1830: steps 1840: steps 1850: steps 1860: steps

藉由參考闡述闡釋性實施例及隨附圖式之以下詳細描述將獲得本發明之特徵、優點及原理之一更佳理解,其中:One of the better understandings of the features, advantages and principles of the invention will be obtained by reference to the following detailed description which sets forth illustrative embodiments and the accompanying drawings, in which:

圖1A展示適用於根據本發明之一些實施例併入之一視網膜刺激裝置;Figure 1A shows a retinal stimulation device suitable for incorporation according to some embodiments of the present invention;

圖1B展示適用於根據本發明之一些實施例併入之包括一顯示器及用於裝納用於操作近眼顯示器之電子器件之一外殼之一基於眼鏡鏡片之視網膜刺激裝置;Figure IB shows a spectacle lens-based retinal stimulation device suitable for use in incorporating a display and a housing for housing electronics for operating the near-eye display, according to some embodiments of the present invention;

圖1C展示適用於根據本發明之一些實施例併入之如圖1B中之一基於眼鏡鏡片之視網膜刺激裝置,其中眼睛已移動且不同顯示器元件已回應於眼睛移動而被啟動;Figure 1C shows a spectacle lens based retinal stimulation device as in Figure 1B suitable for incorporation according to some embodiments of the present invention, where the eye has moved and the different display elements have been activated in response to the eye movement;

圖2A展示適用於根據本發明之一些實施例併入之一軟性隱形鏡片;Figure 2A shows a soft contact lens suitable for incorporation according to some embodiments of the present invention;

圖2B展示適用於根據本發明之一些實施例併入之具有用於以失焦將影像投射於一使用者之視網膜之周邊上之嵌入式光源、光學器件及電子器件之軟性隱形鏡片;Figure 2B shows soft contact lenses with embedded light sources, optics, and electronics for projecting images out of focus onto the periphery of a user's retina suitable for use in incorporating according to some embodiments of the present invention;

圖3展示適用於根據本發明之一些實施例併入之如圖1A至圖2中之眼鏡及隱形鏡片之組件之功能之一系統圖式;Figure 3 shows a system diagram of the functionality of components suitable for glasses and contact lenses as in Figures 1A-2 incorporated according to some embodiments of the present invention;

圖4展示適用於根據本發明之一些實施例併入之包括用於提供清晰視力之一內部區及用於提供失焦以治療屈光不正之一外部區之一鏡片,諸如一隱形鏡片或眼鏡;Figure 4 shows a lens, such as a contact lens or eyeglasses, suitable for incorporation according to some embodiments of the present invention, including an inner zone for providing clear vision and an outer zone for providing defocus to treat refractive errors ;

圖5展示根據一些實施例之其中外部區包括複數個小透鏡之鏡片;Figure 5 shows a lens in which the outer region includes a plurality of lenslets, according to some embodiments;

圖6展示一鏡片,其中外部區包括複數個分離正區以將來自外部區之光聚焦於視網膜前方。Figure 6 shows a lens in which the outer zone includes a plurality of separate positive zones to focus light from the outer zone in front of the retina.

圖7展示根據一些實施例之如由一使用者看見之複數個刺激物及一顯示器上之一影像;Figure 7 shows stimuli as seen by a user and an image on a display, according to some embodiments;

圖8A展示根據一些實施例之用於向視網膜提供近視失焦刺激物之一螢幕上之刺激物;Figure 8A shows an on-screen stimulus for providing a myopic out-of-focus stimulus to the retina, according to some embodiments;

圖8B展示根據一些實施例之以度數為單位之視網膜上之近視失焦刺激物之對應尺寸;Figure 8B shows the corresponding size in degrees of a myopic out-of-focus stimulus on the retina, according to some embodiments;

圖9展示根據一些實施例之描繪一自然場景之一刺激物,諸如一環形花圖案;Figure 9 shows a stimulus depicting a natural scene, such as a flower ring pattern, according to some embodiments;

圖10展示根據一些實施例之圖8A至圖9中展示之刺激物之影像對比度及具有紅色(R)、藍色(B)及綠色(G)值之一直方圖;Figure 10 shows image contrast and histograms with red (R), blue (B) and green (G) values for the stimuli shown in Figures 8A-9, according to some embodiments;

圖11展示根據一些實施例之適用於修改及併入為如本文中描述之一刺激物之一影像;Figure 11 shows an image suitable for modification and incorporation as a stimulus as described herein, according to some embodiments;

圖12展示根據一些實施例之類似於圖11之影像之已經處理以提供一經改良刺激物之一影像;Figure 12 shows an image similar to Figure 11 that has been processed to provide an image of a modified stimulus, according to some embodiments;

圖13展示根據一些實施例之圖11之影像之空間頻率分佈之一影像;Figure 13 shows an image of the spatial frequency distribution of the image of Figure 11 according to some embodiments;

圖14展示根據一些實施例之被用作刺激物之圖13之影像之空間頻率分佈之一影像;Figure 14 shows an image of the spatial frequency distribution of the image of Figure 13 used as a stimulus, according to some embodiments;

圖15展示根據一些實施例之圖8B及圖9中展示之刺激物影像之以循環/度為單位之影像空間頻率及在各頻率下之能量之對數之一曲線圖;Figure 15 shows a graph of the image spatial frequency in cycles/degree and the logarithm of the energy at each frequency for the stimulus images shown in Figure 8B and Figure 9, according to some embodiments;

圖16展示根據一些實施例之用於治療眼睛之屈光不正之一系統;Figure 16 shows a system for treating refractive errors of the eye, according to some embodiments;

圖17展示根據一些實施例之用於將刺激物投射至視網膜上之一光學系統;及Figure 17 shows an optical system for projecting stimuli onto the retina, according to some embodiments; and

圖18展示根據一些實施例之減少一眼睛之屈光不正之一加深之一方法。Figure 18 shows a method of reducing the deepening of the refractive error of an eye, according to some embodiments.

1800:方法 1800: method

1805:步驟 1805: step

1810:步驟 1810: step

1820:步驟 1820: step

1830:步驟 1830: step

1840:步驟 1840: step

1850:步驟 1850: steps

1860:步驟 1860: steps

Claims (79)

一種治療一眼睛以減少近視之一加深之方法,該方法包括: 在一第一時間量測該眼睛之一光學性質; 向該眼睛提供一第一光治療以減少近視之該加深; 在該第一光治療之後之一第二時間量測該眼睛之該光學性質; 產生該第二時間之該眼睛之該光學性質與該第一時間之該眼睛之該光學性質之一比較;及 回應於該比較而向該眼睛提供一第二光治療。 A method of treating an eye to reduce the progression of myopia, the method comprising: measuring an optical property of the eye at a first time; providing a first phototherapy to the eye to reduce the progression of myopia; measuring the optical property of the eye at a second time after the first light treatment; a comparison of the optical property of the eye at which the second time occurred with one of the optical properties of the eye at the first time; and A second light therapy is provided to the eye in response to the comparison. 如請求項1之方法,其中該第一光治療包括一第一光刺激物且該第二光治療包括一第二刺激物,且其中該第二光刺激物係回應於該比較而經組態。The method of claim 1, wherein the first light treatment comprises a first light stimulus and the second light treatment comprises a second light stimulus, and wherein the second light stimulus is configured in response to the comparison . 如請求項2之方法,其中該第一光刺激物包括一位置、一大小、一空間頻率分佈、一強度或相對於一顯示器上之一背景之一強度之一或多者,且該第一光刺激物以該第一光刺激物與該第二光刺激物之間的該位置、該大小、該空間頻率分佈、該強度或相對於該顯示器上之該背景之該強度之該一或多者之一差異不同於該第二光刺激物。The method of claim 2, wherein the first optical stimulus includes one or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on a display, and the first The photostimulant is one or more of the position between the first photostimulus and the second photostimulus, the size, the spatial frequency distribution, the intensity, or the intensity relative to the background on the display. One of the differences is different from the second photostimulant. 如請求項1之方法,其中該比較包括該第二時間與該第一時間的該經量測光學性質之間的一差異且其中回應於該差異而調整該第二治療。The method of claim 1, wherein the comparison includes a difference between the measured optical property at the second time and the first time and wherein the second treatment is adjusted in response to the difference. 如請求項4之方法,其中該差異包括該第一時間與該第二時間之間的該眼睛之該光學性質的一暫態改變且視情況其中該暫態改變包括該眼睛之脈絡膜厚度的一改變。The method of claim 4, wherein the difference comprises a transient change in the optical property of the eye between the first time and the second time and optionally wherein the transient change comprises a choroidal thickness of the eye Change. 如請求項5之方法,其中第一時間發生在一第一天,該第一光治療發生在該第一天或之後之複數週內之複數天,且該第二時間發生在該複數週之後且該第二光治療發生在該第二時間或之後。The method of claim 5, wherein the first time occurs on a first day, the first phototherapy occurs on a plurality of days within a plurality of weeks on or after the first day, and the second time occurs after the plurality of weeks And the second phototherapy occurs at or after the second time. 如請求項5之方法,其中該第一時間發生在一第一天,該第一光治療發生在該第一天或之後之複數天,該第二時間發生在該第一光治療之該複數天之最後一天,且該第二光治療發生在該複數天之該最後一天之後之一第二天。The method of claim 5, wherein the first time occurs on a first day, the first phototherapy occurs on or after the first day, and the second time occurs on the plurality of days of the first phototherapy on the last day of the plurality of days, and the second light treatment occurs on a second day after the last day of the plurality of days. 如請求項5之方法,其中該第一時間發生在一第一天,該第二時間發生在該第一天,該第一光治療發生在該第一天且該第二光治療發生在該第一天之後之一第二天。The method of claim 5, wherein the first time occurs on a first day, the second time occurs on the first day, the first light therapy occurs on the first day and the second light therapy occurs on the One day after the first day. 如請求項1之方法,其中該光學性質包括屈光資料、軸向長度資料或脈絡膜厚度資料之一或多者。The method according to claim 1, wherein the optical properties include one or more of refractive data, axial length data, or choroidal thickness data. 如請求項1之方法,其中該第一光治療將一第一影像投射於該視網膜前方之一焦點,且該第二光治療將一第二影像投射於該視網膜前方之一焦點。The method of claim 1, wherein the first phototherapy projects a first image at a focal point in front of the retina, and the second phototherapy projects a second image at a focal point in front of the retina. 如請求項10之方法,其中該第一影像被聚焦於該視網膜前方之一第一距離處,且該第二影像被聚焦於該視網膜前方之一第二距離處,該第一距離不同於該第二距離。The method of claim 10, wherein the first image is focused at a first distance in front of the retina, and the second image is focused at a second distance in front of the retina, the first distance being different from the second distance. 如請求項10之方法,其中使用包括用於將該第一影像聚焦於該視網膜上之一第一清晰中心區及用於將該第一影像聚焦於該視網膜前方之一第一外部區之一第一鏡片投射該第一影像,且使用包括用於將該第二影像聚焦於該視網膜上之一第二清晰區及用於將該第二影像聚焦於該視網膜前方之一第二外部區之一第二鏡片投射該第二影像。The method of claim 10, wherein using one of a first clear central region for focusing the first image on the retina and a first outer region for focusing the first image in front of the retina The first lens projects the first image and uses a second clear zone for focusing the second image on the retina and a second outer zone for focusing the second image in front of the retina. A second lens projects the second image. 如請求項12之方法,其中該第一影像及該第二影像包括透過該鏡片觀察之一物件之影像。The method of claim 12, wherein the first image and the second image include an image of an object observed through the lens. 如請求項12之方法,其中該第一外部區及該第二外部區包括一非球面輪廓、複數個小透鏡或具有經增加光學屈光度及經減小光學屈光度之交替環形區之一或多者。The method of claim 12, wherein the first outer region and the second outer region comprise one or more of an aspheric profile, a plurality of lenslets, or alternating annular regions of increased optical power and decreased optical power . 如請求項12之方法,其中該第一鏡片與該第二鏡片因下列之一或多者而不同:以該第一外部區之一第一光學屈光度與該第二光學區之一第二光學屈光度之間的一差異;該第一清晰區與該第二清晰區之一直徑之間的一差異;該第一外部區與該第二外部區之一面積之間的一差異;該第一清晰區之一第一面積對該第一外部區之一第一面積之一第一比率與該第二清晰區之一第二面積對該第二外部區之一第二面積之一第二比率之間的一差異;該第一外部區之小透鏡之一第一數目與該第二外部區之小透鏡之一第二數目之間的一差異;該第一外部區之第一複數個小透鏡之一第一光學屈光度與一第二外部區之第二複數個小透鏡之一第二光學屈光度之間的一差異;用於將該第一影像提供至該視網膜前方之該焦點之該第一外部區之一第一區域之一第一百分比與用於將該第二影像提供至該視網膜前方之該焦點之該第二外部區之一第二區域之一第二百分比之間的一差異。The method of claim 12, wherein the first lens and the second lens differ by one or more of: a first optical power of the first outer zone and a second optical power of the second optical zone a difference between diopters; a difference between a diameter of the first clear zone and a diameter of the second clear zone; a difference between an area of the first outer zone and the second outer zone; the first a first ratio of a first area of the clear zone to a first area of the first outer zone and a second ratio of a second area of the second clear zone to a second area of the second outer zone a difference between a first number of lenslets of the first outer zone and a second number of lenslets of the second outer zone; a first plurality of lenslets of the first outer zone a difference between a first optical power of a lens and a second optical power of a second plurality of lenslets of a second outer zone; the first optical power for providing the first image to the focal point in front of the retina Difference between a first percentage of a first area of an outer zone and a second percentage of a second area of the second outer zone for providing the second image to the focal point in front of the retina a difference between. 如請求項10之方法,其中該第一影像以相對於該眼睛之一光軸之一第一角度被聚焦且該第二影像以相對於該眼睛之該光軸之一第二角度遠離中央凹被聚焦。The method of claim 10, wherein the first image is focused at a first angle relative to an optical axis of the eye and the second image is away from the fovea at a second angle relative to the optical axis of the eye is in focus. 如請求項16之方法,其中該第一角度及該第二角度之各者在自5度至35度之一範圍內且視情況在自約15度至35度之一範圍內。The method of claim 16, wherein each of the first angle and the second angle is in a range from 5 degrees to 35 degrees and optionally in a range from about 15 degrees to 35 degrees. 如請求項16之方法,其中回應於該比較而將該第二角度調整至不同於該第一角度的一角度。The method of claim 16, wherein the second angle is adjusted to an angle different from the first angle in response to the comparison. 如請求項10之方法,其中該第一影像被聚焦於該視網膜前方達在自3 D至10 D之一範圍內之一第一量且該第二影像被聚焦於該視網膜前方達在自3 D至10 D之一範圍內且視情況在自4.5 D至8 D之範圍內之一第二量。The method of claim 10, wherein the first image is focused in front of the retina for a first amount in a range from 3D to 10D and the second image is focused in front of the retina for at least 3D A second amount in the range of D to 10 D and optionally in the range of from 4.5 D to 8 D. 如請求項19之方法,其中回應於該比較而將該第二量調整至不同於該第一量之一量。The method of claim 19, wherein the second amount is adjusted to an amount different from the first amount in response to the comparison. 如請求項10之方法,其中該第一影像包括一第一背景上之一第一刺激物且該第二影像包括一第二刺激物及一第二背景。The method of claim 10, wherein the first image includes a first stimulus on a first background and the second image includes a second stimulus and a second background. 如請求項21之方法,其中該第一刺激物之一第一強度對該第一刺激物之該第一背景之一第一強度之一第一比率在自10至50之一範圍內且其中該第二刺激物對一第二背景之一第二強度之一第二比率在自10至50之一範圍內且視情況在自10至30之範圍內。The method of claim 21, wherein a first ratio of a first intensity of the first stimulus to a first intensity of the first background of the first stimulus is in a range from 10 to 50 and wherein A second ratio of the second stimulus to a second intensity of a second background is in a range from 10 to 50 and optionally in a range from 10 to 30. 如請求項22之方法,其中回應於該比較而將該第二比率調整至不同於第一比率之一值。The method of claim 22, wherein the second ratio is adjusted to a value different from the first ratio in response to the comparison. 如請求項21之方法,其中使用一顯示器將該第一刺激物及該第二刺激物投射至該視網膜上。The method of claim 21, wherein a display is used to project the first stimulus and the second stimulus onto the retina. 如請求項10之方法,其中該眼睛曝露至在聚焦該第一影像時之一第一環境照明及在聚焦該第二影像時之一第二環境照明。The method of claim 10, wherein the eye is exposed to a first ambient lighting when focusing on the first image and a second ambient lighting when focusing on the second image. 如請求項25之方法,且其中該第一刺激物之一第一強度對該第一環境照明之一第一比率在自1.5至10之一範圍內且其中該第二刺激物之一第二強度對該第二環境照明之一第二比率在自1.5至10之一範圍內且視情況在自2.5至5之範圍內。The method of claim 25, and wherein a first ratio of a first intensity of the first stimulus to first ambient lighting is in a range from 1.5 to 10 and wherein a second intensity of the second stimulus is The second ratio of intensity to the second ambient lighting is in a range from 1.5 to 10 and optionally in a range from 2.5 to 5. 如請求項26之方法,其中回應於該比較而將該第二比率調整至不同於該第一比率之一值。The method of claim 26, wherein the second ratio is adjusted to a value different from the first ratio in response to the comparison. 如請求項1之方法,其中該第一治療及該第二治療各包括分佈於遠離該眼睛之一中央凹定位之該視網膜之複數個區域上方之複數個刺激物,該複數個刺激物之各者成像於該視網膜前方且在該視網膜上模糊,其中該複數個刺激物經配置以界定該視網膜上之一治療區域。The method of claim 1, wherein each of the first treatment and the second treatment comprises a plurality of stimuli distributed over a plurality of areas of the retina positioned away from a fovea of the eye, each of the plurality of stimuli are imaged in front of and blurred on the retina, wherein the plurality of stimuli are configured to define a treatment area on the retina. 如請求項28之方法,其中該第一治療包括在該視網膜之一第一百分比內之一第一治療區域,且該第二治療包括在該視網膜之一第二百分比內之一第二治療區域且其中回應於該比較而將該第二治療區域調整至不同於該第一治療區域之一量。The method of claim 28, wherein the first treatment includes a first treatment area within a first percentage of the retina, and the second treatment includes a first treatment area within a second percentage of the retina A second treatment area and wherein the second treatment area is adjusted by an amount different from the first treatment area in response to the comparison. 如請求項29之方法,其中該第一治療區域包括該視網膜之一總面積之一第一百分比且該第二治療區域包括該視網膜之該總面積之一第二百分比且其中回應於該比較而將該第二百分比調整至不同於該第一百分比之一量且視情況其中該第一百分比及該第二百分比在該視網膜之該總面積之自約15%至約65%之一範圍內。The method of claim 29, wherein the first treatment area includes a first percentage of a total area of the retina and the second treatment area includes a second percentage of the total area of the retina and wherein the response Adjusting the second percentage to an amount different from the first percentage in the comparison and optionally wherein the first percentage and the second percentage are free from the total area of the retina in the range of about 15% to about 65%. 如請求項29之方法,其中該第一治療區域及該第二治療區域包括環形區域,該等環形區域具有定位於該等環形區域外部之該中央凹。The method of claim 29, wherein the first treatment area and the second treatment area comprise annular areas having the fovea positioned outside the annular areas. 如請求項1之方法,其中該第一治療包括對應於該眼睛之錐體之一第一峰值靈敏度之光之一第一波長且該第二治療包括對應於該眼睛之該等錐體之一第二峰值靈敏度之光之一第二波長且視情況其中該等錐體之該峰值靈敏度對應於在自約420 nm至約440 nm、自約534 nm至約545 nm或564至約580 nm之一範圍內之一波長下之光。The method of claim 1, wherein the first treatment comprises a first wavelength of light corresponding to a first peak sensitivity of a cone of the eye and the second treatment comprises a first wavelength of light corresponding to one of the cones of the eye A second wavelength of light of the second peak sensitivity and optionally wherein the peak sensitivity of the cones corresponds to a wavelength from about 420 nm to about 440 nm, from about 534 nm to about 545 nm, or from 564 to about 580 nm Light at one wavelength within a range. 如請求項32之方法,其中該第一峰值對應於一第一範圍且該第二峰值對應於回應於該比較而不同於該第一範圍之一第二範圍。The method of claim 32, wherein the first peak value corresponds to a first range and the second peak value corresponds to a second range different from the first range in response to the comparison. 如請求項1之方法,其中該第一光治療包括波長之一第一分佈且該第二光治療包括波長之一第二分佈,其中回應於該比較,該第二分佈不同於該第一分佈。The method of claim 1, wherein the first phototherapy includes a first distribution of wavelengths and the second phototherapy includes a second distribution of wavelengths, wherein the second distribution is different from the first distribution in response to the comparison . 如請求項34之方法,其中波長之該第一分佈對應於一第一溫度且該第二分佈對應於一第二溫度,且視情況其中該第一溫度及該第二溫度在自約凱氏5000度至約凱氏11,000度之一範圍內。The method of claim 34, wherein the first distribution of wavelengths corresponds to a first temperature and the second distribution corresponds to a second temperature, and optionally wherein the first temperature and the second temperature are within about Kelvin In the range of 5000 degrees to about 11,000 degrees Kelvin. 如請求項1之方法,其中該第一治療包括一第一天之一第一持續時間且該第二治療包括一第二天之一第二持續時間,回應於該比較,該第二持續時間不同於該第一持續時間。The method of claim 1, wherein the first treatment comprises a first duration of a first day and the second treatment comprises a second duration of a second day, in response to the comparison, the second duration different from the first duration. 如請求項36之方法,其中該第一持續時間在自1小時至8小時之一範圍內且該第二持續時間在自1小時至8小時之一範圍內且視情況在自1.5至3小時之範圍內。The method of claim 36, wherein the first duration is in a range from 1 hour to 8 hours and the second duration is in a range from 1 hour to 8 hours and optionally from 1.5 to 3 hours within the range. 如請求項1之方法,其中該第一治療發生在一天之一第一本地時間且該第二光治療發生在回應於該比較而不同於一天之該第一時間之一天之一第二時間。The method of claim 1, wherein the first treatment occurs at a first local time of day and the second light treatment occurs at a second time of day that is different from the first time of day in response to the comparison. 如請求項38之方法,其中該第一治療在該第一本地時間發生達一第一持續時間且該第二治療在該第二本地時間發生達一第二持續時間,回應於該比較,該第一天之該第一本地時間之該第一持續時間不與該第二天之該第二本地時間之該第二持續時間重疊。The method of claim 38, wherein the first treatment occurs at the first local time for a first duration and the second treatment occurs at the second local time for a second duration, responsive to the comparison, the The first duration of the first local time of the first day does not overlap with the second duration of the second local time of the second day. 如請求項38之方法,其中一天中之時間在自7 am至中午本地時間之一範圍內或在自5 pm至子夜本地時間之一範圍內。The method of claim 38, wherein the time of day is within a range from 7 am to noon local time or within a range from 5 pm to midnight local time. 如請求項38之方法,其中回應於該比較,一天之該第二本地時間不同於一天之該第一本地時間。The method of claim 38, wherein responsive to the comparison, the second local time of day is different from the first local time of day. 如請求項1之方法,其中該第一治療以一第一量之像散將一刺激物之一第一影像投射於該視網膜前方,且該第二治療以一第二量之像散將一第二影像投射於該視網膜前方。The method of claim 1, wherein the first treatment projects a first image of a stimulus in front of the retina with a first amount of astigmatism, and the second treatment projects a first image of a stimulus with a second amount of astigmatism. The second image is projected in front of the retina. 如請求項42之方法,其中回應於該比較,像散之該第一量不同於像散之該第二量。The method of claim 42, wherein responsive to the comparing, the first amount of astigmatism is different from the second amount of astigmatism. 如請求項42之方法,其中像散之該第一量在自0.5 D至4 D之一第一範圍內,且像散之該第二量在自0.5 D至4 D之一第二範圍內。The method of claim 42, wherein the first amount of astigmatism is in a first range from 0.5D to 4D, and the second amount of astigmatism is in a second range from 0.5D to 4D . 如請求項1之方法,其中該眼睛已被診斷為具有每年在自0.25 D至1.5 D之一範圍內之近視之一加深,且其中近視之該加深減少至少0.25 D。The method of claim 1, wherein the eye has been diagnosed as having a progression of myopia in a range from 0.25 D to 1.5 D per year, and wherein the progression of myopia is reduced by at least 0.25 D. 如請求項45之方法,其中近視之該加深每年大於0.6 D,且其中近視之該加深每年減少在自0.6 D至0.9 D之一範圍內之一量。The method of claim 45, wherein the progression of myopia is greater than 0.6 D per year, and wherein the progression of myopia decreases by an amount within a range from 0.6 D to 0.9 D per year. 如請求項1之方法,其中該第一治療包括以一第一強度投射於該視網膜前方之一第一刺激物,且該第二治療包括以一第二強度投射於該視網膜前方之一第二刺激物。The method of claim 1, wherein the first treatment includes projecting a first stimulus in front of the retina with a first intensity, and the second treatment includes projecting a second stimulus in front of the retina at a second intensity. irritant. 如請求項47之方法,其中回應於該比較,該第二強度不同於該第一強度。The method of claim 47, wherein in response to the comparison, the second intensity is different from the first intensity. 如請求項47之方法,該第一強度及該第二強度各包括在1至1000托朗之一範圍內之一亮度。According to the method of claim 47, each of the first intensity and the second intensity includes a brightness in a range of 1 to 1000 Torrands. 如請求項47之方法,其中該第一強度及該第二強度各包括在自100至50,000尼特之一範圍內或在自1至10,000尼特之一範圍內之一照度。The method of claim 47, wherein each of the first intensity and the second intensity comprises an illuminance in a range from 100 to 50,000 nits or in a range from 1 to 10,000 nits. 如請求項1之方法,其中該第一治療包括以一第一空間頻率分佈投射於該視網膜前方之第一複數個刺激物,且其中該第二治療包括以一第二空間頻率分佈投射於該視網膜前方之第二複數個刺激物。The method of claim 1, wherein the first treatment comprises projecting a first plurality of stimuli in front of the retina with a first spatial frequency distribution, and wherein the second treatment comprises projecting a second spatial frequency distribution at the The second plurality of stimuli in front of the retina. 如請求項51之方法,其中回應於該比較,該第二空間頻率分佈不同於該第一空間頻率分佈。The method of claim 51, wherein responsive to the comparison, the second spatial frequency distribution is different from the first spatial frequency distribution. 如請求項52之方法,其中該等第一及第二複數個刺激物之各者包括一長度、邊緣及一强度輪廓分佈以產生如在該視網膜前方或後方成像至該眼睛中之在1X10 -1至2.5X10 1循環/度之一範圍中且視情況在自1X10 -1至1X10 1循環/度之一範圍內之空間頻率。 The method of claim 52, wherein each of the first and second plurality of stimuli includes a length, an edge, and an intensity profile to produce a 1×10 Spatial frequencies in the range from 1 to 2.5×10 1 cycles/degree and optionally in the range from 1×10 −1 to 1×10 1 cycles/degree. 如請求項51之方法,其中如成像於該眼睛中之該等第一及第二複數個刺激物之各者包括以自約1X10 -1至約2.5X10 1循環/度且視情況自1X10 -1至約5X10 0循環/度之一空間頻率範圍之空間頻率之一增加提供空間頻率振幅之一減小之一空間頻率分佈。 The method of claim 51, wherein each of the first and second plurality of stimuli as imaged in the eye comprises cycling/degree from about 1×10 −1 to about 2.5×10 1 and optionally from 1×10 An increase in spatial frequency for a spatial frequency range of 1 to about 5×10 0 cycles/degree provides a spatial frequency distribution with a decrease in spatial frequency amplitude. 如請求項54之方法,其中空間頻率強度之減小針對任意單位之該空間頻率振幅在自1/(空間頻率) 0.5至1/(空間頻率) 2之一範圍內且視情況針對任意單位之該空間頻率振幅自1/(空間頻率)至1/(空間頻率) 2The method of claim 54, wherein the reduction in spatial frequency intensity is in the range from 1/(spatial frequency) 0.5 to 1/(spatial frequency) 2 for arbitrary units of the spatial frequency amplitude and optionally for arbitrary units The spatial frequency amplitude is from 1/(spatial frequency) to 1/(spatial frequency) 2 . 如請求項54之方法,其中空間頻率之該範圍係自約3X10 -1至約1.0X10 1循環/度且視情況在自約3X10 -1至約2.0X10 0之一範圍內且進一步視情況自約3X10 -1至約1.0X10 0The method of claim 54, wherein the range of spatial frequencies is from about 3×10 −1 to about 1.0×10 1 cycles/degree and optionally in a range from about 3×10 −1 to about 2.0×10 0 and further optionally from About 3X10 -1 to about 1.0X10 0 . 如請求項1之方法,其中該第一光治療投射一第一脈衝刺激物之一第一影像且其中該第二光治療投射一第二脈衝刺激物之一第二影像。The method of claim 1, wherein the first phototherapy projects a first image of a first pulsed stimulus and wherein the second phototherapy projects a second image of a second pulsed stimulus. 如請求項57之方法,其中第一脈衝刺激物包括一第一負載循環且該第二脈衝刺激物包括一第二負載循環,回應於該比較,該第二負載循環不同於該第一負載循環。The method of claim 57, wherein the first pulse stimulus comprises a first duty cycle and the second pulse stimulus comprises a second duty cycle, the second duty cycle being different from the first duty cycle in response to the comparison . 如請求項57之方法,其中該第一脈衝刺激物包括一第一頻率且該第二脈衝刺激物包括回應於該比較而不同於該第一頻率之一第二頻率。The method of claim 57, wherein the first pulsatile stimulus includes a first frequency and the second pulsatile stimulus includes a second frequency that is different from the first frequency in response to the comparison. 如請求項1之方法,其中該第一光治療將一第一刺激物之一第一影像投射至該視網膜前方或後方之一第一位置,且其中該第二光治療將一第二刺激物投射於該視網膜前方或後方之一第二位置處。The method of claim 1, wherein the first phototherapy projects a first image of a first stimulus to a first location in front or behind the retina, and wherein the second phototherapy projects a second stimulus projected at a second location in front or behind the retina. 如請求項60之方法,其中回應於該比較,該第二位置不同於該第一位置。The method of claim 60, wherein responsive to the comparison, the second location is different from the first location. 如請求項61之方法,其中該第一位置在該視網膜之一第一側上且回應於該比較,該第二位置在該視網膜之與該第一側相對之一第二側上。The method of claim 61, wherein the first location is on a first side of the retina and responsive to the comparison, the second location is on a second side of the retina opposite the first side. 如請求項1之方法,其中該光學性質包括一軸向長度、一雙目量測軸向長度、一屈光、一顯性屈光、一睫狀肌麻痹屈光、一自動屈光、一雙目自動屈光、一開放場自動屈光、一雙目開放場自動屈光、一掃描狹縫自動屈光、一波前圖、一波前係數、一球體係數、一圓柱體係數、一彗形像差、一球面像差或一三葉之一或多者。The method of claim 1, wherein the optical properties include an axial length, a binocular measured axial length, a refraction, a dominant refraction, a cycloplegic refraction, an automatic refraction, a Binocular automatic refraction, one open field automatic refraction, one binocular open field automatic refraction, one scanning slit automatic refraction, one wavefront map, one wavefront coefficient, one sphere coefficient, one cylinder coefficient, one One or more of coma, a spherical aberration or a trefoil. 如請求項63之方法,其中該光學性質包括屈光資料,且其中該第一時間與該第二時間之間的該屈光資料的一改變對應於該眼睛之軸向長度的一改變。The method of claim 63, wherein the optical property comprises refractive data, and wherein a change in the refractive data between the first time and the second time corresponds to a change in axial length of the eye. 如請求項64之方法,其中回應於該屈光資料之該改變而判定軸向長度之該改變。The method of claim 64, wherein the change in axial length is determined in response to the change in the refractive data. 如請求項1之方法,其中向該眼睛提供一雙目固定刺激物以在該第一時間及該第二時間量測該光學性質。The method of claim 1, wherein a binocular fixed stimulus is provided to the eye to measure the optical property at the first time and the second time. 如請求項1之方法,其中針對該第一治療及該第二治療使用一對側眼治療該眼睛。The method of claim 1, wherein the eye is treated with a pair of lateral eyes for the first treatment and the second treatment. 如請求項1之方法,其中在該第一治療期間使用一第一屈光矯正來矯正該眼睛之一第一屈光不正以提供一第一清晰中心區上之觀察且針對該第二治療在一第二清晰中心區上使用一第二屈光矯正來矯正該眼睛之一第二屈光不正。The method of claim 1, wherein during the first treatment a first refractive correction is used to correct a first refractive error of the eye to provide a view on a first clear central zone and for the second treatment during the A second refractive error of the eye is corrected using a second refractive correction on a second clear central zone. 如請求項68之方法,其中回應於該比較,該第一屈光矯正不同於該第二屈光矯正。The method of claim 68, wherein responsive to the comparison, the first refractive correction is different from the second refractive correction. 一種用於減少一眼睛之近視之一加深之設備,該設備包括: 一光源,其用於將一第一刺激物之一影像提供於該眼睛之一視網膜前方於遠離該視網膜之一位置處;及 一處理器,其可操作地耦合至該光源以回應於來自該第一刺激物對該眼睛之一光學性質的一改變而將該刺激物調整至一第二刺激物。 An apparatus for reducing the progression of myopia in an eye, the apparatus comprising: a light source for providing an image of a first stimulus in front of a retina of the eye at a location remote from the retina; and A processor operatively coupled to the light source to adjust the stimulus to a second stimulus in response to a change in an optical property of the eye from the first stimulus. 如請求項70之設備,其中該處理器經組態以產生使用該第一刺激物之一第一光治療之前之一第一時間之該眼睛之該光學性質與在該第一光治療之後之一第二時間之該眼睛之該光學性質之一比較且回應於該比較而組態該第二刺激物。The apparatus of claim 70, wherein the processor is configured to generate the optical property of the eye at a first time before a first light treatment with the first stimulus and after the first light treatment A comparison of the optical properties of the eye at a second time and configuring the second stimulus in response to the comparison. 如請求項71之設備,其中該光源包括一顯示器且該第一刺激物及該第二刺激物各呈現於該顯示器上且其中回應於該比較,呈現於該顯示器上之該第二刺激物經組態以具有一位置、一大小、一空間頻率分佈、一強度或相對於該顯示器上之一背景之一強度之一或多者。The apparatus of claim 71, wherein the light source includes a display and the first stimulus and the second stimulus are each presented on the display and wherein in response to the comparison, the second stimulus presented on the display is Configured to have one or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity relative to a background on the display. 如請求項72之設備,其中該第二刺激物之該位置、該大小、該空間頻率分佈、該強度或相對於該顯示器上之一背景之該強度之該一或多者不同於該第一刺激物之一位置、一大小、一空間頻率分佈、一強度或相對於該顯示器上之一背景之一強度之一或多者。The device of claim 72, wherein one or more of the location, the size, the spatial frequency distribution, the intensity, or the intensity relative to a background on the display of the second stimulus is different from the first One or more of a position, a size, a spatial frequency distribution, an intensity, or an intensity of the stimulus relative to a background on the display. 如請求項72之設備,其中該第一刺激物包括複數個第一刺激物,且該第二刺激物包括複數個第二刺激物,且其中該第二複數個刺激物之各者係回應於該比較而經組態。The device of claim 72, wherein the first stimulus comprises a plurality of first stimuli, and the second stimulus comprises a plurality of second stimuli, and wherein each of the second plurality of stimuli is responsive to The comparison is configured. 如請求項70之設備,其進一步包括用於將該第一刺激物及該第二刺激物之該影像投射於該視網膜前方且遠離該中央凹以在該視網膜上提供該第一刺激物及該第二刺激物之一模糊影像之一或多個光學結構。The device according to claim 70, further comprising projecting the image of the first stimulus and the second stimulus in front of the retina and away from the fovea to provide the first stimulus and the image on the retina. One of the second stimuli blurs the image of one or more optical structures. 如請求項75之設備,其中該一或多個光學結構包括一鏡片、一稜鏡、一楔、一光學玻璃片、一繞射光學器件、一菲涅爾鏡片、複數個階梯光柵、一非球面輪廓、一液晶、複數個小透鏡、正光學屈光度之複數個區域、具有經增加光學屈光度之複數個環形區域或在具有經增加光學屈光度之區域之間延伸之複數個間隙之一或多者。The device of claim 75, wherein the one or more optical structures include a lens, a rim, a wedge, an optical glass plate, a diffractive optical device, a Fresnel lens, a plurality of echelle gratings, a non- One or more of a spherical profile, a liquid crystal, lenslets, areas of positive optical power, annular areas of increased optical power, or gaps extending between areas of increased optical power . 如請求項75之設備,其中該一或多個光學結構包括用於提供該第一刺激物之一第一光學結構及用於提供該第二刺激物之一第二光學結構,該第二光學結構回應於該比較而經組態。The device of claim 75, wherein the one or more optical structures include a first optical structure for providing the first stimulus and a second optical structure for providing the second stimulus, the second optical The structure is configured in response to the comparison. 如請求項77之設備,其中該第二光學結構回應於該比較而經組態以具有一焦距、一傾斜角、一繞射圖案、一階梯光柵圖案、一非球面輪廓、一液晶折射率改變、正光學屈光度之區域之位置或間隙之一或多者。The apparatus of claim 77, wherein the second optical structure is configured in response to the comparison to have a focal length, a tilt angle, a diffraction pattern, an echelle pattern, an aspheric profile, a liquid crystal refractive index change 1. One or more of the position or gap of the area of positive optical diopter. 如請求項70之設備,其中該處理器經組態以具有用於執行前述方法請求項中任一項之方法之指令。The apparatus of claim 70, wherein the processor is configured with instructions for performing the method of any one of the preceding method claims.
TW111138636A 2021-10-12 2022-10-12 Adaptive system for the treatment of myopia progression TW202327541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163262419P 2021-10-12 2021-10-12
US63/262,419 2021-10-12

Publications (1)

Publication Number Publication Date
TW202327541A true TW202327541A (en) 2023-07-16

Family

ID=85988032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111138636A TW202327541A (en) 2021-10-12 2022-10-12 Adaptive system for the treatment of myopia progression

Country Status (2)

Country Link
TW (1) TW202327541A (en)
WO (1) WO2023064792A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219947B2 (en) * 2012-05-25 2019-03-05 Ojai Retinal Technology, Llc System and process for retina phototherapy
US10137311B2 (en) * 2014-07-17 2018-11-27 Troy HUDSON Light therapy glasses and mobile application
KR102520143B1 (en) * 2016-07-25 2023-04-11 매직 립, 인코포레이티드 Light field processor system
EP4003250A4 (en) * 2019-07-31 2023-08-23 Acucela Inc. Device for projecting images on the retina

Also Published As

Publication number Publication date
WO2023064792A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
US11275259B2 (en) Projection of defocused images on the peripheral retina to treat refractive error
US11583696B2 (en) Device for projecting images on the retina
WO2021252319A1 (en) Projection of defocused images on the peripheral retina to treat refractive error
US11497931B2 (en) Lens with asymmetric projection to treat astigmatism
TWI821346B (en) Electronic apparatus
US10802298B2 (en) Eye mounted device for controlling focusing disorders
US10331207B1 (en) Light management for image and data control
WO2021252318A1 (en) Lens with asymmetric projection to treat astigmatism
KR20230020391A (en) Stick on device using peripheral defocus to treat progressive refractive error
TW202131060A (en) Contact lens solution for myopia management
TW202327541A (en) Adaptive system for the treatment of myopia progression
US20230144121A1 (en) Device for projecting images on the retina
US20230411021A1 (en) System and method for determining an appropriate moment for modifying or changing an initial myopia control solution
Larry Baitch et al. Can Augmented Reality Slow Myopia?
Herman et al. Light, eyes and vision