JPWO2021227353A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021227353A5
JPWO2021227353A5 JP2022568578A JP2022568578A JPWO2021227353A5 JP WO2021227353 A5 JPWO2021227353 A5 JP WO2021227353A5 JP 2022568578 A JP2022568578 A JP 2022568578A JP 2022568578 A JP2022568578 A JP 2022568578A JP WO2021227353 A5 JPWO2021227353 A5 JP WO2021227353A5
Authority
JP
Japan
Prior art keywords
phase liquid
perforated plate
continuous phase
container
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022568578A
Other languages
Japanese (ja)
Other versions
JP2023525096A (en
Publication date
Priority claimed from CN202010395405.5A external-priority patent/CN113651989A/en
Application filed filed Critical
Publication of JP2023525096A publication Critical patent/JP2023525096A/en
Publication of JPWO2021227353A5 publication Critical patent/JPWO2021227353A5/ja
Pending legal-status Critical Current

Links

Claims (21)

分散相液を、多孔板の一方の側から前記多孔板での複数のマイクロウェルを通して前記多孔板の他方の側に流動させるとともに、連続相液を前記多孔板の前記他方の側で多孔板と平行に流動させ、前記多孔板を通過する前記分散相液に剪断を施すことによって流動する前記連続相液において液状ミクロスフェアを形成することを含む、エマルションを調製する方法。 A dispersed phase liquid is caused to flow from one side of the perforated plate to the other side of the perforated plate through a plurality of microwells in the perforated plate, and a continuous phase liquid is caused to flow between the perforated plate and the perforated plate on the other side of the perforated plate. A method of preparing an emulsion comprising forming liquid microspheres in the flowing continuous phase liquid by flowing in parallel and applying shear to the dispersed phase liquid passing through the perforated plate. 前記マイクロウェルの直径は、0.1μm~500μmである、請求項1に記載の方法。 The method according to claim 1, wherein the diameter of the microwell is between 0.1 μm and 500 μm. 前記エマルジョンが油中水型エマルジョンである、請求項1または2に記載の方法。 3. A method according to claim 1 or 2 , wherein the emulsion is a water-in-oil emulsion. 前記液状ミクロスフェアの大きさは、前記分散相液及び/又は前記連続相液の流速を調整することによって調整される、請求項1または2に記載の方法。 The method according to claim 1 or 2 , wherein the size of the liquid microspheres is adjusted by adjusting the flow rate of the dispersed phase liquid and/or the continuous phase liquid. ステップ1)分散相液および連続相液を用意するステップであって、
前記分散相液が、人工合成ポリマー及び/又は天然生体高分子、ならびに硬化剤を含み、
前記連続相液が、有機溶媒および非イオン性界面活性剤を含むこと、
ステップ2)前記分散相液を、多孔板の一方の側から前記多孔板に配置された複数のマイクロウェルを通して前記多孔板の他方の側に流動させるとともに、前記連続相液を前記多孔板の前記他方の側で前記多孔板と平行に流動させ、前記多孔板を通過する前記分散相液に剪断を施すことによって流動する前記連続相液において液状ミクロスフェアを形成すること、
ステップ3)前記液体ミクロスフェアにおける前記人工合成ポリマー及び/又は天然生体高分子と硬化剤とを反応させることによって、粒子状物質を形成すること、および
ステップ4)前記粒子状物質を収集および洗浄することを含み、
ステップ2)における前記連続相液の温度が、0℃以下であり、前記ステップ3)が、0℃以下で2~72時間行われる、マイクロキャリア粒子を調製する方法。
Step 1) preparing a dispersed phase liquid and a continuous phase liquid, comprising:
The dispersed phase liquid contains an artificial synthetic polymer and/or a natural biopolymer, and a curing agent,
the continuous phase liquid contains an organic solvent and a nonionic surfactant;
Step 2) The dispersed phase liquid is caused to flow from one side of the perforated plate to the other side of the perforated plate through a plurality of microwells arranged in the perforated plate, and the continuous phase liquid is caused to flow from one side of the perforated plate to the other side of the perforated plate. forming liquid microspheres in the flowing continuous phase liquid by flowing parallel to the perforated plate on the other side and applying shear to the dispersed phase liquid passing through the perforated plate;
step 3) forming particulate matter by reacting the synthetic synthetic polymer and/or natural biopolymer in the liquid microspheres with a curing agent; and step 4) collecting and washing the particulate matter. including that
A method for preparing microcarrier particles, wherein the temperature of the continuous phase liquid in step 2) is 0° C. or lower, and step 3) is performed at 0° C. or lower for 2 to 72 hours.
ステップ2)は、前記多孔板を含む容器内で行われ、前記多孔板は、前記容器の内部を第1の部分と第2の部分とに分割し、前記分散相液は、前記容器に設けられた前記第1の部分と連通する分散相入口を通って前記第1の部分に入り、さらに前記多孔板を通って流れ前記第2の部分に入り、前記連続相液は、前記容器に設けられた前記第2の部分と連通する連続相入口を通って前記第2の部分に入り、前記分散相液と前記連続相液との混合後の前記液状ミクロスフェアを含む混合液は、前記容器に設けられた前記第2の部分と連通する容器出口を通して前記容器から流れ出て、前記容器出口及び前記連続相入口は、前記容器の反対側に設けられている、請求項5に記載の方法。 Step 2) is carried out in a container that includes the perforated plate, the perforated plate divides the interior of the container into a first part and a second part, and the dispersed phase liquid is provided in the container. The continuous phase liquid enters the first portion through a dispersed phase inlet communicating with the first portion, and flows through the perforated plate and enters the second portion. The mixed liquid containing the liquid microspheres after mixing the dispersed phase liquid and the continuous phase liquid enters the second part through the continuous phase inlet communicating with the second part, and the liquid mixture containing the liquid microspheres after mixing the dispersed phase liquid and the continuous phase liquid enters the second part through the continuous phase inlet communicating with the second part. 6. The method of claim 5, wherein the container exits the container through a container outlet in communication with the second portion, the container outlet and the continuous phase inlet being located on opposite sides of the container. 前記分散相液は、気体加圧によって前記容器の第1の部分に入り、前記多孔板を通って流れ、前記連続相液は、ギアポンプにより前記容器の前記第2の部分に入り、前記多孔板と平行に流れる、請求項5に記載の方法。 The dispersed phase liquid enters the first part of the vessel by gas pressure and flows through the perforated plate, and the continuous phase liquid enters the second part of the vessel by means of a gear pump and flows through the perforated plate. 6. The method of claim 5 , wherein the flow is parallel to the flow. ステップ3)は、撹拌装置を配置したタンク内で行われる、請求項5に記載の方法。 6. The method according to claim 5 , wherein step 3) is carried out in a tank equipped with a stirring device. ステップ4)は、濾過装置を配置したタンク内で真空吸引によって行われる、請求項5に記載の方法。 6. A method according to claim 5 , wherein step 4) is carried out by vacuum suction in a tank in which a filtration device is arranged. 前記マイクロウェルの直径は、0.1μm~500μmである、請求項5に記載の方法。 The method according to claim 5 , wherein the diameter of the microwell is between 0.1 μm and 500 μm. 同一時間に前記連続相液の流量は、前記分散相液の流量の5~20倍である、請求項5に記載の方法。 The method according to claim 5 , wherein the flow rate of the continuous phase liquid is 5 to 20 times the flow rate of the dispersed phase liquid at the same time. 前記人工合成ポリマーは、ポリエチレングリコール、ポリエチレングリコール誘導体、ポリエチレングリコールジアクリレート、ポリプロピレン、ポリスチレン、ポリアクリルアミド、ポリ乳酸、ポリヒドロキシ酸、ポリ乳酸アルコール酸コポリマー、ポリジメチルシロキサン、ポリ酸無水物、ポリ酸エステル、ポリアミド、ポリアミノ酸、ポリアセタール、ポリシアノアクリレート、ポリウレタン、ポリピロール、ポリエステル、ポリメタクリレート、ポリエチレン、ポリカーボネート、およびポリエチレンオキシドのうちの少なくとも1つから選択され、
任意に、前記天然生体高分子は、コラーゲン、プロテオグリカン、糖タンパク質、ゼラチン、ゼラチン誘導体、キチン、アルギン酸塩、アルギン酸塩誘導体、寒天、フィブリノーゲン、マトリゲル、ヒアルロン酸、ラミニンおよびフィブロネクチンのうちの少なくとも1つから選択される、請求項5に記載の方法。
The artificially synthesized polymers include polyethylene glycol, polyethylene glycol derivatives, polyethylene glycol diacrylate, polypropylene, polystyrene, polyacrylamide, polylactic acid, polyhydroxy acid, polylactic acid alcoholic acid copolymer, polydimethylsiloxane, polyacid anhydride, and polyacid ester. , polyamide, polyamino acid, polyacetal, polycyanoacrylate, polyurethane, polypyrrole, polyester, polymethacrylate, polyethylene, polycarbonate, and polyethylene oxide ;
Optionally, the natural biopolymer is from at least one of collagen, proteoglycans, glycoproteins, gelatin, gelatin derivatives, chitin, alginate, alginate derivatives, agar, fibrinogen, matrigel, hyaluronic acid, laminin and fibronectin. 6. The method of claim 5, wherein:
前記有機溶媒は、ハイドロフルオロエーテル、四塩化炭素、石油エーテル、シクロヘキサン、流動パラフィン、食用油、大豆油、オリーブ油、クロロホルム、ジクロロメタン、四塩化炭素およびテトラクロロエチレンのうちの少なくとも1つから選択され、
任意に、前記非イオン性界面活性剤は、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ラウリン酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン高炭素脂肪アルコールエーテル、Span、PO-500、モノオレイン酸エステルおよびTweenのうちの少なくとも1つから選択される、請求項5に記載の方法。
The organic solvent is selected from at least one of hydrofluoroether, carbon tetrachloride, petroleum ether, cyclohexane, liquid paraffin, edible oil, soybean oil, olive oil, chloroform, dichloromethane, carbon tetrachloride, and tetrachloroethylene;
Optionally, the nonionic surfactant is sorbitan fatty acid ester, glycerin fatty acid ester, lauric acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene high carbon fatty alcohol ether, Span, PO-500, monooleic acid ester. and Tween.
前記硬化剤は、ジビニルベンゼン、ジイソシアネート、N-ヒドロキシスクシンイミド、N,N-メチレンビスアクリルアミド、ホルムアルデヒド、グルタルアルデヒド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩、カルシウムイオン、テトラメチルエチレンジアミン、硫酸アンモニウム、ゲニピンおよびトランスグルタミナーゼのうちの少なくとも1つから選択される、請求項5に記載の方法。 The curing agent includes divinylbenzene, diisocyanate, N-hydroxysuccinimide, N,N-methylenebisacrylamide, formaldehyde, glutaraldehyde, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, calcium ion, and tetramethyl. 6. The method of claim 5 , wherein the method is selected from at least one of ethylenediamine, ammonium sulfate, genipin and transglutaminase. 前記分散相液は、緩衝剤を更に含み、前記緩衝剤は、カルボキシメチルセルロース、塩化ナトリウム、ポリアクリルアミド、塩化カリウム、ポリビニルピロリドン、硫酸ナトリウム、塩化カルシウム、塩化ナトリウム、炭酸ナトリウムおよび重炭酸ナトリウムのうちの少なくとも1つから選択される、請求項5に記載の方法。 The dispersed phase liquid further includes a buffering agent selected from the group consisting of carboxymethylcellulose, sodium chloride, polyacrylamide, potassium chloride, polyvinylpyrrolidone, sodium sulfate, calcium chloride, sodium chloride, sodium carbonate, and sodium bicarbonate. 6. The method of claim 5 , wherein the method is selected from at least one. 前記粒子状物質を洗浄剤で洗浄することを含み、前記洗浄剤はアセトン、無水硫酸銅、塩化カルシウム、硫酸ナトリウム、無水エタノール、医療用アルコール、ヒドロフルオロエーテル、アルキルベンゼンスルホン酸ナトリウム、脂肪族アルコール硫酸ナトリウム、トリポリリン酸ナトリウムおよび脱イオン水のうちの少なくとも1つから選択される、請求項5に記載の方法。 washing the particulate matter with a cleaning agent, the cleaning agent being acetone, anhydrous copper sulfate, calcium chloride, sodium sulfate, absolute ethanol, medical alcohol, hydrofluoroether, sodium alkylbenzene sulfonate, aliphatic alcohol sulfate; 6. The method of claim 5 , wherein the method is selected from at least one of sodium, sodium tripolyphosphate and deionized water. 前記連続相液における有機溶媒と非イオン性界面活性剤との比率は、重量で5:1~20:1である、請求項5に記載の方法。 6. The method of claim 5 , wherein the ratio of organic solvent to nonionic surfactant in the continuous phase liquid is from 5:1 to 20:1 by weight. 1)容器、
2)前記容器内に配置された複数のマイクロウェルを含む多孔板であって、前記第1の容器内を第1の部分と第2の部分とに分割する多孔板、
3)分散相液を導入するための、前記第1の部分と連通する分散相入口、
4)連続相液を導入するための、前記第2の部分と連通する連続相入口、および
5)前記第2の部分と連通する容器出口、
を含むエマルション調製装置であって、前記容器出口及び前記連続相入口は、前記連続相入口から導入された前記連続相液が、前記多孔板と平行な方向に、前記第2の部分を通って流れ、さらに前記容器出口から流れ出ることができるように、前記容器の反対側に配置されている、エマルション調製装置。
1) Container,
2) a perforated plate including a plurality of microwells arranged in the container, the perforated plate dividing the inside of the first container into a first part and a second part;
3) a dispersed phase inlet communicating with the first portion for introducing a dispersed phase liquid;
4) a continuous phase inlet in communication with said second portion for introducing a continuous phase liquid; and 5) a container outlet in communication with said second portion.
An emulsion preparation device comprising: the container outlet and the continuous phase inlet, wherein the continuous phase liquid introduced from the continuous phase inlet passes through the second portion in a direction parallel to the perforated plate. an emulsion preparation device located on the opposite side of the container to allow flow and further flow out of the container outlet;
前記マイクロウェルの直径は、0.1μm~500μmである、請求項18に記載のエマルション調製装置。 The emulsion preparation device according to claim 18 , wherein the microwell has a diameter of 0.1 μm to 500 μm. 前記連続相入口は2つまたはそれ以上であり、前記容器出口は2つまたはそれ以上である、請求項18に記載のエマルション調製装置。 19. The emulsion preparation device of claim 18 , wherein the continuous phase inlets are two or more and the container outlets are two or more. 前記連続相入口および前記容器出口は、前記容器の底部に対して同じ水平高さを有する、請求項18に記載のエマルション調製装置。 19. The emulsion preparation apparatus of claim 18 , wherein the continuous phase inlet and the container outlet have the same horizontal height relative to the bottom of the container.
JP2022568578A 2020-05-12 2020-10-15 Microcarrier preparation method and reaction apparatus applied to three-dimensional cell culture Pending JP2023525096A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010395405.5 2020-05-12
CN202010395405.5A CN113651989A (en) 2020-05-12 2020-05-12 Preparation method and reaction device of microcarrier suitable for three-dimensional cell culture
PCT/CN2020/121064 WO2021227353A1 (en) 2020-05-12 2020-10-15 Preparation method for microcarrier applicable in three-dimensional cell culturing and reaction apparatus

Publications (2)

Publication Number Publication Date
JP2023525096A JP2023525096A (en) 2023-06-14
JPWO2021227353A5 true JPWO2021227353A5 (en) 2023-10-20

Family

ID=78476782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022568578A Pending JP2023525096A (en) 2020-05-12 2020-10-15 Microcarrier preparation method and reaction apparatus applied to three-dimensional cell culture

Country Status (5)

Country Link
US (1) US20230077045A1 (en)
EP (1) EP4151305A4 (en)
JP (1) JP2023525096A (en)
CN (1) CN113651989A (en)
WO (1) WO2021227353A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011542A (en) * 2021-12-07 2022-09-06 中科睿极(深圳)医学科技有限公司 Porous microcarrier and preparation method thereof
CN116496970A (en) * 2022-01-18 2023-07-28 中国科学院动物研究所 Microcarrier and application thereof
CN115094029A (en) * 2022-06-07 2022-09-23 中国海洋大学 Composite gelatin frozen gel cell 3D culture microcarrier and large-volume preparation method thereof
CN115820533B (en) * 2022-12-31 2023-12-01 剑兰生物医学科技(辽宁)有限公司 Stem cell culture process
US11845042B1 (en) * 2023-03-28 2023-12-19 Phillips 66 Company Automated tank mixing
KR102594103B1 (en) * 2023-07-11 2023-10-25 주식회사 해피룸 Air freshener spraying device with enhanced convenience of operation
CN117018298B (en) * 2023-10-09 2023-12-26 北京华龛生物科技有限公司 Injectable porous microsphere with controllable degradation time and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108860C (en) * 2001-04-20 2003-05-21 清华大学 Membrane dispersion process of preparing superfine particle
CN1188209C (en) * 2003-05-27 2005-02-09 清华大学 Low energy-consumption continuous-preparing method of micro emulsion
JP2006021111A (en) * 2004-07-07 2006-01-26 Ricoh Co Ltd Particle forming method and particle, and multiplex particle forming method and multiplex particle
CN101683592B (en) * 2008-09-28 2011-12-14 中国科学院过程工程研究所 Membrane emulsifier and method of preparing emulsion
CN102794119B (en) * 2011-05-26 2014-08-20 北京化工大学 Method for preparing monodisperse emulsion
CN103182278A (en) * 2012-01-03 2013-07-03 博瑞生物医药技术(苏州)有限公司 Membrane dispersion type microchannel reactor
JP6210070B2 (en) * 2012-12-28 2017-10-11 旭硝子株式会社 Method for producing spherical particles
JP6191999B2 (en) * 2013-01-10 2017-09-06 国立大学法人九州大学 Method and apparatus for producing a composition in which a dispersed phase is dispersed in a continuous phase
US20160083690A1 (en) * 2013-04-10 2016-03-24 Agency For Science, Technology And Research Microcarriers for stem cell culture and fabrication thereof
CN109762802B (en) * 2019-01-28 2021-08-03 北京华龛生物科技有限公司 Cell carrier particle aggregate and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2021227353A1 (en) Preparation method for microcarrier applicable in three-dimensional cell culturing and reaction apparatus
Lu et al. A new design for an artificial cell: polymer microcapsules with addressable inner compartments that can harbor biomolecules, colloids or microbial species
Costantini et al. Gas foaming technologies for 3D scaffold engineering
Chai et al. Construction of 3D printed constructs based on microfluidic microgel for bone regeneration
Shim et al. Elaborate design strategies toward novel microcarriers for controlled encapsulation and release
Duarte et al. Supercritical fluids in biomedical and tissue engineering applications: a review
Mytnyk et al. Microcapsules with a permeable hydrogel shell and an aqueous core continuously produced in a 3D microdevice by all-aqueous microfluidics
Dulieu et al. Encapsulation and immobilization techniques
CN112409553B (en) Method for preparing injectable porous hydrogel microspheres by micro-fluidic ice crystal method and application thereof
JPWO2021227353A5 (en)
CN106470666A (en) Microcapsule encapsulation technology and products thereof
Mendes et al. Fabrication of phospholipid–xanthan microcapsules by combining microfluidics with self-assembly
CN114796617B (en) Composite 3D printing ink and application thereof
Namgung et al. Engineered cell-laden alginate microparticles for 3D culture
Enck et al. Design of an adhesive film-based microfluidic device for alginate hydrogel-based cell encapsulation
Daradmare et al. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches
Sánchez et al. Encapsulation of cells in alginate gels
US9957481B2 (en) Scaffolds and other cell-growth structures using microfluidics to culture biological samples
Wu et al. From macro to micro to nano: the development of a novel lysine based hydrogel platform and enzyme triggered self-assembly of macro hydrogel into nanogel
Liu et al. Recent advances in the microfluidic generation of shape-controllable hydrogel microparticles and their applications
CN102690435A (en) Method for regulating pore structure of water-soluble polymer tissue engineering scaffold by use of polyester template
Orive et al. Encapsulation of cells in alginate gels
Miyama et al. A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads
Zhang et al. Fabrication of emulsion-templated polystyrene absorbent using 4-arm star-shaped poly (ɛ-caprolactone) as property defining crosslinker
Madadian et al. Development of foam-based support material for coaxial bioprinting of ionically crosslinking bioinks