JPWO2021240402A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021240402A5
JPWO2021240402A5 JP2022572489A JP2022572489A JPWO2021240402A5 JP WO2021240402 A5 JPWO2021240402 A5 JP WO2021240402A5 JP 2022572489 A JP2022572489 A JP 2022572489A JP 2022572489 A JP2022572489 A JP 2022572489A JP WO2021240402 A5 JPWO2021240402 A5 JP WO2021240402A5
Authority
JP
Japan
Prior art keywords
power
power transmission
vehicle
pad
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022572489A
Other languages
Japanese (ja)
Other versions
JP2023527817A (en
Publication date
Priority claimed from US16/885,010 external-priority patent/US11505077B2/en
Application filed filed Critical
Publication of JP2023527817A publication Critical patent/JP2023527817A/en
Publication of JPWO2021240402A5 publication Critical patent/JPWO2021240402A5/ja
Pending legal-status Critical Current

Links

Description

電力受信パッド28に関して、電力受信パッド28は、車両10の車両本体16の底面18上に位置され得る。幾つかの実施形態においては、磁気センサ22と同様に、電力受信パッド28は、電力送信パッド26と磁界の中心と整列させるために車両10の縦軸線に沿って位置され得る。しかし、上述したように、電力送信パッド26が車線の中心に位置していない例においては、電力受信パッド28の位置を、車両10の底面18に沿って固定的にまたは移動可能に再配置することができる。幾つかの実施形態においては、電力受信パッド28は、磁気センサ22と同じ鉛直面上に位置している。電力受信パッド2は、誘導電力送信パッドから電荷を無線で受信するための、誘導コイルなどのような任意の適切な無線電力受信装置であってよい。 With respect to the power receiving pad 28, the power receiving pad 28 may be located on the bottom surface 18 of the vehicle body 16 of the vehicle 10. In some embodiments, similar to the magnetic sensor 22, the power receiving pad 28 may be located along the longitudinal axis of the vehicle 10 to align with the power transmitting pad 26 and the center of the magnetic field. However, as mentioned above, in instances where the power transmitting pad 26 is not located in the center of the lane, the position of the power receiving pad 28 may be fixedly or movably relocated along the bottom surface 18 of the vehicle 10. In some embodiments, the power receiving pad 28 is located on the same vertical plane as the magnetic sensor 22. The power receiving pad 28 may be any suitable wireless power receiving device, such as an inductive coil, for wirelessly receiving an electric charge from the inductive power transmitting pad.

送信器回路66は、無線で電力を送信するために、この技術における技量を有する者にはよく知られている、フルブリッジインバータ72および、例えば、電力送信パッド26のコイル36であるコイル78などのような構成要素を含んでいる。送信器回路66は、例示の目的のみのために示されており、それに制限されないということは理解されるべきである。送信器回路66はまた、開状態と閉状態との間で動作できる中継器76を含むことができる。ずれ推定モードのときは、本明細書に開示されているように、送信器回路66の中継器76は、送信器回路66cなどのような送信器回路66を、ずれを推定するための適切な周波数に調整するために開状態に切り替えられる。電力送信モードのときは、本明細書に開示されているように、送信器回路66a、66bなどのような送信器回路66の中継器76は、電力を送信するための適切な周波数に送信器回路66を調整するために閉状態に切り替えられる。幾つかの実施形態においては、送信器回路66はずれ推定モードのときは第1周波数で動作し、送信器回路6は電力送信モードのときは、干渉を回避するために、第1周波数とは異なる第2周波数で動作する。本明細書に記述されているように、例えば、送信器回路66は、ずれ推定モードのときは4kHzと5kHzとの間で動作でき、送信器回路66は、電力送信モードのときは70kHzと90kHzとの間で動作できる。 The transmitter circuit 66 includes components such as a full bridge inverter 72 and a coil 78, e.g., the coil 36 of the power transmission pad 26, well known to those skilled in the art for wirelessly transmitting power. It should be understood that the transmitter circuit 66 is shown for illustrative purposes only and is not limited thereto. The transmitter circuit 66 may also include a repeater 76 operable between an open state and a closed state. When in a misalignment estimation mode, as disclosed herein, the repeater 76 of the transmitter circuit 66 is switched to an open state to tune the transmitter circuit 66, e.g., transmitter circuit 66c, to an appropriate frequency for misalignment estimation. When in a power transmission mode, as disclosed herein, the repeater 76 of the transmitter circuit 66, e.g., transmitter circuit 66a, 66b, is switched to a closed state to tune the transmitter circuit 66 to an appropriate frequency for transmitting power. In some embodiments, the transmitter circuit 66 operates at a first frequency when in the offset estimation mode, and the transmitter circuit 66 operates at a second frequency, different from the first frequency, when in the power transmission mode to avoid interference. As described herein, for example, the transmitter circuit 66 can operate between 4 kHz and 5 kHz when in the offset estimation mode, and the transmitter circuit 66 can operate between 70 kHz and 90 kHz when in the power transmission mode.

訓練済み人工ニューラルネットワークによる横方向のずれの推定に基づいて、電力受信パッド28の位置は、電力送信パッド26が電力送信モードである間に、横方向のずれを正すためにブロック208において調整されることができる。これは、車両10への電力転送を向上するために、車両10上の電力受信パッド28が電力送信パッド26と整列することを確実にする。幾つかの実施形態においては、車両10は、車両10の操舵を自動的に調整するために電力受信システム20と通信状態にある操舵モジュールを含むことができる。幾つかの実施形態においては、視覚または聴覚による通知などのような通知を、車両10のエンターテイメントディスプレイシステムなどのような出力装置304(図8)を介して車両10の運転手に提供することができる。通知は、電力受信パッド28を電力送信パッド26と整列させるためには、何れの方向に、およびどの程度車両10を調整すべきかを示すことができる。他の実施形態においては、車両10の底面18に関する電力受信パッド28の位置を、電力送信パッド26と整列させるために手動または自動の何れかで調整することができる。例えば、電力受信パッド28はトラックシステム29(図1)上に位置されることができ、またはアクチュエータが、車両の横方向において電力受信パッド28の位置を機械的に調整するために提供されることができる。自動的に調整されると、運転手を煩わす、および/または、道路に対して車両10の位置を再配置する必要性がなくなる。 Based on the estimation of the lateral misalignment by the trained artificial neural network, the position of the power-receiving pad 28 can be adjusted in block 208 to correct the lateral misalignment while the power- transmitting pad 26 is in power transmission mode. This ensures that the power-receiving pad 28 on the vehicle 10 is aligned with the power-transmitting pad 26 to improve power transfer to the vehicle 10. In some embodiments, the vehicle 10 can include a steering module in communication with the power-receiving system 20 to automatically adjust the steering of the vehicle 10. In some embodiments, a notification, such as a visual or audio notification, can be provided to the driver of the vehicle 10 via an output device 304 ( FIG. 8 ), such as an entertainment display system of the vehicle 10. The notification can indicate in which direction and how much the vehicle 10 should be adjusted to align the power-receiving pad 28 with the power-transmitting pad 26. In other embodiments, the position of the power-receiving pad 28 relative to the bottom surface 18 of the vehicle 10 can be adjusted, either manually or automatically, to align with the power-transmitting pad 26. For example, the power-receiving pad 28 can be located on a track system 29 (FIG. 1) or an actuator can be provided to mechanically adjust the position of the power-receiving pad 28 laterally of the vehicle, without having to bother the driver and/or reposition the vehicle 10 relative to the roadway when automatically adjusted.

Claims (16)

車両であって、
無線で電力を受信するための電力受信パッドと、
電力送信パッドの磁界を測定し、磁界データを取得するための複数の磁気センサと、
1つ以上のプロセッサと、
1つ以上のメモリモジュールであって、前記車両の移動中に、前記1つ以上のプロセッサにより実行されると前記1つ以上のプロセッサに、
前記複数の磁気センサから前記磁界データを受信させ、
前記電力送信パッドの磁界軸線に対する前記電力受信パッドの横方向のずれを推定させ、
前記電力受信パッドと前記電力送信パッドとの間の鉛直方向のオフセットを推定させる、
コンピュータ読み取り可能命令を格納しているコンピュータ読み取り可能媒体を備えている、1つ以上のメモリモジュールと、
前記推定された鉛直方向のオフセットに基づいて、前記車両のサスペンションを調整するためのサスペンション制御モジュールと、を備える、車両。
A vehicle,
a power receiving pad for wirelessly receiving power;
a plurality of magnetic sensors for measuring a magnetic field of the power transmission pad and acquiring magnetic field data;
one or more processors;
one or more memory modules , which when executed by the one or more processors while the vehicle is moving, cause the one or more processors to:
receiving the magnetic field data from the plurality of magnetic sensors;
estimating a lateral offset of the power-receiving pad relative to a magnetic field axis of the power-transmitting pad;
estimating a vertical offset between the power receiving pad and the power transmitting pad;
one or more memory modules having a computer readable medium storing computer readable instructions;
a suspension control module for adjusting a suspension of the vehicle based on the estimated vertical offset.
前記横方向のずれは、人工ニューラルネットワークにより推定される、請求項1の車両。 The vehicle of claim 1, wherein the lateral deviation is estimated by an artificial neural network. 前記車両は、前記車両の前端部に近接して位置している少なくとも3つの磁気センサを含んでいる、請求項1の車両。 The vehicle of claim 1, wherein the vehicle includes at least three magnetic sensors located proximate a front end of the vehicle. 前記少なくとも3つの磁気センサは、前記磁界のX成分とY成分を検出するように配置されている、請求項3の車両。 The vehicle of claim 3, wherein the at least three magnetic sensors are positioned to detect an X component and a Y component of the magnetic field. 前記横方向のずれを示すための通知装置を更に備えている、請求項1の車両。 The vehicle of claim 1, further comprising a notification device for indicating the lateral deviation. 動的電力転送のための電力送信システムであって、
複数の電力送信パッドと、
1つ以上のプロセッサと、
1つ以上のメモリモジュールと、を備え、
前記1つ以上のメモリモジュールは、前記1つ以上のプロセッサにより実行されると前記1つ以上のプロセッサに、
前記複数の電力送信パッドの磁界を検出する車両の複数の磁気センサによって検出された磁界データを受信させ、
前記磁界に対する前記車両の位置を検出させ、
前記磁界に対する前記車両の前記位置に基づいて、前記複数の電力送信パッドを順次起動させる、
コンピュータ読み取り可能命令を格納しているコンピュータ読み取り可能媒体を備えている、電力送信システム。
1. A power transmission system for dynamic power transfer, comprising:
A plurality of power transmission pads;
one or more processors;
one or more memory modules;
The one or more memory modules, when executed by the one or more processors, cause the one or more processors to:
receiving magnetic field data detected by a plurality of magnetic sensors of the vehicle detecting magnetic fields of the plurality of power transmission pads;
Detecting a position of the vehicle relative to the magnetic field;
sequentially activating the plurality of power transmission pads based on the position of the vehicle relative to the magnetic field.
A power transmission system comprising a computer readable medium having computer readable instructions stored thereon.
前記電力送信パッドの少なくとも幾つかは、重なり領域において、隣接する電力送信パッドの一部と重なっている、請求項の電力送信システム。 The power transmission system of claim 6 , wherein at least some of the power transmission pads overlap a portion of an adjacent power transmission pad in an overlapping region. 前記重なり領域においては、前記複数の電力送信パッドの第1電力送信パッドは、第1の速度で減少する電力出力を有しており、前記複数の電力送信パッドの第2電力送信パッドは、第2の速度で増加する電力出力を有しており、前記第1電力送信パッドから前記第2電力送信パッドまで一様な電力を提供するように前記第1の速度は前記第2の速度に対応している、請求項の電力送信システム。 8. The power transmission system of claim 7, wherein in the overlap region, a first power transmission pad of the plurality of power transmission pads has a power output that decreases at a first rate and a second power transmission pad of the plurality of power transmission pads has a power output that increases at a second rate, the first rate corresponding to the second rate to provide uniform power from the first power transmission pad to the second power transmission pad. 前記複数の電力送信パッドはそれぞれ、ずれ推定モードから電力送信モードに切り替わり、
前記複数の電力送信パッドは、前記ずれ推定モードのときは、前記車両の前記複数の磁気センサにより受信される磁界を生成し、
前記複数の電力送信パッドは、前記電力送信モードのときは、前記車両の電力受信パッドに電力を送信する、請求項の電力送信システム。
each of the plurality of power transmission pads is switched from a deviation estimation mode to a power transmission mode;
the plurality of power transmission pads generate a magnetic field that is received by the plurality of magnetic sensors of the vehicle when in the offset estimation mode;
7. The power transmission system of claim 6 , wherein the plurality of power transmitting pads transmit power to a power receiving pad of the vehicle when in the power transmitting mode.
前記コンピュータ読み取り可能命令は、前記1つ以上のプロセッサにより実行されると前記1つ以上のプロセッサに、前記車両の速度を推定させる、請求項の電力送信システム。 The power transmission system of claim 9 , wherein the computer readable instructions, when executed by the one or more processors, cause the one or more processors to estimate a speed of the vehicle. 前記複数の電力送信パッドは、前記ずれ推定モードのときは第1周波数で動作し、前記電力送信モードのときは第2周波数で動作し、前記第1周波数は前記第2周波数とは異なる、請求項の電力送信システム。 10. The power transmission system of claim 9, wherein the plurality of power transmission pads operate at a first frequency when in the offset estimation mode and operate at a second frequency when in the power transmission mode, the first frequency being different from the second frequency. 前記コンピュータ読み取り可能命令は、前記1つ以上のプロセッサにより実行されると前記1つ以上のプロセッサに、電力受信パッドと前記複数の電力送信パッドとの間の推定された鉛直方向のオフセットに基づいて、前記複数の電力送信パッドの前記磁界の大きさを調整させる、請求項の電力送信システム。 7. The power transmission system of claim 6, wherein the computer readable instructions, when executed by the one or more processors, cause the one or more processors to adjust the magnitude of the magnetic field of the plurality of power transmitting pads based on an estimated vertical offset between a power receiving pad and the plurality of power transmitting pads. 車両の移動中に動的無線電力転送を前記車両に提供するための方法であって、
車両の電力受信パッドにおいて、複数の電力送信パッドから電力を無線で受信することと、
複数の磁気センサを使用して、磁界データを取得するために、前記複数の電力送信パッドのそれぞれにより提供される磁界を検出することと、
前記磁界を使用して、前記複数の電力送信パッドの磁界軸線に対する前記電力受信パッドの横方向のずれを推定することと、
前記磁界を使用して、前記複数の電力送信パッドに対する前記電力受信パッドの鉛直方向のオフセットを推定することと、
前記電力受信パッドの前記横方向のずれを正すために前記車両の位置を調整することと、
前記推定された鉛直方向のオフセットに基づいて、前記車両に、前記車両のサスペンションを調整するように指示することと、
を備えている、方法。
1. A method for providing dynamic wireless power transfer to a vehicle while the vehicle is moving , comprising:
wirelessly receiving power from a plurality of power transmitting pads at a power receiving pad of the vehicle;
detecting a magnetic field provided by each of the plurality of power transmission pads using a plurality of magnetic sensors to obtain magnetic field data;
using the magnetic field to estimate a lateral offset of the power receiving pad relative to a magnetic field axis of the plurality of power transmitting pads;
using the magnetic field to estimate a vertical offset of the power receiving pad relative to the plurality of power transmitting pads;
adjusting the position of the vehicle to correct the lateral misalignment of the power-receiving pad ;
commanding the vehicle to adjust a suspension of the vehicle based on the estimated vertical offset;
The method comprises:
前記推定された鉛直方向のオフセットに基づいて、前記複数の電力送信パッドに、前記磁界の大きさを調整するように指示することを更に備えている、請求項13の方法。 14. The method of claim 13 , further comprising instructing the plurality of power transmission pads to adjust a magnitude of the magnetic field based on the estimated vertical offset. 前記複数の電力送信パッドのそれぞれの動作を、ずれ推定モードから電力送信モードに切り替えることと、
前記ずれ推定モードのときに、車両のずれを推定することと、
前記電力送信モードのときに、前記車両の前記電力受信パッドに電力を送信することと、を更に備えている、請求項13の方法。
switching operation of each of the plurality of power transmission pads from a deviation estimation mode to a power transmission mode;
estimating a deviation of a vehicle when in the deviation estimation mode;
The method of claim 13 , further comprising: transmitting power to the power receiving pad of the vehicle when in the power transmitting mode.
前記複数の電力送信パッドの第1電力送信パッドの電力出力を、その前方端部において第1の速度で減少させることと、
前記複数の電力送信パッドの第2電力送信パッドの電力出力を、その後方端部において、前記第1の速度に対応する第2の速度で増加させることと、を更に備え、
前記第1電力送信パッドの前記前方端部は前記第2電力送信パッドの前記後方端部と重なり領域において重なり、前記第1電力送信パッド及び前記第2電力送信パッドに亘って一様な電力を提供する、請求項13の方法。
decreasing a power output of a first power transmission pad of the plurality of power transmission pads at a forward end thereof at a first rate;
increasing the power output of a second power transmission pad of the plurality of power transmission pads at a rear end thereof at a second rate corresponding to the first rate;
14. The method of claim 13, wherein the front end of the first power transmission pad overlaps the rear end of the second power transmission pad at an overlap region to provide uniform power across the first power transmission pad and the second power transmission pad.
JP2022572489A 2020-05-27 2021-05-26 Systems and methods for wireless vehicle power transfer and deviation estimation Pending JP2023527817A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/885,010 2020-05-27
US16/885,010 US11505077B2 (en) 2020-05-27 2020-05-27 Systems and methods for wireless vehicle power transfer and misalignment estimation
PCT/IB2021/054599 WO2021240402A1 (en) 2020-05-27 2021-05-26 Systems and methods for wireless vehicle power transfer and misalignment estimation

Publications (2)

Publication Number Publication Date
JP2023527817A JP2023527817A (en) 2023-06-30
JPWO2021240402A5 true JPWO2021240402A5 (en) 2024-04-23

Family

ID=76269772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022572489A Pending JP2023527817A (en) 2020-05-27 2021-05-26 Systems and methods for wireless vehicle power transfer and deviation estimation

Country Status (4)

Country Link
US (1) US11505077B2 (en)
EP (1) EP4157668A1 (en)
JP (1) JP2023527817A (en)
WO (1) WO2021240402A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482892B2 (en) 2020-12-07 2022-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for wireless vehicle power transfer to vehicle devices using misalignment sensors
US11938875B2 (en) * 2020-12-18 2024-03-26 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for wireless power transfer and data modulation for vehicles

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421600B1 (en) * 1994-05-05 2002-07-16 H. R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
US6275753B1 (en) * 2000-02-15 2001-08-14 Meritor Heavy Vehicle Systems, Llc Method and system for detecting and adjusting wheel misalignment of a vehicle
US8033349B2 (en) * 2009-03-12 2011-10-11 Ford Global Technologies, Inc. Auto-seek electrical connection for a plug-in hybrid electric vehicle
JP2011166992A (en) * 2010-02-12 2011-08-25 Toyota Motor Corp Power supply apparatus
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
WO2011146661A2 (en) 2010-05-19 2011-11-24 Qualcomm Incorporated Adaptive wireless energy transfer system
JP2012034468A (en) * 2010-07-29 2012-02-16 Toyota Industries Corp Resonance type non-contact power feeding system for vehicle
EP2632762B1 (en) * 2010-10-29 2017-05-31 Qualcomm Incorporated(1/3) Wireless energy transfer via coupled parasitic resonators
DE102010054909A1 (en) * 2010-12-17 2012-06-21 Daimler Ag Motor vehicle device with a loading and / or unloading unit
US10090885B2 (en) * 2011-04-13 2018-10-02 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
US9012265B2 (en) * 2012-03-26 2015-04-21 Ge Yi Magnet assisted alignment method for wafer bonding and wafer level chip scale packaging
DE102012217779A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Charge control unit and method for setting a gap for inductive charging
US9465064B2 (en) * 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
EP2949022B1 (en) * 2013-01-24 2020-01-15 Jaguar Land Rover Limited Charging indicator
KR20150000028A (en) 2013-06-20 2015-01-02 삼성전자주식회사 Wireless power transfer system with ability to detect charging circumstances
US10432025B2 (en) * 2013-06-28 2019-10-01 Polyvalor, Limited Partnership Smart multicoil inductively-coupled array for wireless power transmission
KR101420366B1 (en) * 2013-07-23 2014-07-16 김현민 Wireless power transfer apparatus for electric vehicle
US10075028B2 (en) 2013-12-03 2018-09-11 Utah State University Determining physical alignment between magnetic couplers for wireless power transfer
US9815379B2 (en) 2014-01-21 2017-11-14 Qualcomm Incorporated Systems and methods for electric vehicle induction coil alignment
US9626258B2 (en) 2014-03-26 2017-04-18 Qualcomm Incorporated Systems, methods, and apparatus related to wireless charging management
US9608465B2 (en) * 2014-04-18 2017-03-28 Qualcomm Incorporated Devices, systems, and method for power control of dynamic electric vehicle charging systems
US9511674B2 (en) * 2014-04-18 2016-12-06 Qualcomm Incorporated Base distribution network for dynamic wireless charging
EP3140680B1 (en) * 2014-05-07 2021-04-21 WiTricity Corporation Foreign object detection in wireless energy transfer systems
WO2015196296A1 (en) 2014-06-25 2015-12-30 Elix Wireless Charging Systems Inc. Methods and apparatus for automatic alignment of wireless power transfer systems
AU2015302418B2 (en) * 2014-08-12 2020-08-20 Apple Inc. System and method for power transfer
US10135496B2 (en) * 2014-09-05 2018-11-20 Momentum Dynamics Corporation Near field, full duplex data link for use in static and dynamic resonant induction wireless charging
DE102015113723A1 (en) * 2015-04-09 2016-10-13 Weidmüller Interface GmbH & Co. KG Apparatus for contactless inductive energy transmission and method of operation for such a device
DE102015217274A1 (en) * 2015-09-10 2017-03-16 Robert Bosch Gmbh Method for inductive energy transmission and apparatus for operating an inductive energy transmission device
WO2017102029A1 (en) * 2015-12-18 2017-06-22 Volvo Truck Corporation A method for positioning a vehicle using an electric road system and a vehicle operated using this method
JP2017147823A (en) * 2016-02-16 2017-08-24 Tdk株式会社 Wireless power reception device and wireless power transmission system
US11207989B2 (en) * 2016-03-22 2021-12-28 University Of Georgia Research Foundation, Inc. Wireless charging of electric vehicles
US10293700B2 (en) 2016-12-22 2019-05-21 Hyundai America Technical Center, Inc Wireless charging system for electric vehicle with adjustable flux angle
KR101936180B1 (en) * 2016-12-26 2019-01-08 엘지이노텍 주식회사 Wireless Charging Method and Apparatus and System therefor
US10391875B2 (en) * 2017-07-21 2019-08-27 Witricity Corporation Vehicle alignment for wireless charging
CN107571753B (en) 2017-09-07 2019-11-05 江苏大学 A kind of dynamic radio charging Automatic Alignment System and its control method based on electric bus docking process
US10784725B2 (en) * 2017-09-27 2020-09-22 Utah State University Vehicle misalignment measurement and compensation in dynamic wireless charging applications
CN108258766A (en) * 2018-02-06 2018-07-06 浙江大学 Autonomous underwater vehicle platform berths formula wireless charging device
CN108616170A (en) * 2018-07-17 2018-10-02 宁波微鹅电子科技有限公司 Electric energy transmitting circuit, circuit module and apply its wireless charging device
DE102018219403A1 (en) * 2018-11-14 2020-05-14 Robert Bosch Gmbh Method for operating an inductive charging system

Similar Documents

Publication Publication Date Title
CN105467360B (en) For determining the method and layout determination unit of the layout of electric vehicle
CN105083046B (en) Localization by ultrasonic for charging system for motor-driven vehicle
JP6458084B2 (en) Non-contact power transmission system
SE0201740D0 (en) Electronic routing system
JP2006345588A (en) Noncontact power supply and power supply system for autonomous mobile unit
US20190210480A1 (en) Wireless Charging Alignment Systems
CN105083045A (en) Sonic triangulation method for locating vehicles for hands-free electric vehicle charging
JP2023527817A (en) Systems and methods for wireless vehicle power transfer and deviation estimation
JP2016502833A (en) Apparatus and method for controlling an induction coil
CN107031443A (en) A kind of dynamic radio conducts electricity passage, road, system
CN114851868A (en) System and method for transferring wireless vehicle power to vehicle devices with offset sensors
JPWO2021240402A5 (en)
US20220116079A1 (en) Magnetic induction communication-based vehicle control apparatus and method
JP2017073855A (en) Power transmission system
WO2017125986A1 (en) Power transmitting device, power receiving device, and power transmitting/receiving system
US20220289048A1 (en) Vehicle charging system and vehicle
US20230158912A1 (en) An apparatus for and method of guiding an electric vehicle
JP4665819B2 (en) Portable terminal, approach detection device, and approach detection system
JP2007306629A (en) Communication device and communication system
JP2020010451A (en) Vehicle charging device
JP4069094B2 (en) COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JP3484495B2 (en) Magnetic and radio wave combined road marker system
CN212046914U (en) Dynamic charging system
JPH10177073A (en) Method and device for high speed obstacle detection with ultrasonic sensor
JP2021078238A (en) Wireless power supply system and control method therefor