JPWO2021087466A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021087466A5
JPWO2021087466A5 JP2022525329A JP2022525329A JPWO2021087466A5 JP WO2021087466 A5 JPWO2021087466 A5 JP WO2021087466A5 JP 2022525329 A JP2022525329 A JP 2022525329A JP 2022525329 A JP2022525329 A JP 2022525329A JP WO2021087466 A5 JPWO2021087466 A5 JP WO2021087466A5
Authority
JP
Japan
Prior art keywords
cell
cells
genetically modified
target
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022525329A
Other languages
Japanese (ja)
Other versions
JP2022554284A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/058565 external-priority patent/WO2021087466A1/en
Publication of JP2022554284A publication Critical patent/JP2022554284A/en
Publication of JPWO2021087466A5 publication Critical patent/JPWO2021087466A5/ja
Pending legal-status Critical Current

Links

Description

MM細胞に対するCD38KONK細胞の優れたイサツキシマブ媒介性ADCC.NK細胞のDARA誘発性枯渇は、標的細胞に対する細胞依存性細胞傷害を鈍化させる可能性があるため、CD38KONK細胞はまた、CD38WTNK細胞よりも効率的に標的細胞を殺傷することができる。これがイサツキシマブにも適用されるかどうかを研究するために、高レベル、低レベル、または皆無のCD38発現を有する異なるMM細胞株に対して、対のCD38WTおよびCD38KONK細胞の細胞傷害性を、イサツキシマブの存在下または不在下で試験することができる。各MM細胞株に対する直接的な細胞傷害性は、CD38WTとCD38KONK細胞との間で同等であるが、イサツキシマブの存在下では、CD38KONK細胞は、CD38標的細胞に対して有意に高い細胞傷害性を示し、CD38KONK細胞のより高いADCCを示している。DARA実験と同様に、CD38WTNK細胞は、OPM-2およびKMS-11などの低レベルのCD38発現を有するMM細胞に対して、わずかなまたは皆無のADCCを示すが、CD38KONK細胞は、これらのMM細胞株に対して、有意により強いADCCを示す。細胞株を用いた結果と同様に、CD38KONK細胞は、初代MM試料に対して、より高いイサツキシマブ媒介性ADCC活性を示す。
本発明によれば、以下の態様を提供し得る。
[1]
対象におけるがんを治療する方法であって、前記対象に、CD38遺伝子のノックアウトを含むように改変されているNK細胞を投与することを含む、方法。
[2]
前記がんが、多発性骨髄腫、急性骨髄性白血病(AML)、T細胞性急性リンパ芽球性白血病(T-ALL)、または芽球性形質細胞様樹状細胞腫瘍(BPDCN)を含む、上記[1]に記載のがんを治療する方法。
[3]
前記対象に、CD38を標的とする小分子、抗体、ペプチド、タンパク質、またはsiRNAを含む抗がん剤を投与することをさらに含む、上記[1]または[2]に記載のがんを治療する方法。
[4]
前記抗がん剤が、ダラツムマブ、イサツキシマブ、TAK-079、またはMOR202を含む、上記[3]に記載のがんを治療する方法。
[5]
前記対象に、血管新生阻害剤およびステロイドを投与することをさらに含む、上記[3]または[4]に記載のがんを治療する方法。
[6]
前記血管新生阻害剤が、ポマリドミド、レナリドミド、またはアプレミラストを含む、上記[5]に記載のがんを治療する方法。
[7]
前記ステロイドが、グルココルチコイドを含む、上記[5]に記載のがんを治療する方法。
[8]
前記グルココルチコイドが、デキサメタゾン、ベタメタゾン、プレドニゾロン、メソッドルプレニゾロン、トリアムシノロン、または酢酸フルドロコルチゾンを含む、上記[7]に記載のがんを治療する方法。
[9]
操作されたNK細胞を、それを必要とする対象に養子移植する方法であって、
a)改変される標的NK細胞を得ることと、
b)標的DNA配列に特異的なgRNAを得ることと、
c)エレクトロポレーションを介して、前記標的NK細胞に、前記標的NK細胞のゲノムDNA内の標的配列にハイブリダイズする対応するCRISPR/CasガイドRNAと複合体化したクラス2 CRISPR/Casエンドヌクレアーゼ(Cas9)を含むRNP複合体を導入して、操作されたNK細胞を生成することと、
d)前記操作されたNK細胞を前記対象に移植することと、を含む、方法。
[10]
前記対象が、がんを有する、上記[9]に記載の方法。
[11]
前記NK細胞が、エクスビボで改変されており、かつ改変後に前記対象に移植される、初代NK細胞である、上記[9]に記載の方法。
[12]
前記NK細胞が、自己NK細胞である、上記[9]に記載の方法。
[13]
前記NK細胞が、同種ドナー源由来である、上記[9]に記載の方法。
[14]
前記NK細胞を、前記対象に投与する前に、照射されたmbIL-21発現フィーダー細胞とともに増殖させる、上記[9]に記載の方法。
[15]
前記対象への前記NK細胞の移植後に、前記NK細胞を、IL-21または照射されたmbIL-21発現フィーダー細胞の投与を介して、前記対象において増殖させる、上記[9]に記載の方法。
[16]
前記RNP複合体が、前記CD38遺伝子を標的とする、上記[9]に記載の方法。
[17]
上記[9]~[16]のいずれかに記載の方法によって作製された表面抗原分類38(CD38)をコードする遺伝子のノックアウトを含む、遺伝子改変NK細胞。
[18]
対象におけるがんを治療する方法であって、前記対象に、上記[17]に記載の遺伝子改変NK細胞を投与することを含む、方法。
[19]
前記対象に、CD38を標的とする小分子、抗体、ペプチド、タンパク質、またはsiRNAを含む抗がん剤を投与することをさらに含む、上記[18]に記載の方法。
[20]
前記抗がん剤が、抗CD38抗体を含む、上記[19]に記載のがんを治療する方法。
[21]
前記抗CD38抗体が、ダラツムマブ、イサツキシマブ、TAK-079、またはMOR202を含む、上記[20]に記載のがんを治療する方法。
[22]
前記がんが、多発性骨髄腫、急性骨髄性白血病(AML)、T細胞性急性リンパ芽球性白血病(T-ALL)、または芽球性形質細胞様樹状細胞腫瘍(BPDCN)を含む、上記[18]~[21]のいずれかに記載のがんを治療する方法。
[23]
抗CD38免疫療法を受ける対象においてNK細胞のフラトリサイドを低減する方法であって、前記対象に、上記[17]に記載の遺伝子改変NK細胞を投与することを含む、方法。
Superior isatuximab-mediated ADCC of CD38 KO NK cells against MM cells. CD38 KO NK cells may also kill target cells more efficiently than CD38 WT NK cells, as DARA-induced depletion of NK cells may blunt cell-dependent cytotoxicity against target cells. . To study whether this also applies to isatuximab, we measured the cytotoxicity of paired CD38 WT and CD38 KO NK cells against different MM cell lines with high, low, or no CD38 expression. , can be tested in the presence or absence of isatuximab. Direct cytotoxicity against each MM cell line is comparable between CD38 WT and CD38 KO NK cells, but in the presence of isatuximab, CD38 KO NK cells are significantly less potent against CD38 + target cells. Showing high cytotoxicity and higher ADCC of CD38 KO NK cells. Similar to DARA experiments, CD38 WT NK cells show little or no ADCC to MM cells with low levels of CD38 expression, such as OPM-2 and KMS-11, whereas CD38 KO NK cells Shows significantly stronger ADCC for these MM cell lines. Similar to the results with cell lines, CD38 KO NK cells exhibit higher isatuximab-mediated ADCC activity relative to primary MM samples.
According to the present invention, the following aspects can be provided.
[1]
A method of treating cancer in a subject, the method comprising administering to the subject NK cells that have been modified to include a knockout of the CD38 gene.
[2]
the cancer comprises multiple myeloma, acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (T-ALL), or blastic plasmacytoid dendritic cell tumor (BPDCN), The method for treating cancer described in [1] above.
[3]
Treating the cancer according to [1] or [2] above, further comprising administering to the subject an anticancer agent containing a small molecule, antibody, peptide, protein, or siRNA that targets CD38. Method.
[4]
The method for treating cancer according to [3] above, wherein the anticancer drug includes daratumumab, isatuximab, TAK-079, or MOR202.
[5]
The method for treating cancer according to [3] or [4] above, further comprising administering an angiogenesis inhibitor and a steroid to the subject.
[6]
The method for treating cancer according to [5] above, wherein the angiogenesis inhibitor includes pomalidomide, lenalidomide, or apremilast.
[7]
The method for treating cancer according to [5] above, wherein the steroid includes a glucocorticoid.
[8]
The method for treating cancer according to [7] above, wherein the glucocorticoid includes dexamethasone, betamethasone, prednisolone, method luprenisolone, triamcinolone, or fludrocortisone acetate.
[9]
A method for adoptively transferring engineered NK cells to a subject in need thereof, the method comprising:
a) obtaining target NK cells to be modified;
b) obtaining gRNA specific for the target DNA sequence;
c) delivering to said target NK cells via electroporation a class 2 CRISPR/Cas endonuclease ( introducing an RNP complex containing Cas9) to generate engineered NK cells;
d) transplanting the engineered NK cells into the subject.
[10]
The method according to [9] above, wherein the subject has cancer.
[11]
The method according to [9] above, wherein the NK cells are primary NK cells that have been modified ex vivo and are transplanted into the subject after modification.
[12]
The method according to [9] above, wherein the NK cells are autologous NK cells.
[13]
The method according to [9] above, wherein the NK cells are derived from an allogeneic donor source.
[14]
The method according to [9] above, wherein the NK cells are grown together with irradiated mbIL-21-expressing feeder cells before being administered to the subject.
[15]
The method according to [9] above, wherein after transplantation of the NK cells into the subject, the NK cells are expanded in the subject via administration of IL-21 or irradiated mbIL-21-expressing feeder cells.
[16]
The method according to [9] above, wherein the RNP complex targets the CD38 gene.
[17]
A genetically modified NK cell comprising a knockout of the gene encoding surface antigen classification 38 (CD38) produced by the method according to any one of [9] to [16] above.
[18]
A method for treating cancer in a subject, the method comprising administering to the subject the genetically modified NK cells described in [17] above.
[19]
The method according to [18] above, further comprising administering to the subject an anticancer agent containing a small molecule, antibody, peptide, protein, or siRNA that targets CD38.
[20]
The method for treating cancer according to [19] above, wherein the anti-cancer agent comprises an anti-CD38 antibody.
[21]
The method for treating cancer according to [20] above, wherein the anti-CD38 antibody comprises daratumumab, isatuximab, TAK-079, or MOR202.
[22]
the cancer comprises multiple myeloma, acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (T-ALL), or blastic plasmacytoid dendritic cell tumor (BPDCN), The method for treating cancer according to any one of [18] to [21] above.
[23]
A method for reducing NK cell fratricide in a subject receiving anti-CD38 immunotherapy, the method comprising administering to the subject the genetically modified NK cells described in [17] above.

Claims (17)

がんの治療に使用される、CD38遺伝子のノックアウトを含むように改変されている、NK細胞。 NK cells that have been modified to include a knockout of the CD38 gene, used in the treatment of cancer. 前記がんが、多発性骨髄腫、急性骨髄性白血病(AML)、T細胞性急性リンパ芽球性白血病(T-ALL)、または芽球性形質細胞様樹状細胞腫瘍(BPDCN)を含む、請求項1に記載のNK細胞。 the cancer comprises multiple myeloma, acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (T-ALL), or blastic plasmacytoid dendritic cell tumor (BPDCN), NK cell according to claim 1. CD38を標的とし、小分子、抗体、ペプチド、タンパク質、またはsiRNAを含む抗がん剤と組み合わせて使用される、請求項1または2に記載のNK細胞。 3. The NK cell according to claim 1 or 2, which is used in combination with an anticancer agent that targets CD38 and includes a small molecule, antibody, peptide, protein, or siRNA. 前記抗がん剤が、抗CD38抗体である、請求項3に記載のNK細胞。 The NK cell according to claim 3, wherein the anticancer agent is an anti-CD38 antibody. 前記抗CD38抗体が、ダラツムマブ、イサツキシマブ、TAK-079、またはMOR202を含む、請求項4に記載のNK細胞。 5. The NK cell of claim 4, wherein the anti-CD38 antibody comprises daratumumab, isatuximab, TAK-079, or MOR202. 血管新生阻害剤およびステロイドと組み合わせて使用される、請求項3~5のいずれか一項に記載のNK細胞。 NK cells according to any one of claims 3 to 5, used in combination with angiogenesis inhibitors and steroids. 前記血管新生阻害剤が、ポマリドミド、レナリドミド、またはアプレミラストを含む、請求項6に記載のNK細胞。 7. The NK cell of claim 6, wherein the angiogenesis inhibitor comprises pomalidomide, lenalidomide, or apremilast. 前記ステロイドが、グルココルチコイドを含む、請求項6または7に記載のNK細胞。 8. The NK cell according to claim 6 or 7, wherein the steroid comprises a glucocorticoid. 前記グルココルチコイドが、デキサメタゾン、ベタメタゾン、プレドニゾロン、メチルプレニゾロン、トリアムシノロン、または酢酸フルドロコルチゾンを含む、請求項8に記載のNK細胞。 9. The NK cell of claim 8, wherein the glucocorticoid comprises dexamethasone, betamethasone, prednisolone, methylprenisolone, triamcinolone, or fludrocortisone acetate. がんの治療に使用される、遺伝子改変NK細胞であって、前記遺伝子改変NK細胞が、 Genetically modified NK cells used for cancer treatment, the genetically modified NK cells comprising:
a)改変される標的NK細胞を得ることと、 a) obtaining target NK cells to be modified;
b)標的DNA配列に特異的なgRNAを得ることと、 b) obtaining gRNA specific for the target DNA sequence;
c)エレクトロポレーションを介して、前記標的NK細胞に、前記標的NK細胞のゲノムDNA内の標的配列にハイブリダイズする対応するCRISPR/CasガイドRNAと複合体化したクラス2 CRISPR/Casエンドヌクレアーゼを含むRNP複合体を導入して、操作されたNK細胞を生成することであって、前記RNP複合体がCD38遺伝子を標的とすることと、を含む方法によってエクスビボで改変される、遺伝子改変NK細胞。 c) applying to said target NK cells via electroporation a class 2 CRISPR/Cas endonuclease complexed with a corresponding CRISPR/Cas guide RNA that hybridizes to a target sequence within the genomic DNA of said target NK cells; Genetically modified NK cells are modified ex vivo by a method comprising: introducing an RNP complex comprising an RNP complex to produce an engineered NK cell, the RNP complex targeting the CD38 gene; .
前記標的NK細胞が、初代NK細胞、自己NK細胞、または同種ドナー源由来のNK細胞である、請求項10に記載の遺伝子改変NK細胞。 11. The genetically modified NK cell of claim 10, wherein the target NK cell is a primary NK cell, an autologous NK cell, or an NK cell derived from an allogeneic donor source. 前記標的NK細胞を、照射されたmbIL-21発現フィーダー細胞とともに増殖させる、請求項10または11に記載の遺伝子改変NK細胞。 The genetically modified NK cell according to claim 10 or 11, wherein the target NK cell is grown together with irradiated mbIL-21-expressing feeder cells. CD38を標的とし、小分子、抗体、ペプチド、タンパク質、またはsiRNAを含む抗がん剤と組み合わせて、がんの治療に使用される、請求項10~12のいずれか一項に記載の遺伝子改変NK細胞。 Genetic modification according to any one of claims 10 to 12, which targets CD38 and is used in the treatment of cancer in combination with an anticancer agent comprising a small molecule, antibody, peptide, protein, or siRNA. NK cells. 前記抗がん剤が、抗CD38抗体を含む、請求項13に記載の遺伝子改変NK細胞。 The genetically modified NK cell according to claim 13, wherein the anticancer agent comprises an anti-CD38 antibody. 前記抗CD38抗体が、ダラツムマブ、イサツキシマブ、TAK-079、またはMOR202を含む、請求項14に記載の遺伝子改変NK細胞。 15. The genetically modified NK cell of claim 14, wherein the anti-CD38 antibody comprises daratumumab, isatuximab, TAK-079, or MOR202. 前記がんが、多発性骨髄腫、急性骨髄性白血病(AML)、T細胞性急性リンパ芽球性白血病(T-ALL)、または芽球性形質細胞様樹状細胞腫瘍(BPDCN)を含む、請求項10~15のいずれか一項に記載の遺伝子改変NK細胞。 the cancer comprises multiple myeloma, acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (T-ALL), or blastic plasmacytoid dendritic cell tumor (BPDCN), The genetically modified NK cell according to any one of claims 10 to 15. 抗CD38免疫療法を受ける対象においてNK細胞のフラトリサイドを低減することに使用される、CD38遺伝子のノックアウトを含むように改変されているNK細胞。 NK cells that have been modified to include a knockout of the CD38 gene for use in reducing NK cell fratricide in subjects receiving anti-CD38 immunotherapy.
JP2022525329A 2019-10-31 2020-11-02 Generation of CD38 knockout primary and expanded human NK cells Pending JP2022554284A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962928524P 2019-10-31 2019-10-31
US62/928,524 2019-10-31
PCT/US2020/058565 WO2021087466A1 (en) 2019-10-31 2020-11-02 Generation of cd38 knock-out primary and expanded human nk cells

Publications (2)

Publication Number Publication Date
JP2022554284A JP2022554284A (en) 2022-12-28
JPWO2021087466A5 true JPWO2021087466A5 (en) 2024-03-14

Family

ID=75715400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022525329A Pending JP2022554284A (en) 2019-10-31 2020-11-02 Generation of CD38 knockout primary and expanded human NK cells

Country Status (11)

Country Link
US (1) US20220401482A1 (en)
EP (1) EP4051297A4 (en)
JP (1) JP2022554284A (en)
KR (1) KR20220093337A (en)
CN (1) CN114867485A (en)
AU (1) AU2020375053A1 (en)
BR (1) BR112022008215A2 (en)
CA (1) CA3156509A1 (en)
IL (1) IL292584A (en)
MX (1) MX2022005051A (en)
WO (1) WO2021087466A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11661459B2 (en) 2020-12-03 2023-05-30 Century Therapeutics, Inc. Artificial cell death polypeptide for chimeric antigen receptor and uses thereof
TW202241935A (en) 2020-12-18 2022-11-01 美商世紀治療股份有限公司 Chimeric antigen receptor system with adaptable receptor specificity
EP4362957A1 (en) 2021-07-01 2024-05-08 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and related methods
CN118369110A (en) * 2021-11-03 2024-07-19 英特利亚治疗股份有限公司 CD38 compositions and methods for immunotherapy
WO2023080210A1 (en) * 2021-11-05 2023-05-11 学校法人東海大学 Identification of treatment target in aggressive nk leukemia
WO2023172917A1 (en) 2022-03-07 2023-09-14 Sanofi-Aventis U.S. Llc Use of isatuximab in combination with other agents for the treatment of multiple myeloma
CN114921416B (en) * 2022-05-12 2023-05-23 广东普罗凯融生物医药科技有限公司 NK cell and preparation method thereof
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024124242A2 (en) * 2022-12-09 2024-06-13 Research Institute At Nationwide Children's Hospital Combination cd38ko/car ki nk cell immunotherapy for dual targeting with cd38 monoclonal antibodies
WO2024124244A1 (en) * 2022-12-09 2024-06-13 Research Institute At Nationwide Children's Hospital Cd38 as integration site for enhanced function of gene-modified immune cells
WO2024155711A1 (en) * 2023-01-17 2024-07-25 Research Institute At Nationwide Children's Hospital Methods of targeting glycogen synthase kinase 3 beta in nk cells
CN116679065B (en) * 2023-07-31 2023-11-14 北京大学人民医院 Application of detection reagent, method for predicting prognosis of multiple myeloma treatment and product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2986314C (en) * 2015-06-30 2024-04-23 Cellectis Methods for improving functionality in nk cell by gene inactivation using specific endonuclease
MA42895A (en) * 2015-07-15 2018-05-23 Juno Therapeutics Inc MODIFIED CELLS FOR ADOPTIVE CELL THERAPY
WO2017127755A1 (en) * 2016-01-20 2017-07-27 Fate Therapeutics, Inc. Compositions and methods for immune cell modulation in adoptive immunotherapies
ES2746856T3 (en) * 2016-12-09 2020-03-09 Onk Therapeutics Ltd Manipulated natural killer cells and their uses
BR112020023232A2 (en) * 2018-05-16 2021-02-23 Research Institute At Nationwide Children's Hospital generation of expanded and primary knock-out human nk cells using cas9 ribonucleoproteins

Similar Documents

Publication Publication Date Title
Ochoa et al. Antibody‐dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells
JP2022162155A (en) Tumor infiltrating lymphocytes and methods of treatment
US11369668B1 (en) Tumor cell vaccines
Tomuleasa et al. Chimeric antigen receptor T-cells for the treatment of B-cell acute lymphoblastic leukemia
Wang et al. Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy
Jain et al. Concise review: emerging principles from the clinical application of chimeric antigen receptor T cell therapies for B cell malignancies
JPWO2021087466A5 (en)
CN116064400A (en) Modified natural killer cells and natural killer cell lines with enhanced cytotoxicity
Marofi et al. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy
JP2021502330A (en) Compositions and immunotherapeutic methods targeting TIGIT and / or CD112R or comprising CD226 overexpression
JP7447011B2 (en) Use of histone modifiers to reprogram effector T cells
WO2018104554A1 (en) Improved nk-based cell therapy
CA3004738A1 (en) Modified immune cells and uses thereof
EP3877421A1 (en) Anti-ptk7 immune cell cancer therapy
Atilla et al. Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies
Tang et al. Donor T cells for CAR T cell therapy
Chen et al. Natural killer cells: the next wave in cancer immunotherapy
Chen et al. Advances in CAR‐Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies
JP2020533289A (en) Ways to improve adoptive cell therapy
Moradi et al. The paths and challenges of “off-the-shelf” CAR-T cell therapy: An overview of clinical trials
EP3551294B1 (en) Improved nk-based cell therapy
Ho et al. Chimeric antigen receptor T‐cell therapy in hematologic malignancies: Successes, challenges, and opportunities
Kumar et al. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles
CN114929865A (en) Genetically engineered double negative T cells as adoptive cell therapy
Lu et al. CAR Macrophages: a promising novel immunotherapy for solid tumors and beyond