JP2006021111A - Particle forming method and particle, and multiplex particle forming method and multiplex particle - Google Patents

Particle forming method and particle, and multiplex particle forming method and multiplex particle Download PDF

Info

Publication number
JP2006021111A
JP2006021111A JP2004200938A JP2004200938A JP2006021111A JP 2006021111 A JP2006021111 A JP 2006021111A JP 2004200938 A JP2004200938 A JP 2004200938A JP 2004200938 A JP2004200938 A JP 2004200938A JP 2006021111 A JP2006021111 A JP 2006021111A
Authority
JP
Japan
Prior art keywords
separation membrane
continuous phase
dispersed phase
particle
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004200938A
Other languages
Japanese (ja)
Inventor
Shinji Tezuka
伸治 手塚
Yoshihiro Norikane
義浩 法兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004200938A priority Critical patent/JP2006021111A/en
Publication of JP2006021111A publication Critical patent/JP2006021111A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle forming method or the like, which can form a large amount of particles uniform in a particle diameter even if the viscosity of a particle forming material is high. <P>SOLUTION: The particle forming method is comprised of separating and holding a continuous phase and a disperse phase through a separation membrane having one or more openings, moving the disperse phase from the opening formed on the separation membrane to the continuous phase side to shear near the separation membrane and form the particle of the disperse phase material, the section in a thickness direction of the opening formed on the separation membrane having a shape narrowed from the disperse phase side toward continuous phase side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スペーサ、トナー、電子ペーパ用のマイクロカプセルなどの微粒子を形成するための粒子形成方法、粒子、多重粒子形成方法、多重粒子に関する。   The present invention relates to a particle forming method, particles, a multiple particle forming method, and multiple particles for forming fine particles such as spacers, toner, and microcapsules for electronic paper.

水と油のような本来混ざり合わないような物質でも一方の物質を微小な粒子として分散させることで、見かけ上混合した状態とすることができこの現象を乳化と呼んでいる。このような状態が保持されるためには分散している粒子の径が小さく比較的均一である必要があり、この現象を利用して粒径分布の小さい微粒子を得る方法として用いられている。
現在乳化方法として具体的には以下の手法が用いられていることは公知である。
Even a substance such as water and oil that is not originally mixed can be apparently mixed by dispersing one substance as fine particles, and this phenomenon is called emulsification. In order to maintain such a state, the dispersed particles need to be small in size and relatively uniform, and this phenomenon is used to obtain fine particles having a small particle size distribution.
It is publicly known that the following methods are specifically used as an emulsification method.

(1)ホモジナイザーによる乳化(特許文献1等参照)
これは、連続相と呼ばれる液体に、微粒子化して分散させたい物質を投入し、機械的に攪拌を行うことでせん断力を繰り返し与え、乳化分散体を得るのであるが、分散相に与えられるせん断力が、乳化位置によって不均一であるために、広い粒径分布を持った微粒子が生成する。広い粒径分布を持った微粒子は生成後時間経過とともに互いに合体しやすいために一般に多量の界面活性剤を添加し粒子を安定化することでこれを回避する対処が行われている。しかしながら界面活性剤は本来粒子の機能として不要な場合が多く、時には悪影響を及ぼす場合もある。したがって通常は後工程で多くの水資源を投入して洗浄除去を行う必要がある。また、粒径分布に関しては攪拌時間を長く取ることである程度の抑制が可能であるがそのためには長い時間と多くのエネルギーが必要となる。
(1) Emulsification with a homogenizer (see Patent Document 1)
This is because a substance to be finely dispersed is added to a liquid called a continuous phase and mechanically stirred to repeatedly apply a shearing force to obtain an emulsified dispersion. Since the force is not uniform depending on the emulsifying position, fine particles having a wide particle size distribution are generated. Since fine particles having a wide particle size distribution are likely to coalesce with each other with the lapse of time after generation, a countermeasure is generally taken to avoid this by adding a large amount of a surfactant to stabilize the particles. However, the surfactant is often unnecessary as a function of the particles, and sometimes has an adverse effect. Therefore, it is usually necessary to wash and remove a large amount of water resources in the subsequent process. Further, the particle size distribution can be suppressed to some extent by taking a long stirring time, but this requires a long time and a lot of energy.

(2)多孔質ガラス膜を用いた乳化(特許文献2等参照)
分散相と連続相を多孔質ガラス膜により仕切り、分散相を連続相側へ押し出すことにより分散相が膜を通過し、連続相に接触し表面張力がせん断力となり最終的に分散相が微粒子化し、乳化分散体を得る方法である。ところが、多孔質ガラス膜の穴形状は比較的滑らかな連続した曲線で構成されており押し出された界面に働く表面張力が比較的均一に働くためになかなか剪断に至らず、得られる粒子径は開口に対して大きくなってしまう。また穴形状及び大きさも一定でないことから粒径分布は手法(1)に対しては狭いが比較的広くなってしまう。
(2) Emulsification using a porous glass membrane (see Patent Document 2 etc.)
The dispersed phase and continuous phase are separated by a porous glass membrane, and the dispersed phase passes through the membrane by extruding the dispersed phase to the continuous phase side. This is a method for obtaining an emulsified dispersion. However, the hole shape of the porous glass membrane is composed of a relatively smooth continuous curve, and the surface tension acting on the extruded interface works relatively uniformly, so it does not readily shear, and the resulting particle size is open. It will be bigger than. Further, since the hole shape and size are not constant, the particle size distribution is narrower than the method (1) but relatively wide.

(3)人工的に微小開口を形成した隔壁を用いた乳化(特許文献3等参照)
分散相と連続相とを非円形の同一形状の開口を半導体プロセスにより人工的に多数形成した隔壁で仕切りこの開口を通して分散相を連続相へ押し出し表面張力により剪断し微粒子を得る。このとき開口形状がスリット状など非円形であるために表面張力が不均一に働くことで容易に剪断させることができ粒径分布の小さな粒子が得られる。しかしながら開示されている隔壁の開口形状は隔壁の厚さ方向に対して断面形状の変わらない平行な貫通孔でありこの隔壁が厚いと開口径を小さくしたり、分散相として高粘度の材料を用いた際に連続相へ押し出すことが困難になると考えられる。逆に隔壁を薄くすると押し出しは比較的行いやすくなるが押し出す際に加わる圧力に対して隔壁が変形したり、破壊するなどの問題が考えられる。
特許第3476223号公報 特許第2733729号公報 特許第3511238号公報
(3) Emulsification using partition walls with artificially formed micro-openings (see Patent Document 3 etc.)
The dispersed phase and the continuous phase are partitioned by partition walls in which a large number of non-circular openings having the same shape are artificially formed by a semiconductor process, and the dispersed phase is extruded to the continuous phase through the openings to obtain fine particles. At this time, since the opening shape is non-circular such as a slit shape, the surface tension works non-uniformly so that it can be easily sheared and particles having a small particle size distribution can be obtained. However, the disclosed opening shape of the partition wall is a parallel through-hole whose cross-sectional shape does not change with respect to the thickness direction of the partition wall. It would be difficult to extrude into the continuous phase when Conversely, when the partition wall is made thinner, extrusion becomes relatively easy, but problems such as deformation and destruction of the partition wall due to the pressure applied during extrusion can be considered.
Japanese Patent No. 3476223 Japanese Patent No. 2733729 Japanese Patent No. 3511238

以上のような問題点から本発明においては特に粒子形成材料の粘度が高い場合にあっても粒径が均一な粒子を大量に形成できる粒子形成方法、粒子、多重粒子形成方法、多重粒子を提供することを目的とする。   In view of the above problems, the present invention provides a particle forming method, particles, multiple particle forming method, and multiple particles that can form a large amount of particles having a uniform particle size even when the viscosity of the particle forming material is particularly high. The purpose is to do.

上記目的を達成する本発明の態様は、連続相と分散相とを1以上の開口を形成した分離膜を介して分離保持し、前記分離膜に形成した開口から前記分散相を前記連続相側に移動させ、前記分離膜近傍で剪断し分散相材料の粒子を形成する粒子形成方法において、前記分離膜に形成された開口の厚さ方向の断面が前記分散相側から前記連続相側に向かい狭くなった形状の開口を通して行うものである。
この方法においては分離膜に形成された開口形状が分散相側から連続相側に向かいその断面が狭くなっているために分散相に高粘度の材料を用いた場合にも連続相側への移動が容易になり、その結果粘度によらず均一な大きさの粒子を形成することができる。
In an embodiment of the present invention that achieves the above object, a continuous phase and a dispersed phase are separated and held through a separation membrane having one or more openings, and the dispersed phase is placed on the continuous phase side from the openings formed in the separation membrane. In the particle forming method of forming a dispersed phase material particle by shearing in the vicinity of the separation membrane, the cross section in the thickness direction of the opening formed in the separation membrane is directed from the dispersed phase side to the continuous phase side. This is done through a narrowed opening.
In this method, the shape of the opening formed in the separation membrane is narrowed from the dispersed phase side to the continuous phase side, so that even when a highly viscous material is used for the dispersed phase, it moves to the continuous phase side. As a result, particles having a uniform size can be formed regardless of the viscosity.

ここでこの方法において用いる前記分離膜の開口の厚さ方向断面が前記分散相側から前記連続相側に向かい狭くなる割合が前記連続相側に向かうに従い小さくなるような開口を通して前記分散相の移動が行われる。
この方法においては用いる分離膜の開口の断面形状の狭くなる割合が連続相に向かうに従い小さくなるような形状であるために、開口近傍においても分離膜に十分な厚みをもった構造となるために変形や破壊が生じることがなく均一な大きさの粒子を安定して形成することができる。
Here, the movement of the dispersed phase through the opening is such that the ratio of the cross section in the thickness direction of the opening of the separation membrane used in this method becomes narrower from the dispersed phase side toward the continuous phase side becomes smaller toward the continuous phase side. Is done.
In this method, the ratio of the cross-sectional shape of the opening of the separation membrane to be narrowed is such that it becomes smaller toward the continuous phase, so that the separation membrane has a sufficient thickness even in the vicinity of the opening. It is possible to stably form particles having a uniform size without deformation or destruction.

上記方法において前記連続相側から見た場合に円形以外の形状の開口をもつ分離膜を介して前記分散相の移動が行われる。
この方法においては連続相から見た開口形状が非円形であるために剪断力となる表面張力が不均一に作用するために開口の大きさに対して比較的小さい体積でその大きさが均一な粒子形成を行うことができる。
In the above method, the dispersed phase is moved through a separation membrane having an opening having a shape other than a circle when viewed from the continuous phase side.
In this method, since the opening shape seen from the continuous phase is non-circular, the surface tension acting as a shearing force acts non-uniformly, so the size is uniform with a relatively small volume with respect to the size of the opening. Particle formation can be performed.

上記方法において前記分離膜に設けられた2以上の等しい形状の開口を介して前記分散相の移動が行われる。
この方法において複数の形状の等しい開口から粒子形成が行えるために同等の形状をなす粒子の生産性に優れる。
In the above method, the dispersed phase is moved through two or more openings having the same shape provided in the separation membrane.
In this method, since particles can be formed from openings having a plurality of shapes, the productivity of particles having the same shape is excellent.

このときこの方法において2以上の等しい形状の開口を同じ向きに形成した前記分離膜を用い、前記分散相を前記連続相側へ移動させ、かつ前記連続相と前記分離膜との間に一定の速度差を形成する。
この方法においては形状の等しい同じ向きの複数開口より分散相が連続相へと移動し、かつ分離膜と連続相との間に一定の速度差が形成されているために表面張力に起因する剪断力と分離膜と連続相の速度差に起因する剪断力の両者が付加されかつそれらがどの開口からの分散相に対しても同様に作用するために均一な粒子の生産性に優れる。
At this time, in this method, the separation membrane in which two or more openings having the same shape are formed in the same direction is used, the dispersed phase is moved to the continuous phase side, and a constant amount is provided between the continuous phase and the separation membrane. Create a speed difference.
In this method, since the dispersed phase moves to the continuous phase from a plurality of openings having the same shape and the same direction, and a constant speed difference is formed between the separation membrane and the continuous phase, shearing due to surface tension is caused. Both the force and the shearing force resulting from the speed difference between the separation membrane and the continuous phase are added, and they work in the same way on the dispersed phase from any opening, so that the productivity of uniform particles is excellent.

上記方法において前記分散相を一定速度で連続して前記連続相側へ移動させる。
この方法においては分散相を一定速度で連続して分散相へと移動させているので一定速度で繰り返し粒子形成動作が行われるので連続して均一な粒子形成が可能になる。
In the above method, the dispersed phase is continuously moved to the continuous phase side at a constant speed.
In this method, since the disperse phase is continuously moved to the disperse phase at a constant speed, the particle formation operation is repeatedly performed at a constant speed, so that uniform particle formation can be continuously performed.

また上記方法において前記分散相を一定周期の速度変動で前記連続相側へ移動させる。
上記方法においては一定周期の速度変動で連続して分散相を連続相側へ供給しているので一定体積の粒子形成を繰り返し行えるので連続して均一な粒子形成が可能となる。
Further, in the above method, the dispersed phase is moved to the continuous phase side at a constant cycle speed fluctuation.
In the above method, since the disperse phase is continuously supplied to the continuous phase side at a constant period of speed fluctuation, the formation of a constant volume of particles can be repeated, so that uniform particle formation can be continuously performed.

このときこの方法において前記分離膜の開口を一定時間間隔で開閉する。
この方法においては分離膜を一定間隔で開閉するのでその開閉時間に応じた体積で分散相を粒子化することができるので均一な粒子形成が可能となる。
At this time, in this method, the opening of the separation membrane is opened and closed at regular time intervals.
In this method, since the separation membrane is opened and closed at regular intervals, the dispersed phase can be made into particles with a volume corresponding to the opening and closing time, and uniform particle formation is possible.

上記方法において前記分離膜に振動を付加する。
この方法においては分離膜に振動を付加しているので表面張力に起因する剪断力に分離膜に起因する剪断力が付加されより大きな剪断力を繰り返し与えることができる。
In the above method, vibration is applied to the separation membrane.
In this method, since vibration is applied to the separation membrane, the shearing force due to the separation membrane is added to the shearing force due to the surface tension, and a larger shearing force can be repeatedly applied.

そして上記方法により作製された粒子は、均一な大きさでかつ不要な界面活性剤が排除されている高品質な粒子である。   And the particle | grains produced by the said method are high quality particle | grains by which the uniform surfactant and the unnecessary surfactant are excluded.

本発明の他の態様は、上記方法により得られた粒子が分散された連続相を第2の分散相とし、前記第2の分散相と互いに溶解しない第2の連続相とで上記方法を行うことを特徴する多重粒子形成方法に関するものである。
この多重粒子形成方法は上述した方法で得た粒子が分散された連続相を第2の分散相として用い、上述した方法で多重粒子を形成しているので内部粒子および外殻粒子ともに均一な多重粒子を作製することが可能となる。
In another aspect of the present invention, the continuous phase in which the particles obtained by the above method are dispersed is used as the second dispersed phase, and the above-described method is performed using the second dispersed phase and the second continuous phase that are not mutually soluble. The present invention relates to a method for forming multiple particles.
In this method for forming multiple particles, a continuous phase in which particles obtained by the above-described method are dispersed is used as the second dispersed phase, and multiple particles are formed by the above-described method. Particles can be produced.

そしてこの方法により作成された多重粒子は、内部粒子、外殻粒子ともに均一な大きさで、不要な成分が排除された高品質なものである。   The multi-particles produced by this method are of a high quality in which both the inner particles and the outer shell particles have a uniform size and unnecessary components are eliminated.

本発明により、特に粒子形成材料の粘度が高い場合にあっても粒径が均一な粒子を大量に形成できる。   According to the present invention, a large amount of particles having a uniform particle size can be formed even when the viscosity of the particle forming material is particularly high.

以下、本発明を実施するための最良の形態を添付図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は本実施形態による粒子作成方法の一実施例である。分散相として油を連続相として水を用いこれらが分離膜開口を介してのみ連通している。このような構成において図の例では分散相を空気など第三の物質により加圧することで連続相側に分離膜開口を通して移動させる。分離膜開口を通して連続相に入った分散相は表面張力により球形化しようとする。この際に生じる剪断力により分散相より離脱し粒子が形成される。得られる粒子径は分離膜開口の連続相側の面の形状、分散相の移動速度、分散相と連続相界面での表面張力などで制御することができる。   FIG. 1 shows an example of a particle production method according to this embodiment. Oil is used as the dispersed phase and water is used as the continuous phase, and these communicate with each other only through the opening of the separation membrane. In such a configuration, in the example shown in the figure, the dispersed phase is pressurized by a third substance such as air to move to the continuous phase side through the separation membrane opening. The dispersed phase that has entered the continuous phase through the opening of the separation membrane tends to be spheroidized by surface tension. The shearing force generated at this time separates from the dispersed phase to form particles. The obtained particle size can be controlled by the shape of the surface on the continuous phase side of the separation membrane opening, the moving speed of the dispersed phase, the surface tension at the interface between the dispersed phase and the continuous phase, and the like.

分離膜を通過する分散相の流量Qは、分離膜入口での圧力をp1、分離膜出口での圧力をp2、コンダクタンスをCとすると
Q=C×(p1−p2)
で表される。
The flow rate Q of the dispersed phase passing through the separation membrane is as follows. The pressure at the separation membrane inlet is p1, the pressure at the separation membrane outlet is p2, and the conductance is C.
Q = C × (p1-p2)
It is represented by

コンダクタンスCは分離膜に形成された開口が円筒状であるときその半径をa、粘性係数η、分離膜の厚さL、平均圧力p=(p1−p2)/2とすると
C = (πa4p/8η)/L
で表され、これらをまとめると
Q=(πa4p/8η)/L×(p1−p2)
となる。
The conductance C is defined as follows. When the opening formed in the separation membrane is cylindrical, the radius is a, the viscosity coefficient η, the thickness L of the separation membrane, and the average pressure p = (p1−p2) / 2.
C = (πa 4 p / 8η) / L
It is expressed by
Q = (πa 4 p / 8η) / L × (p1−p2)
It becomes.

単位時間あたりに一定量の粒子を形成するために、その体積分Qを通過ささせようとするとこの式より分散相に粘度ηの大きな材料を用いようとすると分散相側の圧力p1を大きくするか円筒形aを大きくするか分離膜厚Lを薄くするのいずれかもしくはそれらの組み合わせを行う必要がある。しかしながらp1を大きくすることは装置不可の増大を招き、aの拡大は生成粒子径を拡大させ、Lを小さくすることは分離膜の機械強度を下げることになる。これに対し本発明で提案しているように分離膜開口が分散相側でその開口が大きく連続相側にいくほど小さくなるような形状にすることでこれらの影響を軽減することができる。すなわち粒子の大きさを決める連続相に接した部分の開口径は同じでも分散相側の開口径が大きく見かけ上aの値は実際よりも大きなものとなる。その結果としてp1の値も小さくても良い。このような形状の開口の断面として図3から5のような形状とすることでこれら効果が達成できる。   In order to form a certain amount of particles per unit time, if the material volume Q is allowed to pass, if a material having a large viscosity η is used for the dispersed phase from this equation, the pressure p1 on the dispersed phase side is increased. It is necessary to increase the cylindrical shape a or decrease the separation film thickness L or a combination thereof. However, increasing p1 leads to an increase in impossibility of the apparatus, expanding a increases the generated particle diameter, and decreasing L decreases the mechanical strength of the separation membrane. On the other hand, as proposed in the present invention, the influence of these can be reduced by making the opening of the separation membrane so that the opening is larger on the dispersed phase side and smaller as it goes to the continuous phase side. That is, even if the opening diameter of the portion in contact with the continuous phase that determines the size of the particles is the same, the opening diameter on the dispersed phase side is large and the value of a is apparently larger than the actual value. As a result, the value of p1 may be small. These effects can be achieved by setting the shape of the opening having such a shape as shown in FIGS.

また、分散相を押し出す際に生じる分散相と開口壁面との応力の作用方向がその法線方向に働くことから特に図5に示すように開口断面が小さくなる割合が連続相側に行くに従い小さな形状とすることで分離膜の最も機械強度の弱い膜厚方向からずれた方向に作用させることができるので、機械強度の低下の影響も軽減することができる。   Further, since the acting direction of the stress between the dispersed phase and the opening wall surface generated when extruding the dispersed phase works in the normal direction, the ratio of the smaller opening cross section becomes smaller as it goes to the continuous phase side as shown in FIG. By adopting the shape, the separation membrane can be operated in a direction deviated from the film thickness direction having the weakest mechanical strength, so that the influence of a decrease in mechanical strength can also be reduced.

前述したように粒子のできる過程は連続相中に移動してきた分散相の表面張力を剪断力として分離することで粒子が形成される。同一体積であれば球形は最も表面積が小さくなり表面張力も最も小さくなる。その断面を考えた場合同様に同一断面積であれば円形が最もその周長が短く、表面張力も小さくなる。しかしながら、その断面が例えば図12に示すように三角形などの非円形であると、円形の断面を形成しようとする力が作用する。特にその形状に明瞭な凹や凸の頂点を持つ場合にはその頂点近傍に大きな力が作用するためにその部分を剪断開始点として連続相との分離を生じさせることができる。その結果として比較的早期に常に安定した位置から剪断が生じるために得られる粒子の大きさとして揃ったものを得ることができる。   As described above, in the process of forming particles, particles are formed by separating the surface tension of the dispersed phase that has moved into the continuous phase as a shearing force. If the volume is the same, the spherical shape has the smallest surface area and the smallest surface tension. When the cross section is considered, if the cross section is the same, a circle is the shortest in circumference and the surface tension is also small. However, if the cross section is a non-circular shape such as a triangle as shown in FIG. 12, for example, a force for forming a circular cross section acts. In particular, when the shape has clear concave or convex vertices, a large force acts in the vicinity of the vertices, so that this portion can be used as a shear start point to cause separation from the continuous phase. As a result, it is possible to obtain a uniform particle size obtained by shearing from a stable position at a relatively early stage.

図2は分散相の移動に第三の物質を介在させることなくシリンジポンプなどを用い直接分散相を加圧している例を示す。このような構成にすることにより分散相へ第三の物質が溶け込むのを防ぐことができる。   FIG. 2 shows an example in which the dispersed phase is directly pressurized using a syringe pump or the like without interposing a third substance in the movement of the dispersed phase. By adopting such a configuration, it is possible to prevent the third substance from being dissolved in the dispersed phase.

図6は分離膜と連続相とに一定の速度差を形成する方法の一実施例である。円筒体の内部に分散相を入れこの円筒体の円筒面の少なくとも一部に開口が形成してあり分離膜として作用する。この円筒体の少なくとも分離膜となる部分は連続相中にあり、連続相は回転攪拌子などにより等速の回転流を形成する。このような配置で回転流の中心と分散相が入っている円筒対の中心とを一致させることで円筒体に形成された分離膜と連続相とは一定の速度を持つ状態が得られる。このような状態で分散相を分離膜を通して連続相に移動させることにより図7に示すように分離膜と連続相との移動速度差により一定方向への一定の剪断力が生じる。このとき分離膜部分に形成されている開口の向きを一定にしておくことで表面張力による剪断力の向きも一定になる。従って大きさの揃った粒子を形成することができる。このとき表面張力による剪断力が最も大きく働く部分を分離膜と連続相との移動速度に対して上流方向に位置するように配することでより効率的に剪断力を作用させることができる。このように剪断力を大きくすることで粒子の生成速度を向上させる効果も得られる。   FIG. 6 shows an embodiment of a method for forming a constant speed difference between the separation membrane and the continuous phase. A dispersed phase is put inside the cylindrical body, and an opening is formed in at least a part of the cylindrical surface of the cylindrical body, which acts as a separation membrane. At least a part of the cylindrical body that becomes a separation membrane is in a continuous phase, and the continuous phase forms a constant-speed rotating flow by a rotating stirrer or the like. With such an arrangement, the center of the rotating flow and the center of the cylinder pair containing the dispersed phase coincide with each other, so that the separation membrane formed in the cylindrical body and the continuous phase have a constant speed. When the dispersed phase is moved to the continuous phase through the separation membrane in such a state, a constant shearing force in a certain direction is generated due to a difference in moving speed between the separation membrane and the continuous phase as shown in FIG. At this time, by keeping the direction of the opening formed in the separation membrane part constant, the direction of the shearing force due to the surface tension becomes constant. Accordingly, particles having a uniform size can be formed. At this time, the shearing force can be applied more efficiently by arranging the portion where the shearing force due to the surface tension works most so as to be located in the upstream direction with respect to the moving speed of the separation membrane and the continuous phase. By increasing the shearing force in this way, the effect of improving the particle generation rate can also be obtained.

図8は分離膜の開口部に開閉手段を設けこれを利用して粒子を形成する方法の説明図である。分散相は連続相への移動開始から一定時間経過後に一定の体積が連続相中に存在する。この状態で図に示すように開閉手段を移動させることにより連続相中の分散相を切り離し粒子形成することができる。その後開閉手段を移動させ開口をあけることにより続けて連続相中へ分散相は移動される。この動作を繰り返すことにより粒子は連続して形成される。この開閉のタイミングを一定量分散相が連続相内に移動してくるタイミングとあわせることにより一定体積すなわち大きさの揃った粒子を形成することができる。開閉手段は図8に示すように分離膜の連続相側に形成しても良いし、図9に示すように分散相側に形成しても良い。   FIG. 8 is an explanatory view of a method of forming particles using an opening / closing means provided in the opening of the separation membrane. The dispersed phase has a certain volume in the continuous phase after a certain time has elapsed from the start of movement to the continuous phase. In this state, the disperse phase in the continuous phase can be separated and particles can be formed by moving the opening / closing means as shown in the figure. Thereafter, the disperse phase is moved into the continuous phase by moving the opening / closing means and opening the opening. By repeating this operation, particles are continuously formed. By matching the opening / closing timing with the timing at which a certain amount of the dispersed phase moves into the continuous phase, particles having a constant volume, that is, a uniform size can be formed. The opening / closing means may be formed on the continuous phase side of the separation membrane as shown in FIG. 8, or may be formed on the dispersed phase side as shown in FIG.

また、分離膜に振動を与えることにより分散相に対して剪断力を付加することができる。これは一定の周期及び強度の振動でも良いし、粒子を形成したいタイミングにおいてパルス的に振動を与えても良い。   Further, a shearing force can be applied to the dispersed phase by applying vibration to the separation membrane. This may be a vibration with a constant period and intensity, or may be given a pulse-like vibration at the timing at which particles are to be formed.

このようにして得られた粒子は、それらの大きさが均一になっている。大きさの揃った粒子同士は生成後連続相中で接触しても合体してさらに大きな粒子になりにくい。従って、安定な粒子状態を得るために通常分散相、連続相中に使用される界面活性剤の添加量を低減することが可能となる。界面活性剤は粒子本来の機能としては不要であることが多くさらには、悪影響を及ぼす場合があり粒子形成後に洗浄工程を付加し除去する必要があったが、本工法による粒子においてはこの工程を大幅に軽減することができる。   The particles thus obtained have a uniform size. Even if the particles having the same size are brought into contact with each other in the continuous phase after formation, they are not easily combined to become larger particles. Therefore, it is possible to reduce the amount of surfactant usually used in the dispersed phase and the continuous phase in order to obtain a stable particle state. Surfactants are often unnecessary as the original function of the particles, and may have an adverse effect, and it was necessary to add and remove a washing step after the particles were formed. It can be greatly reduced.

図10は多重粒子を作製する方法についての説明図である。上記のような方法で予め粒子が形成、分散された連続相を第2の分散相として用い、第2の分散相を形成する際に用いた分離膜の開口より大きな開口を有する分離膜を通して第2の分散相を第2の連続相中へ移動させる。上記分散相を連続相へと移動させ粒子を形成する同じ方法を用いることで分散相材料よりなる粒子を内包する第2の分散相材料よりなる粒子を得ることができる。このとき分散相として水、連続相として油を用いた場合には第2の連続相としては水を用い、分散相として油を連続相として水を用いた場合には第2の連続相として油を用いることで多重粒子が形成できる。   FIG. 10 is an explanatory view of a method for producing multiple particles. The continuous phase in which particles are previously formed and dispersed by the method as described above is used as the second dispersed phase, and the first is passed through the separation membrane having an opening larger than the opening of the separation membrane used when forming the second dispersed phase. The two dispersed phases are moved into the second continuous phase. By using the same method for moving the dispersed phase to the continuous phase to form particles, particles made of the second dispersed phase material including the particles made of the dispersed phase material can be obtained. At this time, when water is used as the dispersed phase and oil is used as the continuous phase, water is used as the second continuous phase. When oil is used as the dispersed phase and water is used as the continuous phase, oil is used as the second continuous phase. Multiple particles can be formed by using.

本実施形態に用いている分散相側に対して連続相側の開口が小さくなっている分離膜の作製方法は図3に示すようにその開口断面が直線的に小さくなる形状は先端にテーパ角のついた回転工具による機械加工やプレス加工などで形成することが可能である。図4に示す形状は図13に示すような等方性エッチングにより作製することができる。図14は図13の3)及び5)を平面視した図である。図14の3)ハッチ部に示すように保護相に開口を形成しこの開口を通して等方性エッチングを行うことにより図14の4)に示すような形状の開口を形成することができる。このときの断面は図13の5)に示すように開口形状の大きさが変わったものが得られる。図5に示す形状は図11に示すような電気めっき工法で作製することができる。図12は図11の3)及び5)を平面視したものである。導電性基板上に絶縁層を開口と相似形状でパターニングする。この後この基板に対して電気めっきを行うことでパターニングした絶縁膜と相似形状の開口をもつ分離膜が得られる。   As shown in FIG. 3, the manufacturing method of the separation membrane in which the opening on the continuous phase side is smaller than the dispersed phase side used in this embodiment has a shape in which the opening cross-section is linearly reduced, and the taper angle at the tip. It can be formed by machining or pressing with a rotary tool with a mark. The shape shown in FIG. 4 can be produced by isotropic etching as shown in FIG. FIG. 14 is a plan view of 3) and 5) of FIG. An opening having a shape as shown in 4) of FIG. 14 can be formed by forming an opening in the protective phase and performing isotropic etching through this opening as shown in 3) hatched part of FIG. The cross section at this time can be obtained by changing the size of the opening shape as shown in 5) of FIG. The shape shown in FIG. 5 can be produced by an electroplating method as shown in FIG. FIG. 12 is a plan view of 3) and 5) of FIG. An insulating layer is patterned on the conductive substrate in a shape similar to the opening. Thereafter, by performing electroplating on the substrate, a separation film having openings similar to the patterned insulating film can be obtained.

これらいずれの方法においても分離膜として金属材料よりなるものを得ることができるので機械強度の高い分離膜を作製することができるので高粘度の分散相を使用し粒子を形成するに好適である。また、屈曲可能な厚さとすることも可能であり、平板上で形成した後に円筒体表面に屈曲して固定することも可能である。   In any of these methods, since a separation membrane made of a metal material can be obtained, a separation membrane having a high mechanical strength can be produced, which is suitable for forming particles using a high-viscosity dispersed phase. It is also possible to make the thickness bendable, and it is possible to bend and fix to the surface of the cylindrical body after being formed on a flat plate.

なお、上述した形態は本発明を実施するための最良のものであるが、これに限定する主旨ではない。従って、本発明の要旨を変更しない範囲において種々変形することが可能である。   In addition, although the form mentioned above is the best thing for implementing this invention, it is not the main point limited to this. Therefore, various modifications can be made without departing from the scope of the present invention.

本発明を適用した微粒子の製造装置の開発が望まれ、特に食品、化粧品などのエマルション及びその製造装置の開発が望まれる。   Development of an apparatus for producing fine particles to which the present invention is applied is desired, and in particular, development of an emulsion for foods, cosmetics and the like and an apparatus for producing the emulsion are desired.

本実施形態による粒子作成方法の一実施例である。It is one Example of the particle production method by this embodiment. 分散相の移動に第三の物質を介在させることなくシリンジポンプなどを用い直接分散相を加圧している例である。In this example, the dispersed phase is directly pressurized using a syringe pump or the like without interposing a third substance in the movement of the dispersed phase. 分離膜開口の形状の断面の一つである。It is one of the cross sections of the shape of the separation membrane opening. 分離膜開口の形状の断面の一つである。It is one of the cross sections of the shape of the separation membrane opening. 分離膜開口の形状の断面の一つである。It is one of the cross sections of the shape of the separation membrane opening. 分離膜と連続相とに一定の速度差を形成する方法の一実施例である。It is one Example of the method of forming a fixed speed difference between a separation membrane and a continuous phase. 図6の実施例に係る方法を実施して、分離膜と連続相との移動速度差により生じる剪断力に関する図である。It is a figure regarding the shear force which arises by implementing the method which concerns on the Example of FIG. 6, and arises by the moving speed difference of a separation membrane and a continuous phase. 分離膜の開口部に開閉手段を設けこれを利用して粒子を形成する方法の説明図である。It is explanatory drawing of the method of providing an opening-closing means in the opening part of a separation membrane, and forming particle | grains using this. 分離膜の連続相側に開閉手段を設けこれを利用して粒子を形成する方法の説明図である。It is explanatory drawing of the method of forming a particle | grain using the opening / closing means provided in the continuous phase side of a separation membrane. 多重粒子を作製する方法についての説明図である。It is explanatory drawing about the method of producing multiparticle. 図5に示す分離膜開口の形状を電気めっき工法で作製するときの説明図である。It is explanatory drawing when producing the shape of the separation membrane opening shown in FIG. 5 by the electroplating method. 図11の3)及び5)を平面視したものである。FIG. 11 is a plan view of 3) and 5). 図4に示す分離膜開口の形状を等方性エッチングで作製するときの説明図である。It is explanatory drawing when producing the shape of the separation-film opening shown in FIG. 4 by isotropic etching. 図13の3)及び5)を平面視した図である。It is the figure which planarly viewed 3) and 5) of FIG.

Claims (12)

連続相と分散相とを1以上の開口を形成した分離膜を介して分離保持し、前記分離膜に形成した開口から前記分散相を前記連続相側に移動させ、前記分離膜近傍で剪断し分散相材料の粒子を形成する粒子形成方法において、
前記分離膜に形成された開口の厚さ方向の断面が前記分散相側から前記連続相側に向かい狭くなった形状の開口を通して行うことを特徴とする粒子形成方法。
The continuous phase and the dispersed phase are separated and held through a separation membrane having one or more openings, and the dispersed phase is moved to the continuous phase side from the openings formed in the separation membrane and sheared in the vicinity of the separation membrane. In a particle forming method for forming particles of a dispersed phase material,
A method of forming particles, wherein the method is performed through an opening having a shape in which a cross section in the thickness direction of the opening formed in the separation membrane is narrowed from the dispersed phase side toward the continuous phase side.
請求項1記載の方法において用いる前記分離膜の開口の厚さ方向断面が前記分散相側から前記連続相側に向かい狭くなる割合が前記連続相側に向かうに従い小さくなるような開口を通して前記分散相の移動が行われることを特徴とする粒子形成方法。   2. The dispersed phase through the opening such that the thickness direction cross-section of the opening of the separation membrane used in the method according to claim 1 decreases from the dispersed phase side toward the continuous phase side. The particle formation method characterized by the above-mentioned movement. 請求項1または2記載の方法において前記連続相側から見た場合に円形以外の形状の開口をもつ分離膜を介して前記分散相の移動が行われることを特徴とする粒子形成方法。   3. The particle forming method according to claim 1, wherein the dispersed phase is moved through a separation membrane having an opening having a shape other than a circle when viewed from the continuous phase side. 請求項1から3の何れか記載の方法において前記分離膜に設けられた2以上の等しい形状の開口を介して前記分散相の移動が行われることを特徴とする粒子形成方法。   The particle forming method according to claim 1, wherein the dispersed phase is moved through two or more openings having the same shape provided in the separation membrane. 請求項4記載の方法において2以上の等しい形状の開口を同じ向きに形成した前記分離膜を用い、前記分散相を前記連続相側へ移動させ、かつ前記連続相と前記分離膜との間に一定の速度差を形成することを特徴とする粒子形成方法。   5. The method according to claim 4, wherein the separation membrane in which two or more equally-shaped openings are formed in the same direction is used, the dispersed phase is moved to the continuous phase side, and the continuous phase and the separation membrane are interposed. A particle forming method characterized by forming a constant speed difference. 請求項1から5の何れか記載の方法において前記分散相を一定速度で連続して前記連続相側へ移動させることを特徴とする粒子形成方法。   6. The particle forming method according to claim 1, wherein the dispersed phase is continuously moved to the continuous phase side at a constant speed. 請求項1から5の何れか記載の方法において前記分散相を一定周期の速度変動で前記連続相側へ移動させることを特徴とする粒子形成方法。   6. The particle forming method according to claim 1, wherein the dispersed phase is moved to the continuous phase side at a constant cycle speed fluctuation. 請求項6または7記載の方法において前記分離膜の開口を一定時間間隔で開閉することを特徴とする粒子形成方法。   8. The particle forming method according to claim 6, wherein the opening of the separation membrane is opened and closed at regular time intervals. 請求項1から8の何れか記載の方法において前記分離膜に振動を付加することを特徴とする粒子形成方法。   9. The particle forming method according to claim 1, wherein vibration is applied to the separation membrane. 請求項1から9の何れか記載の方法により作製された粒子。   Particles produced by the method according to any one of claims 1 to 9. 請求項1から9の何れか記載の方法により得られた粒子が分散された連続相を第2の分散相とし、前記第2の分散相と互いに溶解しない第2の連続相とで請求項1から9の何れか記載の方法を行うことを特徴する多重粒子形成方法。   The continuous phase in which the particles obtained by the method according to any one of claims 1 to 9 are dispersed is defined as a second dispersed phase, and the second dispersed phase and the second continuous phase insoluble in each other. A method for forming multiple particles, wherein the method according to any one of 1 to 9 is performed. 請求項11記載の方法により作成された多重粒子。   Multi-particles made by the method of claim 11.
JP2004200938A 2004-07-07 2004-07-07 Particle forming method and particle, and multiplex particle forming method and multiplex particle Withdrawn JP2006021111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200938A JP2006021111A (en) 2004-07-07 2004-07-07 Particle forming method and particle, and multiplex particle forming method and multiplex particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200938A JP2006021111A (en) 2004-07-07 2004-07-07 Particle forming method and particle, and multiplex particle forming method and multiplex particle

Publications (1)

Publication Number Publication Date
JP2006021111A true JP2006021111A (en) 2006-01-26

Family

ID=35794769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200938A Withdrawn JP2006021111A (en) 2004-07-07 2004-07-07 Particle forming method and particle, and multiplex particle forming method and multiplex particle

Country Status (1)

Country Link
JP (1) JP2006021111A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444035A (en) * 2006-11-25 2008-05-28 Micropore Technologies Ltd An apparatus and method for generating emulsions
GB2467925A (en) * 2009-02-19 2010-08-25 Richard Graham Holdich Membrane emulsification using oscillatory motion
JP2010532706A (en) * 2007-05-18 2010-10-14 アプライド バイオシステムズ インコーポレイテッド Apparatus and method for preparing a substantially uniform emulsion containing particles
WO2021227353A1 (en) * 2020-05-12 2021-11-18 北京华龛生物科技有限公司 Preparation method for microcarrier applicable in three-dimensional cell culturing and reaction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2444035A (en) * 2006-11-25 2008-05-28 Micropore Technologies Ltd An apparatus and method for generating emulsions
JP2010532706A (en) * 2007-05-18 2010-10-14 アプライド バイオシステムズ インコーポレイテッド Apparatus and method for preparing a substantially uniform emulsion containing particles
GB2467925A (en) * 2009-02-19 2010-08-25 Richard Graham Holdich Membrane emulsification using oscillatory motion
WO2021227353A1 (en) * 2020-05-12 2021-11-18 北京华龛生物科技有限公司 Preparation method for microcarrier applicable in three-dimensional cell culturing and reaction apparatus

Similar Documents

Publication Publication Date Title
JP3012608B1 (en) Microchannel device and method for producing emulsion using the same
JP2981547B1 (en) Cross-flow type microchannel device and method for producing or separating emulsion using the device
US6155710A (en) Method and device for producing emulsions
EP3359293B1 (en) Microfluidic droplet generator with controlled break-up mechanism
DE19917148C2 (en) Process and micromixer for producing a dispersion
JPH11276802A (en) Continuous producing devide of microsphere
EP2266685A3 (en) Process for forming an emulsion using microchannel process technology
JP2006239593A (en) Emulsification apparatus, emulsifying method and method for producing fine particle
Wang et al. Gas/liquid/liquid three‐phase flow patterns and bubble/droplet size laws in a double T‐junction microchannel
US20220184613A1 (en) Large Scale Microdroplet Generation Apparatus And Methods Of Manufacturing Thereof
Hancocks et al. The effects of membrane composition and morphology on the rotating membrane emulsification technique for food grade emulsions
Xia et al. Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques
JP2006021111A (en) Particle forming method and particle, and multiplex particle forming method and multiplex particle
Sontti et al. Regulation of droplet size and flow regime by geometrical confinement in a microfluidic flow-focusing device
Maan et al. Monodispersed water-in-oil emulsions prepared with semi-metal microfluidic EDGE systems
Khalid et al. Asymmetrical Microchannel Emulsification Plates for Production of Small‐Sized Monodispersed Emulsion Droplets
JP3772182B2 (en) Microsphere manufacturing apparatus and manufacturing method
Sugiura et al. Prediction of droplet diameter for microchannel emulsification: prediction model for complicated microchannel geometries
Josephides et al. Microfluidic method for creating monodisperse viscous single emulsions via core–shell templating
Yan et al. Rapid Encapsulation of cell and polymer solutions with bubble‐triggered droplet generation
Paramanantham et al. Numerical investigation of the influence of microchannel geometry on the droplet generation process
Ten Klooster et al. Upscaling microfluidic emulsification: the importance of sub-structure design in EDGE devices
JP2006239594A (en) Emulsification apparatus, continuous emulsification apparatus and emulsification method
JPH09173812A (en) Mixer and agitating filter therewith
JP2006346654A (en) Emulsifying filter and emulsion preparation apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002