JPWO2021111613A1 - 3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム - Google Patents

3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム Download PDF

Info

Publication number
JPWO2021111613A1
JPWO2021111613A1 JP2020519464A JP2020519464A JPWO2021111613A1 JP WO2021111613 A1 JPWO2021111613 A1 JP WO2021111613A1 JP 2020519464 A JP2020519464 A JP 2020519464A JP 2020519464 A JP2020519464 A JP 2020519464A JP WO2021111613 A1 JPWO2021111613 A1 JP WO2021111613A1
Authority
JP
Japan
Prior art keywords
map
floor
dimensional map
unit
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020519464A
Other languages
English (en)
Inventor
健 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021111613A1 publication Critical patent/JPWO2021111613A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Computer Graphics (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

3次元地図作成装置(100)は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成する3次元地図生成部(110)と、フロアのフロアマップ(300)を取得し、3次元地図生成部(110)によって生成された1つ以上の第1の3次元地図をフロアマップ(300)上に配置することによって、1つ以上の第1の3次元地図を含む第2の3次元地図を生成するフロアマップ登録部(120)とを有する。

Description

本発明は、3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラムに関する。
工場又はビルなどの大規模な屋内環境において自己位置を検出するためのシステムとして、WiFi又はBeaconを利用した測位システムが知られている。しかし、例えば、Automated Guided Vehicle(AGV)に搭載されたロボットである自律移動ロボットでは、点検の対象物の位置に加えて姿勢を検出したいという要求がある。また、対象物の位置及び姿勢を検出する装置では、導入コストの観点から位置及び姿勢を検出するための追加の機器をできるだけ無くしたいという要求がある。これらの要求を満たす方法として、自律移動ロボットの用途及び実在する風景にバーチャルの視覚情報としてのコンテンツを重ねて表示する拡張現実の用途などにおいて3次元地図を用いる方法が知られている。
3次元地図を作成する方法としては、Laser Imaging Detection and Ranging(LiDAR)、カメラ、などのセンサから取得されたセンサデータに基づいて、自己位置の推定と地図作成とを同時に行うSimultaneous Localization And Mapping(SLAM)が知られている。
特開2014−229020号公報
しかしながら、SLAMでは移動距離に応じて位置誤差が蓄積されるため、SLAMを大規模な屋内環境で使用した場合、精度の高い3次元地図を作成できないという問題がある。
ここで、図1(A)及び(B)は、SLAMによる3次元地図作成の対象領域であるフロア201及びフロア201の壁面に沿って移動しながら屋内環境をスキャンした場合における位置誤差の蓄積の様子であるスキャン結果202をそれぞれ示す。また、図2(A)及び(B)は、実在する対象物(例えば、機器)A1〜A3の画像211にコンテンツ212を正常に重ねて表示するタブレットPC(Tablet Personal Computer)210及び非正常に重ねて表示するタブレットPC210をそれぞれ示す。
本発明は、上記課題を解決するためになされたものであり、精度が高い3次元地図を生成することができる3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラムを提供することを目的とする。
本発明の一態様に係る3次元地図作成装置は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成する3次元地図生成部と、前記フロアのフロアマップを取得し、前記3次元地図生成部によって生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するフロアマップ登録部とを有する。
本発明の他の態様に係る3次元地図作成方法は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成するステップと、前記フロアのフロアマップを取得し、生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するステップとを有する。
本発明によれば、精度が高い3次元地図を生成することができる。
(A)は、SLAMによる3次元地図作成の対象領域である現実の1フロアを示す図であり、(B)は、1フロアの壁面に沿って移動しながら屋内環境をスキャンした場合における位置誤差の蓄積の様子であるスキャン結果を示す図である。 (A)は、実在する対象物を表示する画像にバーチャルな視覚情報としてのコンテンツを正常に重ねて表示するタブレットPCを示す図であり、(B)は、実在する対象物を表示する画像にコンテンツを非正常に重ねて表示するタブレットPCを示す図である。 本発明の実施の形態1に係る3次元地図作成装置のハードウェア構成の例を示す図である。 実施の形態1に係る3次元地図作成装置の構成を概略的に示す機能ブロック図である。 (A)は、フロアマップの例を示す平面図であり、(B)は、小規模な第1の3次元地図で表された対象物の例を示す斜視図である。 (A)は、第1の3次元地図のxyz軸周りの回転を示す斜視図であり、(B)は、第1の3次元地図の地面の法線周りの回転を示す平面図である。 図4に示されるフロアマップ登録部の構成を概略的に示す機能ブロック図である。 xyz直交座標系におけるフロアマップの例を示す図である。 図4に示される範囲分割部によって実行される範囲分割処理を示す図である。 図4に示される範囲分割部の構成を概略的に示す機能ブロック図である。 実施の形態1に係る3次元地図作成装置の範囲指定部を用いた範囲指定操作時の画面を示す図である。 (A)は、3次元地図生成処理を示すフローチャートであり、(B)は、位置姿勢推定処理を示すフローチャートである。 実施の形態1に係る3次元地図作成装置のフロアマップ登録部によって実行されるフロアマップ登録処理を示すフローチャートである。 実施の形態1に係る3次元地図作成装置の範囲分割部によって実行される範囲分割処理を示すフローチャートである。 類似度を計算する場合と計算しない場合とを説明するための図である。 実施の形態1に係る3次元地図作成装置の範囲分割部によって実行される類似判定処理を示すフローチャートである。 本発明の実施の形態2に係る3次元地図作成装置の構成を概略的に示す機能ブロック図である。 (A)は、3次元地図生成処理を示すフローチャートであり、(B)は、コンテンツ重畳表示のための処理を示すフローチャートである。 本発明の実施の形態2に係る3次元地図作成装置の構成を概略的に示す機能ブロック図である。 (A)は、3次元地図生成処理を示すフローチャートであり、(B)は、位置姿勢推定処理を示すフローチャートである。
以下に、本発明の実施の形態に係る3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラムを、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本発明の範囲内で種々の変更が可能である。
実施の形態に係る3次元地図作成装置は、例えば、コンピュータを有する自律移動ロボットである。実施の形態に係る3次元地図作成装置は、実在する対象物を表示する画像に視覚情報であるコンテンツを重ねて表示するタブレットPCであってもよい。ただし、実施の形態に係る3次元地図作成装置は、ユーザが持ち運ぶことにより移動可能なパーソナルコンピュータ又はスマートフォンなどであってもよい。
本出願において、フロアマップ又はフロア上の物体である対象物(例えば、設備、機器など)を示す図には、発明の理解を容易にするために、xyz直交座標系の座標軸と、各座標軸周りの回転方向とが示されている。フロアは、基準平面の例であり、一般的には地面に平行である。x軸及びz軸は、フロアを含む平面に平行な座標軸である。y軸は、フロアを含む平面に直交する方向の座標軸である。+Rz方向は、+z軸方向を向いたときにおける時計回り方向であり、−Rz方向は、+Rz方向の逆方向である反時計回り方向である。+Rx方向は、+x軸方向を向いたときにおける時計回り方向であり、−Rx方向は、+Rx方向の逆方向である反時計回り方向である。+Ry方向は、+y軸方向を向いたときにおける時計回り方向であり、−Ry方向は、+Ry方向の逆方向である反時計回り方向である。
《1》実施の形態1
《1−1》構成
〈3次元地図作成装置100〉
図3は、実施の形態1に係る3次元地図作成装置100のハードウェア(HW)構成の例を示す図である。3次元地図作成装置100は、実施の形態1に係る3次元地図作成方法を実施することができる装置である。3次元地図作成装置100は、実在する対象物を表示する画像に視覚情報であるコンテンツを重ねて表示するタブレットPCであってもよい。実在する対象物は、例えば、機器又は設備などである。
図3に示されるように、3次元地図作成装置100は、コンピュータ10を有する。コンピュータ10は、ソフトウェアとしてのプログラムを格納することができる記憶部としてのメモリ12と、メモリ12に記憶されているプログラムを実行することができる情報処理部としてのプロセッサ11とを有する。プログラムは、実施の形態1に係る3次元地図作成方法をコンピュータ10に実行させることができる3次元地図作成プログラムを含む。プログラムは、コンピュータ10によって読み取り可能な記録媒体に記録されることができる。記録媒体は、例えば、磁気ディスク、光ディスク、又は半導体メモリ、などである。
3次元地図作成装置100は、3次元地図DB40を有する。3次元地図DB40は、3次元地図を管理するために用いられるデータベース(DB)が格納された記憶装置である。ただし、3次元地図DB40は、3次元地図作成装置100と通信可能に接続された外部の記憶装置又はネットワーク上のサーバに備えられてもよい。
3次元地図作成装置100は、距離センサ21、カメラ22、ジャイロセンサ23、加速度センサ24、地磁気センサ25などの各種センサのうちの1つ以上を有してもよい。距離センサ21は、LiDAR、赤外線などを用いて距離を測定するセンサである。カメラ22は、画像(例えば、カラー画像)を取得するセンサである。ジャイロセンサ23は、角速度を取得するセンサである。加速度センサ24は、加速度を取得するセンサである。地磁気センサ25は、方位を取得するセンサである。各種センサは、3次元地図作成装置100の一部であってもよい。ただし、各種センサは、3次元地図作成装置100と通信可能に接続された外部の装置に備えられてもよい。例えば、図3に示される各種センサ21〜25がAGV上に備えられ、3次元地図作成装置100が、AGV上ではない他の場所に置かれたコンピュータ10で構成されることも可能である。
また、3次元地図作成装置100は、ディスプレイ30を有する。ディスプレイ30は、画像を表示する表示装置である。3次元地図作成装置100が、ユーザが携帯するタブレットPCである場合、ディスプレイ30に、図2(A)に示されるような現実の対象物を表示する画像と拡張現実のコンテンツとが表示される。ただし、3次元地図作成装置100は、ディスプレイ30を備えない装置であってもよい。
例えば、拡張現実を用いて対象物の保守点検を行う場合、3次元地図作成装置100であるタブレットPCを持ったユーザが対象物の正面まで移動する。3次元地図作成装置100は、対象物までの移動中において及び対象物の正面位置において取得されたセンサデータに基づいて、対象物の位置及び姿勢の推定を行う。なお、タブレットPCの場合には、対象物の位置は、ユーザの位置である自己位置と同じであるものとみなす。拡張現実を用いて対象物の保守点検を行う場合、対象物及びその周辺(すなわち、近くの領域)の3次元地図が正確に作成されていれば、対象物から遠い位置の3次元地図が作成されていなくても或いは不正確であっても、対象物に関するコンテンツを、タブレットPCのディスプレイ30において、対象物の画像上又は対象物の画像の近くの適切な位置に表示することができる。
また、3次元地図作成装置100である自律移動ロボットを用いて対象物の保守点検を行う場合、自律移動ロボットが対象物の正面まで移動する。自律移動ロボットは、対象物までの移動中における及び対象物の正面位置におけるセンサデータに基づいて、対象物の位置及び姿勢の推定を行う。自律移動ロボットが対象物の保守点検を行う場合、対象物及びその近くの3次元地図が正確に作成されていれば、対象物から遠い位置の3次元地図が作成されていなくても或いは不正確であっても、ロボットハンドなどによって対象物を操作することができる。つまり、自律移動ロボットは、対象物の周辺では、高い位置精度を持つ3次元地図を必要とするが、移動に使用される通路などでは、3次元地図の位置精度は低くても問題ない。
機器単体又は数メートル四方の領域などのような小規模な環境であれば、SLAMを用いることによって、高精度に3次元地図を作成することができる。これは、SLAMを用いて小規模な環境の3次元地図を作成する場合、誤差の蓄積が少なく、さらに、ループの検出が容易だからである。ループの検出は、例えば、SLAMで行われるループ閉じ込み(Loop Closure)と呼ばれる処理である。
実施の形態1に係る3次元地図作成装置100は、対象物及びその周辺のみで高精度に位置及び姿勢の推定をすることを可能にする大規模な第2の3次元地図を作成する。具体的には、実施の形態1に係る3次元地図作成装置100は、点検対象機器などの対象物の位置を含むレイアウトが描かれたフロアマップ300上に1つ以上の第1の3次元地図(すなわち、小規模な3次元地図)を配置することによって、1つの第2の3次元地図(すなわち、大規模な3次元地図)を作成する。
3次元地図作成装置100がタブレットPCである場合、タブレットPCを携帯したユーザが対象物の正面まで移動すると、3次元地図作成装置100は、フロアマップの1つ以上の領域に1つ以上の第1の3次元地図をそれぞれ登録することによって、図2(A)に示されるように、対象物A1〜A3が表示された画像211における適切な位置にコンテンツ212を重畳表示する。
図4は、実施の形態1に係る3次元地図作成装置100の構成を概略的に示す機能ブロック図である。図4に示されるように、3次元地図作成装置100は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成する3次元地図生成部110と、フロアのフロアマップを取得し、3次元地図生成部110によって生成された1つ以上の第1の3次元地図をフロアマップ上に配置することによって、1つ以上の第1の3次元地図を含む大規模な第2の3次元地図を生成するフロアマップ登録部120と、第2の3次元地図を複数の範囲に分割する範囲分割部130とを有する。また、3次元地図作成装置100は、範囲指定部140と、位置姿勢推定部150とを有してもよい。
〈3次元地図生成部110〉
図5(A)は、フロアマップ300の例を示す平面図であり、図5(B)は、小規模な第1の3次元地図400で表された対象物の例を示す斜視図である。3次元地図生成部110は、例えば、SLAMなどを用いて1つ以上の第1の3次元地図を生成する。第1の3次元地図400は、フロア上の対象物及びその周辺の小規模な領域の3次元地図である。フロアマップ300には、対象物の配置場所である対応領域301〜305が描かれている。例えば、第1の3次元地図400は、回転、平行移動、及びスケール調整のいずれか1つ以上が実行され、対応領域303に当てはめられる。
〈フロアマップ登録部120〉
図6(A)は、第1の3次元地図400のxyz軸周りの回転を示す斜視図であり、図6(B)は、第1の3次元地図400の地面に平行なフロアマップ300の法線周りの回転(すなわち、y軸周りの±Ry方向の回転)を示す平面図である。実施の形態1では、フロアマップ登録部120は、図6(B)に示されるように、対応領域301〜305が描かれているフロアマップ300を、例えば、外部の記憶装置から取得する。フロアマップ登録部120は、対応領域301〜305が描かれているフロアマップ300を予め記憶する記憶部を有してもよい。或いは、フロアマップ登録部120は、対応領域301〜305が描かれているフロアマップ300を、操作入力部からのユーザ入力操作に従って、外部の記憶装置又はネットワーク上のサーバから取得してもよい。
例えば、フロアマップ300の中から、小規模な第1の3次元地図として再構成された対応領域303が、ユーザ操作によって指定される。この際、図6(A)に示されるように、xyz軸周りの3つの回転調整は、ユーザにとって煩雑な作業であるため、フロアマップ登録部120は、図6(B)に示されるように、フロアマップ登録に必要な1つの回転軸周りの調整(例えば、y軸周りの±Ry方向の回転)を自動的に選択して、不要な回転軸の調整(例えば、x軸周りの±Rx方向の回転及びz軸周りの±Rz方向の回転)を無効化する処理を行ってもよい。この処理を加えることで、3次元的な回転を調整することなく、ユーザは、フロアマップ300上の指定の対応領域(例えば、303)に第1の3次元地図(例えば、400)を登録することが可能である。例えば、ユーザ操作によって第1の3次元地図の地面の法線周りの回転角度と平行移動量とを指定することで、フロアマップ登録部120は、1つ以上の第1の3次元地図をフロアマップ300に登録する。
図7は、図4に示されるフロアマップ登録部120の構成を概略的に示す機能ブロック図である。フロアマップ登録部120は、地面検出部121と、外部パラメータ計算部122と、外部パラメータ入力部123と、外部パラメータ作用部124とを有する。
地面検出部121は、3次元地図に基づいて地面を検出する。地面検出方法の例として、ロバスト推定のアルゴリズムの1つであるRandom Sample Consensus(RANSAC)などを用いる方法がある。平面の係数(a b c d)と、平面上の位置(x y z)の関係は、以下の式(1)で表される。
Figure 2021111613
式(1)において、「・」は、内積を示す。RANSACを用いて求められた平面は、無限平面であるため、地面検出部121は、凸包(Convex hull)などを用いて平面の範囲を計算する。地面検出部121は、範囲が最も大きい平面を地面として検出する。
範囲が最も大きい平面が地面とは、限らないケースもあるため、地面検出部121は、以下の方法で地面を検出してもよい。例えば、地面検出部121は、ユーザ入力操作に基づいて、複数の平面の中から地面(すなわち、水平面)を検出してもよい。或いは、地面検出部121は、慣性計測装置(Inertial Measurement Unit:IMU)によって計測された加速度から重力方向を求め、法線が重力に近い平面を地面と判断してもよい。或いは、地面検出部121は、IMUによって計測された重力方向と、平面の面積の大きさを用いて地面を検出してもよい。
外部パラメータ計算部122は、地面検出部121によって検出された地面とフロアマップ300との関係性から外部パラメータTを計算する。まず、外部パラメータ計算部122は、検出した地面の法線nと、フロアマップ300の法線nとから回転Rを求める。nとnは、以下の式(2)及び(3)で表される。
Figure 2021111613
フロアマップ300は、図8に示されるようなxyz直交座標系で示されると仮定する。外部パラメータ計算部122は、回転Rを、式(2)に示されるnのx方向に対する偏角θと式(3)に示されるnのz方向に対する偏角θとを用いて計算する。偏角θ、θを用いて求めた回転行列をそれぞれR、Rとすると、これらは、式(4)で示され、回転Rは式(5)で示される。
Figure 2021111613
外部パラメータ計算部122は、式(5)で回転Rを求めた後、平面上の一点のベクトルxから
Figure 2021111613
を計算する。
高さ方向に相当するy座標であるhを平行移動量とすると、外部パラメータTは、回転R及びベクトルtから、以下の式(6)によって表される。
Figure 2021111613
式(6)において、ベクトルtは、回転R及びベクトルxの高さ方向のみを取り出したベクトルであり、以下の式(7)のように表される。
Figure 2021111613
外部パラメータ入力部123は、ユーザ入力を受け付ける。外部パラメータ入力部123におけるユーザ入力により、一部の外部パラメータが入力される。外部パラメータ入力部123に入力される外部パラメータは、例えば、図8に示されるフロアマップ300の座標系においてy軸周りの回転Rと、xz平面における平行移動量tである。これらから、外部パラメータ入力部123は、外部パラメータTを以下の式(8)によって取得する。また、ユーザ入力を回転の角度θとすると、回転Rは以下の式(9)によって表される。
Figure 2021111613
なお、図8において、tは、フロアマップ300の左下の点を基準(すなわち、原点)とした平行移動量である。
y軸周りの回転の角度θは、地磁気センサ25を用いて取得してもよい。角度θの値は、地磁気センサ25から自動的に入力される。或いは、角度θは、地磁気センサ25の検出値を初期値としてユーザが入力してもよい。
角度θ及び平行移動量tの入力方法は、Graphics User Interface(GUI)の操作、キーボードなどからの数値入力のいずれであってもよい。また、平行移動量tの原点は、図8に示されるフロアマップの左下の点と異なる点であってもよい。
外部パラメータ作用部124は、外部パラメータ計算部122で計算された外部パラメータ及び外部パラメータ入力部123から入力された外部パラメータを3次元地図に対して作用させる。3次元地図で管理している点群に対して行う外部パラメータ作用は、以下の式(10)に示される。ここで、ベクトルpは、作用前の点群の一点、ベクトルp′は、作用後の点を示す。
Figure 2021111613
〈範囲分割部130〉
フロアマップに、互いに同じ形状で同じ模様の複数の対象物が並んでいる場合、目標の対象物の位置及び姿勢の推定が失敗する可能性がある。例えば、同じ形状で同じ模様の複数の対象物B1〜B6が並んでいる環境では、対象物B1をスキャンして位置及び姿勢を推定する場合、間違って対象物B2〜B6のいずれかの位置及び姿勢が出力される可能性がある。誤推定を避けるために、位置及び姿勢の推定時には、まず、ユーザがいる範囲を指定することが望ましい。範囲を指定することで、範囲内に含まれている対象物の3次元地図400を元に、詳細な位置及び姿勢を推定することが可能になる。
図9は、図4に示される範囲分割部130によって実行される範囲分割処理を示す図である。範囲分割部130は、例えば、フロアマップ300で表される1つのフロアを複数の範囲(例えば、範囲#1〜#4)に分割する。範囲分割部130は、例えば、ビルの1つのフロアを複数の範囲#1〜#4に静的に分割し、複数の範囲#1〜#4の各々における3次元地図を管理する。範囲分割部130は、例えば、図9に示されるように、1つのフロアマップ300を4つの範囲#1〜#4に分割する。このように、1つのフロアマップ300を複数の範囲に分割し、同じ模様及び同じ形状を持つ複数の対象物が互いに異なる範囲に属するようにして3次元地図を管理すれば、目標の対象物を、これと同じ形状で同じ模様の他の対象物であると誤って誤推定する可能性は低下する。しかし、この場合には、誤推定が発生する可能性を十分に低減できない。
このような理由から、範囲分割部130は、動的な範囲分割を行うことが望ましい。図10は、図4に示される範囲分割部130の構成を概略的に示す機能ブロック図である。範囲分割部130は、画像特徴算出部131と、クラスタリング部132とを有する。
画像特徴算出部131は、3次元地図を生成するときにカメラ撮影した画像の類似度に基づいて画像の特徴を算出する。画像特徴算出部131は、例えば、Bag of Words(BoW)を用いて範囲分割のための処理を行う。画像特徴算出部131は、対象物の第1の3次元地図の各々のカメラ撮影画像に対してBoWを使って画像をベクトル化する。画像特徴算出部131は、ベクトル同士の距離が近ければ「類似している」と判断する。
クラスタリング部132は、画像特徴算出部131の結果を元にクラスタリングを行い、範囲分割する。つまり、クラスタリング部132は、これらのベクトルが互いに異なる範囲に属するように、範囲分割処理を行う。
〈範囲指定部140〉
図11は、実施の形態1に係る3次元地図作成装置100の範囲指定部140を用いた範囲指定操作時の画面を示す図である。範囲指定部140は、範囲分割部130によって決定され複数の範囲の中から、1つの範囲を指定する。範囲指定部140は、例えば、ユーザ操作部からのユーザ操作によって選択された1つの範囲を指定する。ユーザ操作部は、範囲指定部140に接続された装置又は範囲指定部140の一部である。ユーザ操作部は、例えば、図11に示されるようなタブレットPCのタッチパネルである。ユーザが、タッチパネルに表示された複数の範囲の中から、タップ操作などよって1つの範囲を選択すると、範囲指定部140は、選択された範囲を指定する。
〈位置姿勢推定部150〉
位置姿勢推定部150は、範囲指定部140によって指定された範囲に含まれる3次元地図を用いて、対象物の位置及び姿勢を推定する。位置及び姿勢を推定する技術の例として、BoWとPerspective N Points(PnP)とを組み合わせる方法がある。
《1−2》動作
図12(A)は、3次元地図生成処理を示すフローチャートであり、図12(B)は、位置姿勢推定処理を示すフローチャートである。まず、図12(A)に示されるように、3次元地図生成部110は、対象物毎に小規模な第1の3次元地図を生成する(ステップS11、S12)。次に、フロアマップ登録部120は、第1の3次元地図をフロアマップ300に登録する(ステップS13)。ステップS11〜S13の処理は、対象物の個数分、繰り返され、その結果、大規模の第2の3次元地図が生成される。全ての対象物の登録が終了した後、範囲分割部130は、第2の3次元地図を複数の範囲に分割する(ステップS14)。
次に、図12(B)に示されるように、3次元地図を用いた位置及び姿勢の推定が行われる。まず、範囲指定部140は、ユーザ操作に基づいて、ユーザがいるおおよその範囲である指定範囲を選択する(ステップS21)。その後、位置姿勢推定部150は、指定範囲内の3次元地図を使って位置及び姿勢の推定を行う(ステップS22)。
図13は、3次元地図作成装置100のフロアマップ登録部120によって実行されるフロアマップ登録処理(ステップS13)を示すフローチャートである。まず、地面検出部121は、地面の検出を行う(ステップS131〜S135)。例えば、地面検出部121は、複数の平面を検出した後(ステップS131〜S133)、その中から地面とみなすことができる最大の平面を求めることで地面を検出する(ステップS134、S135)。その後、外部パラメータ計算部122は、地面とフロアマップ300の関係を使った移動量を算出し、外部パラメータ入力部123はユーザ操作で入力された平行移動量と地面法線周りの回転量とから移動量を求める(ステップS136、S137)。次に、外部パラメータ作用部124は、これら2つの移動量である外部パラメータを3次元地図に作用させる(ステップS138)。
図14は、3次元地図作成装置100の範囲分割部130によって実行される範囲分割処理を示すフローチャートである。まず、画像特徴算出部131は、BoWなどを用いて画像特徴を算出し、画像特徴が互いに類似する場合には、この情報をルールに追加する。3次元地図の最初のループ(ステップS141)のインデックスをi(ここで、iは0以上N以下の整数)、2番目のループ(ステップS143)のインデックスをj(ここで、jは0以上N以下の整数)とすると、画像特徴算出部131は、i<jのときに3次元地図の類似度を計算する(ステップS141〜S147)。図15は、類似度を計算する場合と計算しない場合とを説明するための図である。つまり、図15の白色のときに類似度を計算し、斜線範囲のときに類似度を計算しない。
図16は、3次元地図作成装置100の範囲分割部130によって実行される類似判定処理を示すフローチャートである。図16に示されるように、範囲分割部130の画像特徴算出部131は、まず、2つの画像特徴の距離を計算する。ここでの画像特徴を、ベクトルv、ベクトルvとすると、範囲分割部130は、例えば、以下の式(11)で表されるユークリッド距離を、2つの画像特徴の距離として用いる。
Figure 2021111613
画像特徴算出部131は、2つの画像特徴の距離の計算を計算し(ステップS1403)、最小距離を求める処理(ステップS1404、S1405)を3次元地図の数であるN(j)回繰り返し(ステップST1401)、さらに、ステップS1401〜S1404の処理を3次元地図の数であるN(i)回繰り返す(ステップST1400)。画像特徴算出部131は、画像特徴の最小距離を求めた後、最小距離がα未満の場合(ステップS1405においてtrue)、類似と判定して処理を終了し、最小距離がα以上の場合(ステップS1405においてfalse)、非類似と判定して処理を終了する。ここでのαは、予め設定された値であり、例えば、開発者又はユーザなどが設定するパラメータである。
上記の処理でルールが決定した後、クラスタリング部132は、ルールに基づいてクラスタリングを実行する(図14におけるステップS148〜S151)。図14は、階層型クラスタリングである分割型クラスタリング(Divisive Clustering)を用いてクラスタリングを行う例を示す。まず、クラスタリング部132は、分割対象の3次元地図を範囲分割する。ここで分割する3次元地図をC1,C2とする。クラスタリング部132は、3次元地図C1の中心位置に近い他の3次元地図は、C1のクラスに属し、3次元地図C2の中心位置に近い他の3次元地図は、C2のクラスに属するように、範囲分割を行う。クラスタリング部132は、このような3次元地図の範囲分割を繰り返して、最終的な範囲分割を行う。
《1−3》効果
以上に説明したように、実施の形態1に係る3次元地図作成装置100は、小規模な1つ以上の第1の3次元地図をSLAMを用いて作成し、フロアマップ300上に1つ以上の第1の3次元地図を配置することによって大規模な第2の3次元地図(例えば、屋内環境全体の3次元地図)を作成している。第1の3次元地図を作成するときに、SLAMによって蓄積する位置誤差は小さいので、第2の3次元地図における位置誤差は抑制される。したがって、実施の形態1に係る3次元地図作成装置100は、位置誤差の小さい大規模な3次元地図を作製することができる。
《2》実施の形態2
《2−1》構成
図17は、実施の形態2に係る3次元地図作成装置101の構成を概略的に示す機能ブロック図である。図17において、図4に示される構成要素と同一又は対応する構成要素には、図4に示される符号と同じ符号が付されている。実施の形態2に係る3次元地図作成装置101は、コンテンツ登録部160及びコンテンツ重畳表示部170を有する点において、実施の形態1に係る3次元地図作成装置100と異なる。なお、3次元地図作成装置101のHW構成は、図3に示されるものと同じである。
コンテンツ登録部160は、1つ以上の対象物の各々の第1の3次元地図を用いて、各対象物を表示する画像に重ねて表示するコンテンツの位置を登録する。コンテンツ重畳表示部170は、カメラ22で撮影した画像に、登録されているコンテンツを重畳してディスプレイ30に表示させる。コンテンツは、例えば、線若しくは平面などの図形と対象物を示す情報、立方体若しくは球などの3次元の図形と対象物を示す情報、又はこれらの組み合わせなどを含むことができる。
《2−2》動作
図18(A)は、3次元地図作成装置101が行う3次元地図生成処理を示すフローチャートであり、図18(B)は、3次元地図作成装置101がコンテンツ重畳表示のために行う処理を示すフローチャートである。図18(A)及び(B)において、図12(A)及び(B)と同じ処理ステップには、図12(A)及び(B)の処理ステップにおける符号と同じ符号が付されている。図18(A)に示されるように、実施の形態2に係る3次元地図作成装置101は、各対象物を表示する画像に重ねて表示するコンテンツの位置を登録するコンテンツ登録処理(ステップS15)を行う点において、実施の形態1に係る3次元地図作成装置100と異なる。また、図18(B)に示されるように、実施の形態2に係る3次元地図作成装置101は、コンテンツ登録処理で登録されたコンテンツを各対象物を表示する画像に重ねて表示するコンテンツ表示(ステップS23)を行う点において、実施の形態1に係る3次元地図作成装置100と異なる。
《2−3》効果
以上に説明したように、実施の形態2に係る3次元地図作成装置101は、小規模な1つ以上の第1の3次元地図をSLAMを用いて作成し、フロアマップ300上に1つ以上の第1の3次元地図を配置することによって大規模な第2の3次元地図(例えば、屋内環境全体の3次元地図)を作成している。第1の3次元地図を作成するときに、SLAMによって蓄積する位置誤差は小さいので、第2の3次元地図における位置誤差は抑制される。したがって、実施の形態2に係る3次元地図作成装置101は、図2(A)に示されるように、コンテンツを適切な位置に重畳表示することができる。
上記以外の点に関し、実施の形態2は、実施の形態1と同じである。
《3》実施の形態3
《3−1》構成
図19は、実施の形態3に係る3次元地図作成装置102の構成を概略的に示す機能ブロック図である。図19において、図4に示される構成要素と同一又は対応する構成要素には、図4に示される符号と同じ符号が付されている。実施の形態3に係る3次元地図作成装置102は、相対移動距離推定部180を有する点において、実施の形態1に係る3次元地図作成装置100と異なる。なお、3次元地図作成装置102のHW構成は、図3に示されるものと同じである。
実施の形態1において説明したように、位置姿勢推定部150は、対象物及びその周辺における小規模な第1の3次元地図に基づいて、対象物の位置及び姿勢を推定する。しかし、第1の3次元地図から離れた場所に存在する物体の位置及び姿勢を推定するためには、位置及び姿勢の推定が成功した場所からの相対的な移動距離を求める必要がある。実施の形態3に係る3次元地図作成装置102は、相対移動距離推定部180を設けることによって、相対的な移動距離を算出する機能を有している。
《3−2》動作
図20(A)は、3次元地図作成装置102が行う3次元地図生成処理を示すフローチャートであり、図20(B)は、3次元地図作成装置102が行う位置姿勢推定処理を示すフローチャートである。図20(A)及び(B)において、図12(A)及び(B)と同じ処理ステップには、図12(A)及び(B)の処理ステップにおける符号と同じ符号が付されている。図20(B)に示されるように、実施の形態3に係る3次元地図作成装置102は、相対的な移動距離を求める処理(ステップS24、S25)を行う点において、実施の形態1に係る3次元地図作成装置100と異なる。
相対的な移動距離の推定には、例えば、以下の方法が使用可能である。第1の方法は、SLAMを用いる方法である。これは、カメラで撮影した画像、又は距離センサ21で検出されたセンサデータ、又はこれらの両方を使って移動量を求める方法である。これは、例えば、時間方向に並ぶ2つのフレーム間の移動量を、順次積算することによって移動量を求める方法である。
第2の方法は、カメラで撮影した画像及び距離センサ21で検出されたセンサデータに、ジャイロセンサ23、加速度センサ24、地磁気センサ25のいずれか1つ以上を使ったデッドレコニング(Dead Reckoning)を組み合わせた方法である。Dead Reckoningは、ジャイロセンサ23、加速度センサ24、地磁気センサ25などを使って移動量を求める方法である。この方法は、加速度の積分とジャイロセンサ23により移動速度と移動方向を求め、速度を積分することで移動距離を求める方法である。
第3の方法は、歩行者デッドレコニング(Pedestrian Dead Reckoning)を用いる方法である。第3の方法は、ジャイロセンサ23及び加速度センサ24のセンサデータから歩幅及び歩数を求め、これらから移動距離を求める方法である。
《3−3》効果
以上に説明したように、実施の形態3に係る3次元地図作成装置102は、小規模な1つ以上の第1の3次元地図をSLAMを用いて作成し、フロアマップ300上に1つ以上の第1の3次元地図を配置することによって大規模な1つの第2の3次元地図(例えば、屋内環境全体の3次元地図)を作成している。第1の3次元地図を作成するときにSLAMによって蓄積する位置誤差は小さいので、第2の3次元地図における位置誤差は低減される。したがって、実施の形態3に係る3次元地図作成装置102は、図2(A)に示されるように、コンテンツを適切な位置に重畳表示することができる。さらに、第1の3次元地図から離れた場所でも位置及び姿勢の推定ができる。
上記以外の点に関し、実施の形態3は、実施の形態1と同じである。また、相対移動距離推定部180を実施の形態2の構成に備えることも可能である。
10 コンピュータ、 11 プロセッサ、 12 メモリ、 21 距離センサ、 22 カメラ、 23 ジャイロセンサ、 24 加速度センサ、 25 地磁気センサ、 30 ディスプレイ、 40 3次元地図DB、 100、101、102 3次元地図作成装置、 110 3次元地図生成部、 120 フロアマップ登録部、 121 地面検出部、 122 外部パラメータ計算部、 123 外部パラメータ入力部、 124 外部パラメータ作用部、 130 範囲分割部、 140 範囲指定部、 150 位置姿勢推定部、 160 コンテンツ登録部、 170 コンテンツ重畳表示部、 180 相対移動距離推定部、 300 フロアマップ。
本発明の一態様に係る3次元地図作成装置は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に、前記フロアに垂直な方向の高さを持つ前記対象物を含む3次元地図である第1の3次元地図を生成する3次元地図生成部と、前記対象物の位置を含むレイアウトが描かれた前記フロアのフロアマップを取得し、前記3次元地図生成部によって生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記フロアマップと前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するフロアマップ登録部とを有する。
本発明の他の態様に係る3次元地図作成方法は、フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に、前記フロアに垂直な方向の高さを持つ前記対象物を含む3次元地図である第1の3次元地図を生成するステップと、前記対象物の位置を含むレイアウトが描かれた前記フロアのフロアマップを取得し、生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記フロアマップと前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するステップとを有する。

Claims (9)

  1. フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成する3次元地図生成部と、
    前記フロアのフロアマップを取得し、前記3次元地図生成部によって生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するフロアマップ登録部と、
    を有することを特徴とする3次元地図作成装置。
  2. 前記第2の3次元地図を複数の範囲に分割する範囲分割部をさらに有することを特徴とする請求項1に記載の3次元地図作成装置。
  3. 前記複数の範囲のうちのいずれかを指定範囲として指定する範囲指定部と、
    前記1つ以上の第1の3次元地図のうちの前記指定範囲内に配置された第1の3次元地図を用いて、前記指定範囲内に存在する対象物の位置及び姿勢を推定する位置姿勢推定部と、
    をさらに有することを特徴とする請求項2に記載の3次元地図作成装置。
  4. 前記フロアマップ登録部は、
    複数の平面を検出し、前記複数の平面のうちから前記フロアに対応する地面を検出する地面検出部と、
    前記地面を用いて前記センサの移動量に基づく第1の外部パラメータを算出する外部パラメータ計算部と、
    ユーザ入力によって取得された移動量に基づく第2の外部パラメータを生成する外部パラメータ入力部と、
    前記第1の外部パラメータ及び前記第2の外部パラメータに基づいて、前記第2の3次元地図を補正する外部パラメータ作用部と
    を有することを特徴とする請求項1から3のいずれか1項に記載の3次元地図作成装置。
  5. 前記範囲分割部は、
    前記第1の3次元地図の特徴の類似度に基づいて画像の特徴を算出する画像特徴算出部と、
    前記類似度に基づいて、前記範囲の分割を行うクラスタリング部と、
    を有することを特徴とする請求項2又は3に記載の3次元地図作成装置。
  6. 前記対象物を含む領域毎の第1の3次元地図を用いて、各対象物を表示する画像に重ねて表示するコンテンツの位置を登録するコンテンツ登録部と、
    カメラで撮影した画像に前記コンテンツを重畳してディスプレイに表示させコンテンツ重畳表示部と、
    をさらに有することを特徴とする請求項1から5のいずれか1項に記載の3次元地図作成装置。
  7. 前記第1の3次元地図から離れた場所に存在する物体までの相対的な移動距離を算出する相対移動距離推定部をさらに有することを特徴とする請求項1から6のいずれか1項に記載の3次元地図作成装置。
  8. フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成するステップと、
    前記フロアのフロアマップを取得し、生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成するステップと、
    を有することを特徴とする3次元地図作成方法。
  9. コンピュータに、
    フロア上を移動するセンサによって検出されたセンサデータに基づいて、対象物を含む領域毎に第1の3次元地図を生成する処理と、
    前記フロアのフロアマップを取得し、生成された1つ以上の第1の3次元地図を前記フロアマップ上に配置することによって、前記1つ以上の第1の3次元地図を含む第2の3次元地図を生成する処理と、
    を実行させることを特徴とする3次元地図作成プログラム。
JP2020519464A 2019-12-06 2019-12-06 3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム Pending JPWO2021111613A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047794 WO2021111613A1 (ja) 2019-12-06 2019-12-06 3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム

Publications (1)

Publication Number Publication Date
JPWO2021111613A1 true JPWO2021111613A1 (ja) 2021-12-09

Family

ID=76221169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020519464A Pending JPWO2021111613A1 (ja) 2019-12-06 2019-12-06 3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム

Country Status (3)

Country Link
JP (1) JPWO2021111613A1 (ja)
TW (1) TW202123157A (ja)
WO (1) WO2021111613A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833122B (zh) * 2021-10-22 2024-02-21 中光電智能機器人股份有限公司 空間靜態地圖建構方法及系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276168A (ja) * 2003-03-14 2004-10-07 Japan Science & Technology Agency 移動ロボット用地図作成システム
JP2010191066A (ja) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp 三次元地図補正装置及び三次元地図補正プログラム
JP2014128003A (ja) * 2012-12-27 2014-07-07 Canon Inc 画像認識装置、その制御方法及びプログラム
JP2014229020A (ja) * 2013-05-21 2014-12-08 三菱電機ビルテクノサービス株式会社 情報提供装置及び情報提供システム
WO2018189770A1 (ja) * 2017-04-10 2018-10-18 三菱電機株式会社 地図管理装置および自律移動体制御装置
US20190129444A1 (en) * 2017-10-31 2019-05-02 Savioke, Inc. Computer system and method for automated indoor surveying by robots
JP2019174920A (ja) * 2018-03-27 2019-10-10 株式会社日立ソリューションズ 物品管理システム、及び物品管理プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146267A (ja) * 2013-01-30 2014-08-14 Toyota Motor Corp 歩行者検出装置、運転支援装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276168A (ja) * 2003-03-14 2004-10-07 Japan Science & Technology Agency 移動ロボット用地図作成システム
JP2010191066A (ja) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp 三次元地図補正装置及び三次元地図補正プログラム
JP2014128003A (ja) * 2012-12-27 2014-07-07 Canon Inc 画像認識装置、その制御方法及びプログラム
JP2014229020A (ja) * 2013-05-21 2014-12-08 三菱電機ビルテクノサービス株式会社 情報提供装置及び情報提供システム
WO2018189770A1 (ja) * 2017-04-10 2018-10-18 三菱電機株式会社 地図管理装置および自律移動体制御装置
US20190129444A1 (en) * 2017-10-31 2019-05-02 Savioke, Inc. Computer system and method for automated indoor surveying by robots
JP2019174920A (ja) * 2018-03-27 2019-10-10 株式会社日立ソリューションズ 物品管理システム、及び物品管理プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
永井 源樹、外2名: ""ドローンを用いたVisua1SLAMに基づく3次元地図生成"", 「ロボティクス・メカトロニクス 講演会2016 講演会論文集」, JPN6020006210, 8 June 2016 (2016-06-08), JP, pages 1 - 1, ISSN: 0004297201 *
飯島 裕樹、外1名: ""交差点マップを用いた電動車椅子の経路制御"", 「システム/制御/情報 第59巻 第1号(システム制御情報学会論文誌 第28巻 第1号)」, vol. 第59巻,第1号, JPN6020006211, 15 January 2015 (2015-01-15), JP, pages 12 - 21, ISSN: 0004297202 *

Also Published As

Publication number Publication date
TW202123157A (zh) 2021-06-16
WO2021111613A1 (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US11127203B2 (en) Leveraging crowdsourced data for localization and mapping within an environment
US9953461B2 (en) Navigation system applying augmented reality
US10636168B2 (en) Image processing apparatus, method, and program
JP5746477B2 (ja) モデル生成装置、3次元計測装置、それらの制御方法及びプログラム
US9990726B2 (en) Method of determining a position and orientation of a device associated with a capturing device for capturing at least one image
JP5036260B2 (ja) 位置姿勢算出方法及び装置
US10930008B2 (en) Information processing apparatus, information processing method, and program for deriving a position orientation of an image pickup apparatus using features detected from an image
KR102016636B1 (ko) 카메라와 레이더의 캘리브레이션 장치 및 방법
KR101973917B1 (ko) 3차원 계측 장치 및 그 계측 지원 처리 방법
WO2013111229A1 (ja) カメラ校正装置、カメラ校正方法およびカメラ校正用プログラム
JP2016057108A (ja) 演算装置、演算システム、演算方法およびプログラム
JP2012021958A (ja) 位置姿勢計測装置、その計測処理方法及びプログラム
WO2006082825A1 (ja) 指標配置計測方法、位置姿勢推定方法、指標配置計測装置、位置姿勢推定装置
Choi et al. Position-based augmented reality platform for aiding construction and inspection of offshore plants
CN114726978A (zh) 信息处理装置、信息处理方法以及程序
Zhu et al. Wii remote–based low-cost motion capture for automated assembly simulation
WO2021111613A1 (ja) 3次元地図作成装置、3次元地図作成方法、及び3次元地図作成プログラム
JP2012018684A (ja) 情報処理方法および装置
Hasler et al. Implementation and first evaluation of an indoor mapping application using smartphones and AR frameworks
JP2015118101A (ja) 情報処理装置および方法、プログラム
Shmatko et al. Estimation of rotation measurement error of objects using computer simulation
Li et al. A combined vision-inertial fusion approach for 6-DoF object pose estimation
Volkov et al. Stereo-based visual localization without triangulation for unmanned robotics platform
JP2021047516A (ja) 情報処理装置、座標変換システム、座標変換方法、及び座標変換プログラム
Mair et al. Real-time image-based localization for hand-held 3d-modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200403

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908