WO2023080210A1 - Identification of treatment target in aggressive nk leukemia - Google Patents
Identification of treatment target in aggressive nk leukemia Download PDFInfo
- Publication number
- WO2023080210A1 WO2023080210A1 PCT/JP2022/041228 JP2022041228W WO2023080210A1 WO 2023080210 A1 WO2023080210 A1 WO 2023080210A1 JP 2022041228 W JP2022041228 W JP 2022041228W WO 2023080210 A1 WO2023080210 A1 WO 2023080210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- tumor
- ggt1
- ankl
- cysteine
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
Definitions
- the present invention comprises knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells,
- the present invention relates to a method for inhibiting tumor cell proliferation.
- the present invention provides a method for selecting from the group consisting of (i) contacting a candidate substance with a tumor cell, (ii) genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells and (iii) selecting a candidate agent that reduces said expression level as a therapeutic agent for the tumor compared to when the candidate agent was not contacted.
- the present invention relates to a method of screening for tumor therapeutic agents, comprising:
- fulminant NK cell leukemia is a rare type of leukemia with a low incidence and unknown pathology, and therefore no standard treatment has been established. be.
- ANKL is a systemic neoplastic proliferation of NK cells, almost always associated with Epstein-Barr virus (EBV), an aggressive clinical course, and a poor prognosis malignancy with a median survival of less than 2 months
- EBV Epstein-Barr virus
- JKC Chan et al. Aggressive NK-cell leukemia in WHO classification of tumors of haematopoietic and lymphoid tissues 4th edition 2008, edited by Steven H. Swerdlow et al., (World Health Organization classification of tumors) International Agency for Research on Cancer: pp 276-277; the entire description of which is specifically incorporated herein by reference).
- ANKL is a rare disease, the pathophysiology has not been elucidated, and the prognosis is poor. and the development of therapeutics are important. In addition, although the frequency is even lower in Europe and the United States, there are reports of onset in East Asia and South America, so there is a possibility that many patients are affected worldwide. Therefore, there is a need to identify molecules that can serve as drug discovery targets for ANKL, and to develop therapeutic methods that improve life prognosis.
- the present invention provides a method for suppressing tumor cell growth by identifying a molecule that can be a drug discovery target for tumors and knocking it down or knocking it out.
- An object of the present invention is to provide a drug screening method. It is also another object of the present invention to provide new approaches that enable the treatment of tumors.
- a tumor comprising knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells.
- a method for inhibiting cell proliferation [2] The method of [1], wherein the tumor cells are solid tumor or hematologic tumor cells. [3] The method of [2], wherein the hematological tumor is selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, or multiple myeloma.
- a method of screening for an antitumor drug comprising the following (i) to (iii): (i) contacting the tumor cells with the candidate substance; (ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and (iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
- the tumor cells are solid tumor or hematologic tumor cells.
- the tumor is leukemia including fulminant NK cell leukemia.
- a method for suppressing ANKL cell proliferation comprising inhibiting intracellular and/or extracellular GGT1 activity.
- FIG. 1 shows the growth inhibitory effect on ANKL cells by the gene defect of Example 1.
- FIG. FIG. 2 shows ANKL cell viability in various amino acid-free media. Results in cysteine-free medium are shown with lines. ANKL1 and ANKL3 in the graph represent samples taken from the same patient at different times.
- FIG. 3 shows the viability of GGT1-deficient ANKL cells in a medium supplemented with 20 kinds of amino acids including cysteine.
- FIG. 4 shows changes in viability of GGT1-deficient NK92 cell lines.
- FIG. 5A is a graph showing viability of the NK92 cell line. "inhibitor” indicates the NK92 cell line to which the GGT1 inhibitor was added, and "control" is the negative control. 1 was assigned to the control.
- FIG. 5B is a schematic diagram of the GGT1 fluorescent probe, gGlu-HMRG.
- FIG. 5C shows the fluorescence intensity of probes degraded by GGT1 in each sample to produce fluorescence. A probe was added to the sample, reacted for 24 hours, and fluorescence intensity was measured.
- "Probe” is a sample with probe only
- "Probe+cell” is a sample with probe added to cells
- "Probe+cell+GGstop” is a sample with probe and GGT1 inhibitor GGsTop (registered trademark) added to cells. be.
- FIG. 5D is a graph showing the ratio of inside and outside cells to GGT1 activity. ANKL1 and ANKL3 in the graph represent samples derived from ANKL obtained from different patients.
- “out (%)” is the percentage of GGT1 activity extracellularly (on the cell membrane surface), and “in (%)” is the percentage of intracellular GGT1 activity.
- a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
- the present inventors identified GGT1, IL-10R, CD16, RPM-1, and cysteine as drug discovery targets, as described in the examples below. Each molecule is described below.
- the enzyme encoded by the GGT1 (gamma glutamyltransferase 1) gene catalyzes reactions that transfer the glutamyl moiety of glutathione to various amino acid and dipeptide acceptors.
- the enzyme is composed of heavy and light chains and is derived from a single precursor protein. It is expressed in tissues involved in absorption and secretion and is thought to be involved in the pathogenesis of diabetes and other metabolic disorders. Multiple alternatively spliced variants have been identified. 5'UTR transcriptional variants of type I genes have been identified in various tissues and cancer cells (NCBI Gene: 267, Entrez Gene: GGT1 gamma-glutamyltransferase 1).
- GGT1 a cell surface enzyme involved in intracellular glutathione homeostasis, has been reported to be overexpressed in several human tumors, including cervical and ovarian cancers (Urano, Yasuteru et al. "Rapid cancer detection by topically spraying a ⁇ -glutamyltranspeptidase-activated fluorescent probe.” Science translational medicine vol. 3,110 (2011): 110ra119. doi:10.1126/scitranslmed.3002823; Disclosure (incorporated as
- IL-10R interleukin 10 receptor
- This receptor is a tetramer consisting of two ⁇ subunits and two ⁇ subunits.
- the ⁇ subunit is expressed in hematopoietic cells (T cells, B cells, NK cells, mast cells, dendritic cells, etc.), and the ⁇ subunit is ubiquitously expressed (Y Liu et al., The Journal of Immunology February 15, 1994, 152(4) 1821-1829; Kotenko, S V et al. “The EMBO journal vol.
- IL-10R has been proposed as a therapeutic target for diffuse large B-cell lymphoma (DLBCL) (Beguelin W et al., Leukemia. 2015 Aug;29(8):1684-94; the entire description of which is expressly incorporated herein by reference.)
- IL-10RA and IL-10RB refer to interleukin 10 receptor alpha subunit and interleukin 10 receptor beta subunit, respectively.
- CD16 is a cluster of differentiation molecules found on the surface of natural killer cells, neutrophils, monocytes, and macrophages (Janeway C (2001). "Appendix II. CD Antigens”. Immunobiology (5 ed.). New York: Garland.; the entire disclosure of which is expressly incorporated herein by reference).
- CD16 has been identified as the Fc receptors Fc ⁇ RIIIa (CD16a) and Fc ⁇ RIIIb (CD16b) involved in signal transduction.
- CD16 the best-studied membrane receptor involved in triggering cytolysis by NK cells, is a molecule of the immunoglobulin superfamily (IgSF) involved in antibody-dependent cellular cytotoxicity (ADCC).
- IgSF immunoglobulin superfamily
- CD16 Since CD16 is expressed on neutrophils, it is a potential target for cancer immunotherapy. Furthermore, CD16 has been reported to be highly expressed in ANKL (Li C, et al., Transl Res. 2014 Jun;163(6):565-77; the full description of which is expressly disclosed herein. cited).
- RPM-1 is a PHR protein.
- the PHR proteins are mammalian Phr1/MYCBP2, Drosophila Highwire, and nematode RPM-1. PHR proteins are conserved as intracellular signaling hubs that regulate synaptogenesis and axon termination. PHR proteins have been reported to act as ubiquitin ligases that inhibit the DLK-1 and MLK-1 MAP kinase pathways (Crawley O, et al., PLoS Genet 13(12): e1007095; the full description is in incorporated herein by reference).
- Cysteine (Cys, 2-amino-3-sulfanylpropionic acid) is one of amino acids. It is naturally contained as L-cysteine in food proteins, but in humans it is biosynthesized from methionine, not from essential amino acids. It is used as a food additive, and a supplement that improves skin spots is sold. Cysteine slow-release agents are used to protect the stomach and to eliminate acetaldehyde, such as when drinking alcohol.
- the method of suppressing tumor cell growth of the present invention comprises inhibiting the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. Including knocking down or knocking out.
- the methods of inhibiting growth of tumor cells of the present invention exclude methods of treating humans or exclude medical interventions on humans.
- the method of inhibiting tumor cell proliferation of the present invention is practiced in vitro or ex vivo.
- the method of inhibiting tumor cell proliferation of the present invention is practiced in vivo.
- target gene herein is meant a gene that can serve as a target for tumor therapy, unless otherwise specified.
- target genes refer to genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes, unless otherwise specified. A summary of these genes is given above. Further, detailed information including the base sequences of these genes can be obtained based on the following Ensembl IDs. GGT1: ENSG00000100031; IL-10RB: ENSG00000243636; CD16: ENSG00000203747; MYCBP2 (RPM-1): ENSG00000005810.
- Cysteine-related enzyme genes include, but are not limited to, cysteine transporters and cysteine metabolism-related enzyme genes, including cystathionine beta synthase (CBS) and cystathionine gamma-lyase.
- CBS cystathionine beta synthase
- Genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes whose functions are knocked down or knocked out in the present invention are mammalian genes, mouse, rat or monkey genes or human genes. It is preferably a gene of, and more preferably a human gene, but is not limited thereto.
- knockdown of gene function is 90% or less, 80% or less, 70% or less, 60% or less, 50% or less compared to the same type of unmodified cells or cells before modification. , 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
- Knockdown is a gene deletion, disruption, substitution, point mutation, multiple point mutation, insertion mutation, or frameshift mutation CRISPR/CAS9, or CRISPR interfering or interfering RNA, interfering mRNA or interfering aptamer applied to the above target genes.
- CRISPR/CAS9 CRISPR interfering or interfering RNA, interfering mRNA or interfering aptamer applied to the above target genes.
- siRNA or siRNA interference or the use of zinc finger transcription factors or zinc finger nucleases or transcription activator-like effector nucleases (TALENs), or inhibitor molecules or small molecule inhibitors such as This can be done through the use of inhibitors, such as, but not limited to, activity inhibitors of protein or enzymatic activity, and any method that can reduce gene expression or activity of the target gene can be employed.
- inhibitors such as, but not limited to, activity inhibitors of protein or enzymatic activity, and any method that can reduce gene expression or activity of the target gene can be employed.
- knockout of gene function means that gene expression is completely or almost completely eliminated.
- the expression or activity of the gene knocked out in the cell is 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, compared to the same type of unmodified cells or cells before modification. It means that it is reduced to 1% or less or to 0%, but it is not limited to this.
- the level of expression of the knocked-out gene in the cell is undetectable using conventional means for gene expression detection known in the art.
- Knockout can be performed by, but not limited to, a known genetic recombination method (gene targeting method), genome editing, or the like. From the viewpoint of efficiency, knockout is preferably performed by genome editing using an artificial restriction enzyme such as ZFN, TALEN, CRISPR/Cas9, more preferably using CRISPR/Cas9.
- an artificial restriction enzyme such as ZFN, TALEN, CRISPR/Cas9, more preferably using CRISPR/Cas9.
- Cas9 is introduced into cells using lentivirus, transferred into mice to obtain Cas9-expressing cells, sgRNA is introduced into Cas9-expressing cells using a vector, and introduced into mice again.
- the transfected and established cells can be analyzed to obtain gene knockout cells.
- sgRNA for the target gene used for CRISPR / Cas9 PAM in the exon you want to delete (proto-spacer adjacent motif; 5'-NGG-3') 5 'upstream 20 bases containing, target gene PAM upstream homologous gene It can be designed and synthesized to bind complementary sequences.
- This sgRNA forms a complex with Cas9 mRNA or protein, and is injected into the pronucleus or cytoplasm of mouse fertilized eggs at the same time. After complementary binding to 20 bases upstream of PAM, 3 to 4 bases upstream of PAM Cut (DSB; double strand break) at .
- DSB is immediately repaired after introduction, but the repair involves insertion or deletion (indel) of several to several tens of bases through a non-homologous end-joining (NHEJ) pathway. Since this indel can introduce a frameshift mutation into the target gene, it can be used for efficient gene knockout.
- Indel insertion or deletion
- NHEJ non-homologous end-joining
- the tumor cells may be cells of solid tumors or hematologic tumors.
- hematological tumors in which tumor cell proliferation is suppressed include, but are not limited to, leukemias including fulminant NK cell leukemia, malignant lymphomas, and multiple myeloma.
- Leukemias include fulminant NK-cell leukemia, acute myelogenous leukemia, acute lymphocytic leukemia/lymphoblastic lymphoma, acute promyelocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and myelodysplastic syndrome. but not limited to these.
- Malignant lymphomas include, but are not limited to, adult T-cell leukemia/lymphoma, Burkitt's lymphoma, primary nasal NK-cell lymphoma, Hodgkin's lymphoma, B-cell lymphoma, gastric MALT lymphoma, and the like.
- the blood tumor whose growth of tumor cells is suppressed may be an NK cell tumor, and the NK cell tumor is extranodal NK/T-cell lymphoma, nasal type. : ENKL), fulminant NK cell leukemia, chronic NK cell hyperplasia.
- solid tumors whose growth of tumor cells is suppressed include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, chordoma, angiosarcoma, endothelial sarcoma, lymphangiosarcoma, mesothelioma, and Ewing.
- Tumor Leiomyosarcoma, Rhabdomyosarcoma, Colon cancer, Pancreatic cancer, Breast cancer, Ovarian cancer, Prostate cancer, Gastric cancer, Lung cancer, Uterine cancer, Squamous cell carcinoma, Basal cell carcinoma, Adenocarcinoma , sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic lung cancer, renal cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma, choriocarcinoma Cancer, seminiferous carcinoma, embryonic carcinoma, Wilms tumor, cervical cancer, testicular tumor, lung cancer, small cell lung cancer, bladder cancer, epithelial cancer, glioma, astrocytoma, medulloblastoma, Sarcoma and carcinoma include craniopharyngioma, ependymoma, pineocytoma, hemangioblast
- ANKL cell proliferation is inhibited.
- Neoplastic NK cells are typically CD2 + , surface CD3 ⁇ , cytoplasmic CD3 ⁇ + , CD56 + , EBV + and have a germline configuration of T-cell receptor (TCR) and immunoglobulin (Ig) genes .
- TCR T-cell receptor
- Ig immunoglobulin
- the exclusive expression of CD2 and CD56 and the absence of CD3 and TCR in ANKL indicates its origin from NK cells (Li C et al 2014 supra).
- ANKL cases are positive for cytotoxic molecules, and serum levels of CXCR1, CCR5, and soluble Fas ligand have been found to be high, suggesting that the chemokine system plays an important role in systemic infiltration of NK leukemic cells and liver dysfunction.
- tumor cells used in the present invention can be, for example, cells isolated from surgically removed organs or cells isolated from blood provided by patients.
- tumor cells can be obtained from ATCC and cell sales companies.
- ANKL cells can be isolated by the following method. Separation of ANKL cells can be performed by layering patient's peripheral blood or the like on Ficoll (Ficoll (registered trademark) Paque Plus SIGMA) and centrifuging at 1000 rpm for 20 minutes) to separate mononuclear cells.
- ANKL cells from PDX patient-derived xenograft mice collected the liver, spleen, and bone marrow, crushed the tissue with a preparation, overlaid on Ficoll (Paque Plus SIGMA), and spun at 1000 rpm. , centrifugation for 20 minutes) to separate mononuclear cells.
- the method of inhibiting tumor cell growth of the present invention comprises removing, reducing, or depleting cysteine.
- cysteine is required for the survival of ANKL cells.
- Cysteine is contained in protein in foods, but is not an essential amino acid for humans, and is synthesized from methionine. It is believed that the proliferation of ANKL cells can be suppressed by a diet regimen in which a cysteine-free diet is taken, or by knocking down or knocking out cysteine-related enzymes as described above.
- removing, reducing, or depleting cysteine can be performed, for example, by ingesting a cysteine-free diet.
- the method of screening for tumor therapeutic agents of the present invention includes the following. (i) contacting the tumor cells with the candidate substance; (ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and (iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
- GGT1 As described above, the inventors identified GGT1, IL-10R, CD16, RPM-1, and cysteine as therapeutic targets for tumor cells, particularly ANKL. These molecules can be used to screen tumor therapeutics.
- Bringing the candidate substance into contact with the tumor cells means allowing the tumor cells and the candidate substance (test substance) to exist in the same reaction system or culture system. Examples include, but are not limited to, adding candidate substances to cell culture vessels, mixing cells and candidate substances, and culturing cells in the presence of candidate substances.
- Immunological assays include, for example, ELISA, Western blot, immunoprecipitation, slot or dot blot assay, immunohistochemical staining, radioimmunoassay (RIA), fluorescence immunoassay, immunoassay using avidin-biotin or streptavidin-biotin system, and the like. Including but not limited to.
- it is an ELISA, such as a sandwich ELISA.
- the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes can be measured as the expression level of mRNA.
- Northern blotting, Southern blotting, quantitative RT-PCR, real-time PCR, in situ hybridization, etc. can be performed using primers or probes according to conventional methods, but are limited to these. not.
- the expression level of at least one gene or protein thereof is compared between the tumor cells contacted with the candidate substance and the tumor cells not contacted with the candidate substance, and the candidate substance whose expression level is reduced is used as a therapeutic agent for tumors. can be selected. Selected candidate substances can be subjected to further analysis.
- Candidate substances or test substances can be any compound, such as proteins (e.g., antibodies and antigen-binding fragments thereof), peptides, nucleic acids, carbohydrates, lipids, high-molecular-weight or low-molecular-weight compounds other than proteins, and derivatives thereof. etc., but not limited to these.
- the tumor cells may be cells of solid tumors or hematologic tumors.
- the types of solid tumors or hematological tumors used in the screening method of the present invention are the same as described in ⁇ Method for inhibiting growth of tumor cells> above.
- the hematological tumor is preferably selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, and multiple myeloma.
- the tumors for which therapeutic agents are screened are the same as those described in ⁇ Method for inhibiting tumor cell proliferation> above.
- Especially preferred are leukemias including fulminant NK cell leukemia.
- the enzymatic activity of the protein can be measured separately for intracellular and extracellular (eg, on the cell membrane surface). For example, it is possible to assess whether a candidate substance can reduce the enzymatic activity of the protein only at the cell membrane surface, or both intracellularly and extracellularly.
- candidate substances that have reduced the enzymatic activity of the protein in cells can be selected as therapeutic agents for tumors.
- a candidate substance that has decreased enzymatic activity of the protein on the cell membrane surface can be selected as a therapeutic agent for tumors.
- ANKL cells have higher intracellular GGT1 activity values than extracellular ones. Separate measurement of the expression level and activity of therapeutic target molecules intracellularly and extracellularly (for example, on the cell membrane surface) can provide clues for elucidating the molecular pathogenesis of ANKL.
- the present invention relates to a method for suppressing proliferation of ANKL cells, including inhibiting intracellular and/or extracellular GGT1 activity in NK cells, particularly ANKL cells.
- the present invention relates to a method for inhibiting proliferation of ANKL cells, including inhibiting intracellular GGT1 activity in NK cells, particularly ANKL cells. Examples described later revealed that inhibition of extracellular GGT1 activity had no effect on cell survival in ANKL cells (NK92). It is believed that intracellular GGT1 activity is involved in the survival of ANKL cells.
- the methods of inhibiting growth of tumor cells of the present invention exclude methods of treating humans or exclude medical interventions on humans.
- the method of inhibiting tumor cell proliferation of the present invention is practiced in vitro or ex vivo.
- the method of inhibiting tumor cell proliferation of the present invention is practiced in vivo.
- NK cells with gene function knocked down or knocked out In another aspect of the present invention, NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out provided. In one embodiment, NK cells in which the functions of the above genes have been knocked down or knocked out can be used to analyze the etiology and pathology of NK cell tumors. In another embodiment, NK cells with gene function knocked down or knocked out can be used to treat NK cell tumors.
- NK cells in which the functions of the above genes of the present invention have been knocked down or knocked out may include normal NK cells as well as neoplastic NK cells.
- the neoplastic NK cells may be, but are not limited to, ANKL cells. Knockdown or knockout can be performed as described in ⁇ Method for suppressing growth of tumor cells> above.
- the present inventors investigated whether at least 15 known molecules are involved in ANKL cell proliferation or survival in patient-derived xenograft (PDX) models and in vitro co-culture systems, gene deletion methods by CRISPR, fractionation and purification methods. was analyzed using The following examples are the results of identifying six molecules (GGT1, IL-10R, CD16, RPM-1, and cysteine) that decrease tumor survival.
- the ANKL cells used in the experiments of Examples 1 to 3 were isolated from the peripheral blood of one patient (45 years old) at Tokai University Hospital.
- the ANKL cells were obtained by layering the patient's peripheral blood on Ficoll (Ficoll (registered trademark) Paque Plus SIGMA) and separating mononuclear cells using centrifugation at 1000 rpm for 20 minutes). All experiments were performed with patient consent after approval by an ethics review board.
- a patient-derived xenograft (PDX) model was created by transferring patient tumor cells into immunodeficient mice (NOD/Shi-scid, IL-2R ⁇ KO, In vivo science).
- Example 1 ⁇ RPM-1, IL-10R, CD16>
- CRISPR/Cas9 was used to deplete RPM-1, IL-10R, and CD16 in ANKL cells.
- CRISPR/Cas9 was introduced into ANKL cells using lentivirus.
- Lentivirus was prepared using HEK293T cells as follows. HEK293T cells were cultured in D-MEM (Wako, Cat #044-29765) supplemented with 10% FBS, 100 U/mL penicillin, and 100 g/mL streptomycin, and placed in a 10 cm dish with ethylenimine (PEI-MAX, Polysciences, Cat #24765).
- FUGW-Cas9-Venus vector 10 ⁇ g of FUGW-Cas9-Venus vector, 10 ⁇ g of pCAG-KGP1R vector, 2 ⁇ g of pCAG-4RTR2 vector, and 3 ⁇ g of pCMV-VSVG were transfected.
- Lentiviral supernatants were harvested 48 hours after transfection, centrifuged at 12000 g for 4 hours at 20° C., and pellets were resuspended in HBSS containing 10 mM HEPES. Concentrated lentiviral supernatants were bound to RetroNectin (Takara Bio, Cat#T100B) coated 24-well plates.
- ANKL cells collected from the liver of PDX mice prepared using ANKL cells collected from patients were seeded on a lentivirus-bound RetroNectin-coated plate (1-5 ⁇ 10 5 cells per well), 1220 g, 32 C. for 2 hours by spin infection.
- ANKL cells were harvested from the liver of ANKL PDX mice, spin-infected with the above lentivirus, washed twice, injected intravenously into NOD/Shi-scid, IL-2R ⁇ KO mice, and ANKL cells were cultured 3-4 weeks later. were harvested, sorted based on the amount of expression of the fluorescent protein Venus, and serially injected into mice. This collection, selection, and injection process was performed twice to obtain Cas9-expressing ANKL cells.
- sgRNAs listed in Table 1 By introducing the sgRNAs listed in Table 1 into the CSII-sgRNA-mOrange vector into Cas9-expressing ANKL cells collected from the liver of PDX mice, ANKL cells deficient in each gene were established. Cells were either injected into mice immediately after transfer or cultured for 2 days in RPMI-1640 supplemented with 5% FBS, non-essential amino acid solution, 1 mM sodium pyruvate, 0.1 mM 2-mercaptothes.
- mOrange-positive cells were separated by FACSAria (TM) III (Nippon Becton Dickinson Co., Ltd.), and the above four types of genes were individually deficient ANKL cells or non-defective ANKL cells. were injected into 1 ⁇ 10 4 mice each. Fourteen days after the injection, each ANKL cell in the liver was quantified by FACSVerse (TM) (Nippon Becton Dickinson Co., Ltd.).
- a non-target control (commissioned by GeneScript) was used to assess baseline cellular responses to the CRISPR-Cas9 component in the absence of target gene-specific sgRNA.
- the oncogene c-myc which shows an important role in carcinogenesis in many carcinomas but is difficult to develop drugs because its inhibition also greatly affects normal cells, was used (Table 1, it is described as MYC).
- tumor survival rate The survival rate of ANKL cells in mice injected with RPM-1, IL-10R, and CD16 gene-deficient ANKL cells (hereinafter referred to as tumor survival rate) was higher than the tumor survival rate in mice injected with gene-free ANKL cells. It was 50% or less against (Fig. 1).
- ANKL cells in which the oncogene c-myc was deficient using CRISPR were examined in the competitive PDX mouse model, and the survival rate was about 60% (Fig. 1). It was shown that the survival rate of ANKL cells deficient in RPM-1, IL-10R, and CD16 genes was lower than that of ANKL cells deficient in oncogene c-myc.
- Example 3 ⁇ GGT1> GGT1 deficiency in ANKL cells was performed in the same manner as in Example 1.
- sgRNAs for GGT1 are listed in Table 1.
- 1 ⁇ 10 6 ANKL cells deficient in GGT1 by CRISPR were cultured in a 6 cm culture dish in RPMI (10% FCS) culture medium supplemented with 20 amino acids including cysteine for 72 hours.
- Dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
- TM FACSVerse
- a non-target control was used to assess baseline cellular responses to the CRISPR-Cas9 component in the absence of target gene-specific sgRNA.
- Example 4 ⁇ GGT1-deficient NK92 cells>
- the GGT1 gene was knocked out in the ANKL cell line NK92.
- Methods NK92 cell line was purchased from ATCC.
- GGT1 deletion in the NK92 cell line was performed as in Example 1.
- sgRNAs for GGT1 are listed in Table 1.
- 1 ⁇ 10 5 cells of the NK92 cell line deficient in GGT1 by CRISPR were cultured in a 6-well plate in Artemis-1 (Japan Techno Service Co., Ltd.) culture medium supplemented with 2% human serum.
- the ratio of infection-positive cells was measured by flow cytometry every week, with the infection-positive cells 3 days after virus infection of non-specific sgRNA (denoted as non-target1 in FIG. 4) and GGT1 being 100%. Specifically, dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
- Example 5 ⁇ Expression position of GGT1 in cells> Further analysis was performed on GGT1, identified as a therapeutic target for ANKL.
- GGsTop registered trademark
- Artemis-1 Japan Techno Service Co., Ltd.
- Kojunyaku Co., Ltd. was added at a concentration of 100 ⁇ g/mL.
- GGsTop® addition had no effect on cell survival of the NK92 cell line (Fig. 5A).
- GGT1 activity on cell membrane surface Next, in order to examine the GGT1 activity on the surface of the cell membrane, a sample containing only a gGlu-HMRG probe (ProteoGREEN TM -gGlu, Goryo Chemical Co., Ltd.) that is cleaved by GGT1 to generate fluorescence, a sample containing the probe added to cells, and The sample added with the agent GGsTop (registered trademark) was allowed to react for 24 hours, and the fluorescence intensity was measured. Although the gGlu-HMRG probe does not permeate the cell membrane, it reacts with GGT on the cell membrane surface to produce HMRG that emits strong fluorescence (Fig. 5B).
- GGsTop registered trademark
- Cell and probe sample is intracellular GGT1 activity + extracellular GGT1 activity + medium GGT1 activity
- cell, probe and inhibitor sample is intracellular GGT1 activity + measurement background
- probe and inhibitor 'sample' measures the background of the measurement
- 'probe-only sample' measures the GGT1 activity of the medium.
- SEQ ID NOs: 1-5 Sequences of guide RNAs
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention addresses the problems of identifying a molecule that can serve as a potential drug target in a tumor, providing a method for suppressing the proliferation of tumor cells through knockdown or knockout of the molecule, and providing a screening method for tumor therapeutic drugs that target the identified molecule. Provided according to the present invention is a method for suppressing the proliferation of tumor cells, the method including knockdown or knockout of the functions of at least one gene selected from the group consisting of genes that encode GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. Also provided is a screening method for tumor therapeutic drugs, the method including: (i) bringing a candidate substance into contact with tumor cells; (ii) measuring the expression level of at least one gene selected from the group consisting of genes that encode GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells, or a protein of the at least one gene; and (iii) selecting, as a therapeutic drug for the tumor, a candidate substance that decreased the expression level to a greater extent than when contact with the candidate substance did not occur.
Description
関連出願の相互参照
本出願は、2021年11月5日出願の日本特願2021-180891号の優先権を主張し、その全記載は、ここに特に開示として援用される。
本発明は、腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む、腫瘍細胞の増殖を抑制する方法に関する。さらに、本発明は、(i)腫瘍細胞に候補物質を接触させること、(ii)腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および(iii)候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択することを含む、腫瘍治療薬のスクリーニング方法に関する。 CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2021-180891 filed on November 5, 2021, the entire disclosure of which is specifically incorporated herein by reference.
The present invention comprises knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells, The present invention relates to a method for inhibiting tumor cell proliferation. Further, the present invention provides a method for selecting from the group consisting of (i) contacting a candidate substance with a tumor cell, (ii) genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells and (iii) selecting a candidate agent that reduces said expression level as a therapeutic agent for the tumor compared to when the candidate agent was not contacted. The present invention relates to a method of screening for tumor therapeutic agents, comprising:
本出願は、2021年11月5日出願の日本特願2021-180891号の優先権を主張し、その全記載は、ここに特に開示として援用される。
本発明は、腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む、腫瘍細胞の増殖を抑制する方法に関する。さらに、本発明は、(i)腫瘍細胞に候補物質を接触させること、(ii)腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および(iii)候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択することを含む、腫瘍治療薬のスクリーニング方法に関する。 CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2021-180891 filed on November 5, 2021, the entire disclosure of which is specifically incorporated herein by reference.
The present invention comprises knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells, The present invention relates to a method for inhibiting tumor cell proliferation. Further, the present invention provides a method for selecting from the group consisting of (i) contacting a candidate substance with a tumor cell, (ii) genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells and (iii) selecting a candidate agent that reduces said expression level as a therapeutic agent for the tumor compared to when the candidate agent was not contacted. The present invention relates to a method of screening for tumor therapeutic agents, comprising:
希少がんは症例数が少なく、臨床研究や治験を進めにくいことから、標準治療の確立が困難である場合が多い。例えば、劇症型NK細胞白血病(Aggressive NK cell Leukemia、以下ANKLと記載する)は、白血病のまれな型であり、発症頻度が低く、病態が未解明であり、それ故標準治療が未確立である。
Because the number of cases of rare cancers is small and it is difficult to proceed with clinical research and trials, it is often difficult to establish a standard treatment. For example, fulminant NK cell leukemia (Aggressive NK cell Leukemia, hereinafter referred to as ANKL) is a rare type of leukemia with a low incidence and unknown pathology, and therefore no standard treatment has been established. be.
ANKLは、NK細胞の全身性腫瘍性増殖であり、ほとんど常にエプスタイン・バーウイルス(EBV)と関連し、侵攻性の臨床経過をたどり、生存中央期間2ヶ月未満の予後不良悪性疾患である(J.K.C. Chan et al., Aggressive NK-cell leukaemia in WHO classification of tumours of haematopoietic and lymphoid tissues 4th edition 2008, edited by Steven H. Swerdlow et al., (World Health Organization classification of tumours) International Agency for Research on Cancer: pp 276-277;その全記載は、ここに特に開示として援用される)。また、他の民族集団よりもアジア人にはるかに多く、日本ではAYA世代を含む青壮年期が発症ピークとなっている。
ANKL is a systemic neoplastic proliferation of NK cells, almost always associated with Epstein-Barr virus (EBV), an aggressive clinical course, and a poor prognosis malignancy with a median survival of less than 2 months (JKC Chan et al., Aggressive NK-cell leukemia in WHO classification of tumors of haematopoietic and lymphoid tissues 4th edition 2008, edited by Steven H. Swerdlow et al., (World Health Organization classification of tumors) International Agency for Research on Cancer: pp 276-277; the entire description of which is specifically incorporated herein by reference). In addition, it is much more common in Asians than in other ethnic groups, and in Japan, the onset peak is in the young and middle ages, including the AYA generation.
ANKLの分子病因としては、STAT3およびRAS-MAPK経路遺伝子の変異およびDDX3Xおよびエピジェネティック修飾因子の変異が同定されているが、発症部位が異なる節外性NK/T細胞リンパ腫、鼻型(ENKL)との差がないと報告されている(Dufva, O., Kankainen, M., Kelkka, T. et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 9, 1567 (2018). https://doi.org/10.1038/s41467-018-03987-2;その全記載は、ここに特に開示として援用される)。また、EBV感染ヒト化リンパ増殖疾患マウスでは、マクロファージが腫瘍微小環境に重要な役割を有することが報告されている(Hiroshi Higuchi, Natsuko Yamakawa, Ken-Ichi Imadome et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood. 2018 Jun 7;131(23):2552-2567. doi: 10.1182/blood-2017-07-794529;その全記載は、ここに特に開示として援用される)。
Mutations in STAT3 and RAS-MAPK pathway genes and mutations in DDX3X and epigenetic modifiers have been identified as the molecular etiology of ANKL, but with different sites of onset extranodal NK/T-cell lymphoma, nasal type (ENKL) (Dufva, O., Kankainen, M., Kelkka, T. et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 9, 1567 (2018). It has also been reported that macrophages play an important role in the tumor microenvironment in EBV-infected humanized lymphoproliferative disease mice (Hiroshi Higuchi, Natsuko Yamakawa, Ken-Ichi Imadome et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood. 2018 Jun 7;131(23):2552-2567. doi: 10.1182/blood-2017-07-794529; .
ANKLは、稀少疾患であるが故に病態解明が推進されず、予後不良疾患であるが、日本においても年間数十症例が新規発症していることやAYA世代や青壮年期に発症することを鑑みると治療法の開発は重要である。また、欧米ではさらに頻度が低いが、東アジアや南アメリカでは発症報告があるため、全世界的には多くの患者が発症している可能性がある。よって、ANKLに対して、創薬標的となりうる分子を同定し、生命予後を改善する治療法を開発することが求められている。
Because ANKL is a rare disease, the pathophysiology has not been elucidated, and the prognosis is poor. and the development of therapeutics are important. In addition, although the frequency is even lower in Europe and the United States, there are reports of onset in East Asia and South America, so there is a possibility that many patients are affected worldwide. Therefore, there is a need to identify molecules that can serve as drug discovery targets for ANKL, and to develop therapeutic methods that improve life prognosis.
本発明は、腫瘍の創薬標的となりうる分子を同定し、これをノックダウンまたはノックアウトすることによる、腫瘍細胞の増殖を抑制する方法を提供すること、および同定した分子を標的とする、腫瘍治療薬のスクリーニング方法を提供することを課題とする。また、腫瘍の治療を可能にする新たな手法を提供することは、本発明の別の課題である。
The present invention provides a method for suppressing tumor cell growth by identifying a molecule that can be a drug discovery target for tumors and knocking it down or knocking it out. An object of the present invention is to provide a drug screening method. It is also another object of the present invention to provide new approaches that enable the treatment of tumors.
本発明によれば以下の発明が提供される。
[1] 腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む、腫瘍細胞の増殖を抑制する方法。
[2] 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、[1]に記載の方法。
[3] 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、または多発性骨髄腫から選択される、[2]に記載の方法。
[4] 以下の(i)から(iii)を含む腫瘍治療薬のスクリーニング方法:
(i) 腫瘍細胞に候補物質を接触させること、
(ii) 腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および
(iii) 候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択すること。
[5] 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、[4]に記載の方法。
[6] 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、多発性骨髄腫から選択される、[5]に記載の方法。
[7] 前記腫瘍が、劇症型NK細胞白血病を含む白血病である、[4]から[6]のいずれか一に記載の方法。
[8] GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトしたNK細胞。
[9] 細胞内および/または細胞外のGGT1活性を阻害することを含む、ANKL細胞の増殖を抑制する方法。 According to the present invention, the following inventions are provided.
[1] A tumor comprising knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. A method for inhibiting cell proliferation.
[2] The method of [1], wherein the tumor cells are solid tumor or hematologic tumor cells.
[3] The method of [2], wherein the hematological tumor is selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, or multiple myeloma.
[4] A method of screening for an antitumor drug comprising the following (i) to (iii):
(i) contacting the tumor cells with the candidate substance;
(ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and
(iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
[5] The method of [4], wherein the tumor cells are solid tumor or hematologic tumor cells.
[6] The method of [5], wherein the hematological tumor is selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, and multiple myeloma.
[7] The method of any one of [4] to [6], wherein the tumor is leukemia including fulminant NK cell leukemia.
[8] NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out.
[9] A method for suppressing ANKL cell proliferation, comprising inhibiting intracellular and/or extracellular GGT1 activity.
[1] 腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む、腫瘍細胞の増殖を抑制する方法。
[2] 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、[1]に記載の方法。
[3] 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、または多発性骨髄腫から選択される、[2]に記載の方法。
[4] 以下の(i)から(iii)を含む腫瘍治療薬のスクリーニング方法:
(i) 腫瘍細胞に候補物質を接触させること、
(ii) 腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および
(iii) 候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択すること。
[5] 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、[4]に記載の方法。
[6] 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、多発性骨髄腫から選択される、[5]に記載の方法。
[7] 前記腫瘍が、劇症型NK細胞白血病を含む白血病である、[4]から[6]のいずれか一に記載の方法。
[8] GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトしたNK細胞。
[9] 細胞内および/または細胞外のGGT1活性を阻害することを含む、ANKL細胞の増殖を抑制する方法。 According to the present invention, the following inventions are provided.
[1] A tumor comprising knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. A method for inhibiting cell proliferation.
[2] The method of [1], wherein the tumor cells are solid tumor or hematologic tumor cells.
[3] The method of [2], wherein the hematological tumor is selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, or multiple myeloma.
[4] A method of screening for an antitumor drug comprising the following (i) to (iii):
(i) contacting the tumor cells with the candidate substance;
(ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and
(iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
[5] The method of [4], wherein the tumor cells are solid tumor or hematologic tumor cells.
[6] The method of [5], wherein the hematological tumor is selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, and multiple myeloma.
[7] The method of any one of [4] to [6], wherein the tumor is leukemia including fulminant NK cell leukemia.
[8] NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out.
[9] A method for suppressing ANKL cell proliferation, comprising inhibiting intracellular and/or extracellular GGT1 activity.
以下に記載する本発明の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Although the description of the present invention described below may be made based on representative embodiments and specific examples, the present invention is not limited to such embodiments. In the present specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
本発明者らは、後述の実施例のとおり、GGT1、IL-10R、CD16、RPM-1、およびシステインを創薬標的として同定した。以下に、各分子について記載する。
The present inventors identified GGT1, IL-10R, CD16, RPM-1, and cysteine as drug discovery targets, as described in the examples below. Each molecule is described below.
GGT1(ガンマグルタミルトランスフェラーゼ1)遺伝子によってコードされる酵素は、グルタチオンのグルタミル部分を様々なアミノ酸およびジペプチドアクセプターに転移する反応を触媒する。この酵素は、重鎖と軽鎖から構成され、単一の前駆体タンパク質に由来する。吸収と分泌に関与する組織で発現され、糖尿病および他の代謝障害の病因に関与すると考えられている。複数の代替スプライスされたバリアントが同定されている。I型遺伝子の5’UTR転写バリアントは、さまざまな組織やがん細胞で同定されている(NCBI Gene:267、Entrez Gene: GGT1 gamma-glutamyltransferase 1)。さらに、GGT1は、細胞内のグルタチオンのホメオスタシスに関与する細胞表面酵素であり、子宮頸がんや卵巣がんなど、いくつかのヒト腫瘍で過剰発現していることが報告されている(Urano, Yasuteru et al. “Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe.” Science translational medicine vol. 3,110 (2011): 110ra119. doi:10.1126/scitranslmed.3002823;その全記載は、ここに特に開示として援用される)。
The enzyme encoded by the GGT1 (gamma glutamyltransferase 1) gene catalyzes reactions that transfer the glutamyl moiety of glutathione to various amino acid and dipeptide acceptors. The enzyme is composed of heavy and light chains and is derived from a single precursor protein. It is expressed in tissues involved in absorption and secretion and is thought to be involved in the pathogenesis of diabetes and other metabolic disorders. Multiple alternatively spliced variants have been identified. 5'UTR transcriptional variants of type I genes have been identified in various tissues and cancer cells (NCBI Gene: 267, Entrez Gene: GGT1 gamma-glutamyltransferase 1). In addition, GGT1, a cell surface enzyme involved in intracellular glutathione homeostasis, has been reported to be overexpressed in several human tumors, including cervical and ovarian cancers (Urano, Yasuteru et al. "Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe." Science translational medicine vol. 3,110 (2011): 110ra119. doi:10.1126/scitranslmed.3002823; Disclosure (incorporated as
IL-10R(インターロイキン10受容体)は、タイプIIのサイトカイン受容体である。この受容体は、2つのαサブユニットと2つのβサブユニットからなる4量体である。αサブユニットは造血細胞(T細胞、B細胞、NK細胞、マスト細胞、樹状細胞など)に発現しており、βサブユニットは普遍的に発現している(Y Liu et al., The Journal of Immunology February 15, 1994, 152 (4) 1821-1829; Kotenko, S V et al. “The EMBO journal vol. 16,19 (1997): 5894-903;これらの全記載は、ここに特に開示として援用される)。IL-10Rは、びまん性大細胞型B細胞リンパ腫(DLBCL)の治療標的として提案されている(Beguelin W et al., Leukemia. 2015 Aug;29(8):1684-94;その全記載は、ここに特に開示として援用される)。IL-10RAおよびIL-10RBは、それぞれインターロイキン10受容体αサブユニットおよびインターロイキン10受容体βサブユニットを指す。
IL-10R (interleukin 10 receptor) is a type II cytokine receptor. This receptor is a tetramer consisting of two α subunits and two β subunits. The α subunit is expressed in hematopoietic cells (T cells, B cells, NK cells, mast cells, dendritic cells, etc.), and the β subunit is ubiquitously expressed (Y Liu et al., The Journal of Immunology February 15, 1994, 152(4) 1821-1829; Kotenko, S V et al. “The EMBO journal vol. 16,19 (1997): 5894-903; IL-10R has been proposed as a therapeutic target for diffuse large B-cell lymphoma (DLBCL) (Beguelin W et al., Leukemia. 2015 Aug;29(8):1684-94; the entire description of which is expressly incorporated herein by reference.) IL-10RA and IL-10RB refer to interleukin 10 receptor alpha subunit and interleukin 10 receptor beta subunit, respectively.
CD16は、ナチュラルキラー細胞、好中球、単球、およびマクロファージの表面に見られる分化分子のクラスターである(Janeway C (2001). "Appendix II. CD antigens". Immunobiology (5 ed.). New York: Garland. ;その全記載は、ここに特に開示として援用される)。CD16は、シグナル伝達に関与するFc受容体FcγRIIIa(CD16a)およびFcγRIIIb(CD16b)として同定されている。NK細胞による細胞溶解の誘発に関与する最もよく研究された膜受容体であるCD16は、抗体依存性細胞傷害性(ADCC)に関与する免疫グロブリンスーパーファミリー(IgSF)の分子である。CD16は好中球に発現するため、がん免疫療法の標的となる可能性がある。さらに、CD16はANKLで高発現性であることが報告されている(Li C, et al., Transl Res. 2014 Jun;163(6):565-77;その全記載は、ここに特に開示として援用される)。
CD16 is a cluster of differentiation molecules found on the surface of natural killer cells, neutrophils, monocytes, and macrophages (Janeway C (2001). "Appendix II. CD Antigens". Immunobiology (5 ed.). New York: Garland.; the entire disclosure of which is expressly incorporated herein by reference). CD16 has been identified as the Fc receptors FcγRIIIa (CD16a) and FcγRIIIb (CD16b) involved in signal transduction. CD16, the best-studied membrane receptor involved in triggering cytolysis by NK cells, is a molecule of the immunoglobulin superfamily (IgSF) involved in antibody-dependent cellular cytotoxicity (ADCC). Since CD16 is expressed on neutrophils, it is a potential target for cancer immunotherapy. Furthermore, CD16 has been reported to be highly expressed in ANKL (Li C, et al., Transl Res. 2014 Jun;163(6):565-77; the full description of which is expressly disclosed herein. cited).
RPM-1はPHRタンパク質である。PHRタンパク質は、哺乳動物のPhr1/MYCBP2、ショウジョウバエのHighwire、線虫のRPM-1である。PHRタンパク質はシナプス形成と軸索終端を調節する細胞内シグナル伝達ハブとして保存されている。PHRタンパク質は、DLK-1およびMLK-1 MAPキナーゼ経路を阻害するユビキチンリガーゼとして作用することが報告されている(Crawley O, et al., PLoS Genet 13(12): e1007095;その全記載は、ここに特に開示として援用される)。
RPM-1 is a PHR protein. The PHR proteins are mammalian Phr1/MYCBP2, Drosophila Highwire, and nematode RPM-1. PHR proteins are conserved as intracellular signaling hubs that regulate synaptogenesis and axon termination. PHR proteins have been reported to act as ubiquitin ligases that inhibit the DLK-1 and MLK-1 MAP kinase pathways (Crawley O, et al., PLoS Genet 13(12): e1007095; the full description is in incorporated herein by reference).
システイン(Cys、2-アミノ-3-スルファニルプロピオン酸)はアミノ酸の1つである。天然にはL-システインとして、食品中タンパク質に含まれるが、ヒトでは必須アミノ酸ではなくメチオニンから生合成される。食品添加剤として利用され、また肌のシミを改善するサプリメントが販売されている。システインの除放剤は、胃の保護また、飲酒時などのアセトアルデヒドを排除するため利用されている。
Cysteine (Cys, 2-amino-3-sulfanylpropionic acid) is one of amino acids. It is naturally contained as L-cysteine in food proteins, but in humans it is biosynthesized from methionine, not from essential amino acids. It is used as a food additive, and a supplement that improves skin spots is sold. Cysteine slow-release agents are used to protect the stomach and to eliminate acetaldehyde, such as when drinking alcohol.
<腫瘍細胞の増殖を抑制する方法>
本発明の腫瘍細胞の増殖を抑制する方法は、腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む。一態様では、本発明の腫瘍細胞の増殖を抑制する方法は、ヒトを処置する方法を除くか、またはヒトに対する医療行為を除く。別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vitroまたはex vivoで実施される。さらに別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vivoで実施される。 <Method for Suppressing Growth of Tumor Cells>
The method of suppressing tumor cell growth of the present invention comprises inhibiting the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. Including knocking down or knocking out. In one aspect, the methods of inhibiting growth of tumor cells of the present invention exclude methods of treating humans or exclude medical interventions on humans. In another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vitro or ex vivo. In yet another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vivo.
本発明の腫瘍細胞の増殖を抑制する方法は、腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む。一態様では、本発明の腫瘍細胞の増殖を抑制する方法は、ヒトを処置する方法を除くか、またはヒトに対する医療行為を除く。別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vitroまたはex vivoで実施される。さらに別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vivoで実施される。 <Method for Suppressing Growth of Tumor Cells>
The method of suppressing tumor cell growth of the present invention comprises inhibiting the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. Including knocking down or knocking out. In one aspect, the methods of inhibiting growth of tumor cells of the present invention exclude methods of treating humans or exclude medical interventions on humans. In another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vitro or ex vivo. In yet another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vivo.
本明細書中、標的遺伝子は、別に明記されない限り、腫瘍治療の標的としての役割を果たし得る遺伝子を意味する。本明細書中、標的遺伝子は、別に明記されない限り、GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子を指す。これらの遺伝子の概要は上記の通りである。また、これらの遺伝子の塩基配列を含む詳細情報は、以下のEnsembl IDに基づいて、取得することができる。GGT1:ENSG00000100031; IL-10RB:ENSG00000243636; CD16:ENSG00000203747; MYCBP2(RPM-1):ENSG00000005810。
システイン関連酵素遺伝子としては、システイントランスポーター、並びにシスタチオニンβ合成酵素(CBS)およびシスタチオニンγ-リアーゼを含むシステイン代謝関連酵素遺伝子が挙げられるが、これらに限定されない。 By target gene herein is meant a gene that can serve as a target for tumor therapy, unless otherwise specified. As used herein, target genes refer to genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes, unless otherwise specified. A summary of these genes is given above. Further, detailed information including the base sequences of these genes can be obtained based on the following Ensembl IDs. GGT1: ENSG00000100031; IL-10RB: ENSG00000243636; CD16: ENSG00000203747; MYCBP2 (RPM-1): ENSG00000005810.
Cysteine-related enzyme genes include, but are not limited to, cysteine transporters and cysteine metabolism-related enzyme genes, including cystathionine beta synthase (CBS) and cystathionine gamma-lyase.
システイン関連酵素遺伝子としては、システイントランスポーター、並びにシスタチオニンβ合成酵素(CBS)およびシスタチオニンγ-リアーゼを含むシステイン代謝関連酵素遺伝子が挙げられるが、これらに限定されない。 By target gene herein is meant a gene that can serve as a target for tumor therapy, unless otherwise specified. As used herein, target genes refer to genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes, unless otherwise specified. A summary of these genes is given above. Further, detailed information including the base sequences of these genes can be obtained based on the following Ensembl IDs. GGT1: ENSG00000100031; IL-10RB: ENSG00000243636; CD16: ENSG00000203747; MYCBP2 (RPM-1): ENSG00000005810.
Cysteine-related enzyme genes include, but are not limited to, cysteine transporters and cysteine metabolism-related enzyme genes, including cystathionine beta synthase (CBS) and cystathionine gamma-lyase.
本発明でその機能がノックダウンまたはノックアウトされるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子は、哺乳動物の遺伝子であり、マウス、ラット若しくはサルの遺伝子またはヒトの遺伝子であることが好ましく、ヒトの遺伝子がより好ましいがこれに限定されない。
Genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes whose functions are knocked down or knocked out in the present invention are mammalian genes, mouse, rat or monkey genes or human genes. It is preferably a gene of, and more preferably a human gene, but is not limited thereto.
本明細書中、遺伝子の機能のノックダウンは、改変されていない同じ種類の細胞また改変前の細胞と比較して、90%以下、80%以下、70%以下、60%以下、50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、または10%以下まで遺伝子発現または活性を低減されることを意味する。
In the present specification, knockdown of gene function is 90% or less, 80% or less, 70% or less, 60% or less, 50% or less compared to the same type of unmodified cells or cells before modification. , 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less.
ノックダウンは、上記の標的遺伝子に適用される遺伝子欠損、破壊、置換、点変異、多重点変異、挿入変異、もしくはフレームシフト変異CRISPR/CAS9、またはCRISPR干渉もしくは干渉RNA、干渉mRNAもしくは干渉アプタマーのいずれか1つ以上によって、またはsiRNAもしくはsiRNA干渉または亜鉛フィンガー転写因子または亜鉛フィンガーヌクレアーゼもしくは転写アクチベーター様エフェクターヌクレアーゼ(TALEN)の使用による遺伝子発現の抑制によって、または、インヒビター分子もしくは低分子インヒビターなどのインヒビター、例えば、タンパク質もしくは酵素活性の活性インヒビターの使用によって実施することができるが、これらに限定されず、標的遺伝子の遺伝子発現または活性を低減できる方法を採用することができる。
Knockdown is a gene deletion, disruption, substitution, point mutation, multiple point mutation, insertion mutation, or frameshift mutation CRISPR/CAS9, or CRISPR interfering or interfering RNA, interfering mRNA or interfering aptamer applied to the above target genes. by any one or more, or by suppression of gene expression by siRNA or siRNA interference or the use of zinc finger transcription factors or zinc finger nucleases or transcription activator-like effector nucleases (TALENs), or inhibitor molecules or small molecule inhibitors such as This can be done through the use of inhibitors, such as, but not limited to, activity inhibitors of protein or enzymatic activity, and any method that can reduce gene expression or activity of the target gene can be employed.
本明細書中、遺伝子の機能のノックアウトは、遺伝子の発現が、完全にまたはほぼ完全に消滅することを意味する。細胞でノックアウトされた遺伝子の発現または活性は、改変されていない同じ種類の細胞また改変前の細胞と比較して、20%以下、15%以下、10%以下、5%以下、2%以下、1%以下または0%まで低減されることを意味するが、これに限定されない。ある実施形態において、細胞でノックアウトされた遺伝子の発現レベルは、当技術分野で公知の遺伝子発現検出についての通常の手段を用いては検出不可能である。
As used herein, "knockout of gene function" means that gene expression is completely or almost completely eliminated. The expression or activity of the gene knocked out in the cell is 20% or less, 15% or less, 10% or less, 5% or less, 2% or less, compared to the same type of unmodified cells or cells before modification. It means that it is reduced to 1% or less or to 0%, but it is not limited to this. In certain embodiments, the level of expression of the knocked-out gene in the cell is undetectable using conventional means for gene expression detection known in the art.
ノックアウトは、限定されないが、公知の遺伝子組み換え法(ジーンターゲッティング法)やゲノム編集などにより実施することができる。ノックアウトは、効率の点から、ZFN、TALEN、CRISPR/Cas9など人工制限酵素 を用いたゲノム編集で実施することが好ましく、CRISPR/Cas9を用いることがより好ましい。
Knockout can be performed by, but not limited to, a known genetic recombination method (gene targeting method), genome editing, or the like. From the viewpoint of efficiency, knockout is preferably performed by genome editing using an artificial restriction enzyme such as ZFN, TALEN, CRISPR/Cas9, more preferably using CRISPR/Cas9.
CRISPR/Cas9によるノックアウト細胞の作製は、Cas9をレンチウイルスを用いて細胞に導入してマウスに移入してCas9発現細胞を得て、sgRNAをベクターを用いてCas9発現細胞に導入して再度マウスに移入して、樹立した細胞を解析し、遺伝子ノックアウト細胞を得ることができる。
Production of knockout cells by CRISPR / Cas9, Cas9 is introduced into cells using lentivirus, transferred into mice to obtain Cas9-expressing cells, sgRNA is introduced into Cas9-expressing cells using a vector, and introduced into mice again. The transfected and established cells can be analyzed to obtain gene knockout cells.
CRISPR/Cas9に用いる標的遺伝子に対するsgRNAは、欠損させたいエクソン内のPAM(proto-spacer adjacent motif; 5’-NGG-3’)の5’上流20塩基を含み、標的遺伝子のPAM上流の相同遺伝子配列に相補的に結合するよう設計し、合成することができる。このsgRNAは、Cas9 mRNAあるいはタンパク質と複合体を形成し、マウス受精卵の前核あるいは細胞質に同時に注入することにより、PAM上流20塩基のところに相補的に結合後、PAMの上流3~4塩基のところを切断(DSB; double strand break)する。DSB導入後、直ちに修復されるが、その修復は非相同末端結合(non-homologous end-joining;NHEJ)の経路により数塩基から数十塩基程度の挿入や欠失(indel)が生じる。このindelにより標的遺伝子にフレームシフト変異を導入することができるので、効率的な遺伝子ノックアウトに利用することができる。
sgRNA for the target gene used for CRISPR / Cas9, PAM in the exon you want to delete (proto-spacer adjacent motif; 5'-NGG-3') 5 'upstream 20 bases containing, target gene PAM upstream homologous gene It can be designed and synthesized to bind complementary sequences. This sgRNA forms a complex with Cas9 mRNA or protein, and is injected into the pronucleus or cytoplasm of mouse fertilized eggs at the same time. After complementary binding to 20 bases upstream of PAM, 3 to 4 bases upstream of PAM Cut (DSB; double strand break) at . DSB is immediately repaired after introduction, but the repair involves insertion or deletion (indel) of several to several tens of bases through a non-homologous end-joining (NHEJ) pathway. Since this indel can introduce a frameshift mutation into the target gene, it can be used for efficient gene knockout.
本発明の腫瘍細胞の増殖を抑制する方法では、腫瘍細胞が、固形腫瘍または血液腫瘍の細胞であってもよい。本発明において、腫瘍細胞の増殖が抑制される血液腫瘍としては、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、および多発性骨髄腫が挙げられるが、これらに限定されない。白血病としては、劇症型NK細胞白血病、急性骨髄性白血病、急性リンパ性白血病/リンパ芽球性リンパ腫、急性前骨髄球性白血病、慢性骨髄性白血病、慢性リンパ性白血病、骨髄異形成症候群が挙げられるがこれらに限定されない。悪性リンパ腫としては、成人T細胞白血病/リンパ腫、バーキットリンパ腫、鼻腔原発NK細胞リンパ腫、ホジキンリンパ腫、B細胞リンパ腫、胃のMALTリンパ腫などが挙げられるが、これらに限定されない。本発明において、腫瘍細胞の増殖が抑制される血液腫瘍はNK細胞腫瘍であってもよく、NK細胞腫瘍としては節外性NK/T細胞リンパ腫 鼻型(extranodal NK/T-cell lymphoma,nasal type:ENKL)、劇症型NK細胞白血病、慢性NK細胞増多症が挙げられるが、これらに限定されない。
In the method of suppressing the growth of tumor cells of the present invention, the tumor cells may be cells of solid tumors or hematologic tumors. In the present invention, hematological tumors in which tumor cell proliferation is suppressed include, but are not limited to, leukemias including fulminant NK cell leukemia, malignant lymphomas, and multiple myeloma. Leukemias include fulminant NK-cell leukemia, acute myelogenous leukemia, acute lymphocytic leukemia/lymphoblastic lymphoma, acute promyelocytic leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and myelodysplastic syndrome. but not limited to these. Malignant lymphomas include, but are not limited to, adult T-cell leukemia/lymphoma, Burkitt's lymphoma, primary nasal NK-cell lymphoma, Hodgkin's lymphoma, B-cell lymphoma, gastric MALT lymphoma, and the like. In the present invention, the blood tumor whose growth of tumor cells is suppressed may be an NK cell tumor, and the NK cell tumor is extranodal NK/T-cell lymphoma, nasal type. : ENKL), fulminant NK cell leukemia, chronic NK cell hyperplasia.
本発明において、腫瘍細胞の増殖が抑制される固形腫瘍としては、線維肉腫、粘液肉腫、脂肪肉腫、軟骨肉腫、骨肉腫、脊索腫、血管肉腫、内皮肉腫、リンパ管肉腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、結腸がん、膵臓がん、乳がん、卵巣がん、前立腺がん、胃がん、肺がん、子宮がん、扁平上皮がん、基底細胞がん、腺がん、汗腺がん、脂腺がん、乳頭がん、乳頭状腺がん、嚢胞腺がん、髄様がん、気管支原性肺がん、腎細胞がん、肝細胞がん、胆管がん、絨毛がん、精上皮種、胚性がん腫、ウィルムス腫瘍、子宮頸がん、精巣腫瘍、肺がん、小細胞肺がん、膀胱がん、上皮がん、神経膠腫、星細胞腫、髄芽腫、頭蓋咽頭腫、上衣腫、松果体腫、血管芽細胞腫、聴神経腫瘍、乏突起神経膠腫、髄膜腫、黒色腫、神経芽腫および網膜芽細胞腫などの肉腫およびがん腫が挙げられるが、これらに限定されない。
In the present invention, solid tumors whose growth of tumor cells is suppressed include fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteosarcoma, chordoma, angiosarcoma, endothelial sarcoma, lymphangiosarcoma, mesothelioma, and Ewing. Tumor, Leiomyosarcoma, Rhabdomyosarcoma, Colon cancer, Pancreatic cancer, Breast cancer, Ovarian cancer, Prostate cancer, Gastric cancer, Lung cancer, Uterine cancer, Squamous cell carcinoma, Basal cell carcinoma, Adenocarcinoma , sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic lung cancer, renal cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma, choriocarcinoma Cancer, seminiferous carcinoma, embryonic carcinoma, Wilms tumor, cervical cancer, testicular tumor, lung cancer, small cell lung cancer, bladder cancer, epithelial cancer, glioma, astrocytoma, medulloblastoma, Sarcoma and carcinoma include craniopharyngioma, ependymoma, pineocytoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, and retinoblastoma. include but are not limited to:
一実施形態において、本発明の腫瘍細胞の増殖を抑制する方法では、ANKL細胞の増殖が抑制される。
In one embodiment, in the method of inhibiting tumor cell proliferation of the present invention, ANKL cell proliferation is inhibited.
ANKL細胞は、成熟NK細胞に由来すると考えられている。腫瘍性NK細胞は、典型的にはCD2+、表面CD3-、細胞質CD3ε+、CD56+、EBV+であり、T細胞受容体(TCR)および免疫グロブリン(Ig)遺伝子の生殖細胞系列構成を有する。ANKLではCD2とCD56が排他的に発現し、CD3とTCRが存在しないことから、その起源はNK細胞であることがわかる(Li C et al 2014 上掲)。また、ANKLの症例は細胞障害性分子が陽性で、CXCR1、CCR5、可溶性Fasリガンドの血清レベルが高いことが判明しており、ケモカインシステムがNK白血病細胞の全身浸潤や肝機能障害に重要な役割を果たしていることが示唆されている(Makishima H et al, 2007 Leukemia Research, Volume 31, Issue 9, 2007, Pages 1237-1245;その全記載は、ここに特に開示として援用される)。
ANKL cells are believed to be derived from mature NK cells. Neoplastic NK cells are typically CD2 + , surface CD3 − , cytoplasmic CD3ε + , CD56 + , EBV + and have a germline configuration of T-cell receptor (TCR) and immunoglobulin (Ig) genes . The exclusive expression of CD2 and CD56 and the absence of CD3 and TCR in ANKL indicates its origin from NK cells (Li C et al 2014 supra). In addition, ANKL cases are positive for cytotoxic molecules, and serum levels of CXCR1, CCR5, and soluble Fas ligand have been found to be high, suggesting that the chemokine system plays an important role in systemic infiltration of NK leukemic cells and liver dysfunction. (Makishima H et al, 2007 Leukemia Research, Volume 31, Issue 9, 2007, Pages 1237-1245; the entire disclosure of which is expressly incorporated herein by reference).
一実施形態では、本発明で用いられる腫瘍細胞は、例えば、手術摘出臓器から分離した細胞や患者から提供された血液から分離した細胞を用いることができる。その他、腫瘍細胞は、ATCCや細胞販売会社から入手することができる。例えば、ANKL細胞は以下の方法で分離することができる。ANKL細胞の分離は、患者の末梢血などをフィコール(Ficoll(登録商標) Paque Plus SIGMA)に重層し1000rpm、20分間遠心)を用いて単核球を分離することで実施することができる。また、PDX(患者由来異種移植)マウスからのANKL細胞は、その肝臓、脾臓、骨髄を採取し、プレパラートによって組織を挫滅させた後、フィコール(Ficoll(登録商標) Paque Plus SIGMA)に重層し1000rpm、20分間遠心)を用いて単核球を分離することで実施することができる。
In one embodiment, tumor cells used in the present invention can be, for example, cells isolated from surgically removed organs or cells isolated from blood provided by patients. In addition, tumor cells can be obtained from ATCC and cell sales companies. For example, ANKL cells can be isolated by the following method. Separation of ANKL cells can be performed by layering patient's peripheral blood or the like on Ficoll (Ficoll (registered trademark) Paque Plus SIGMA) and centrifuging at 1000 rpm for 20 minutes) to separate mononuclear cells. In addition, ANKL cells from PDX (patient-derived xenograft) mice collected the liver, spleen, and bone marrow, crushed the tissue with a preparation, overlaid on Ficoll (Paque Plus SIGMA), and spun at 1000 rpm. , centrifugation for 20 minutes) to separate mononuclear cells.
後記する実施例では、GGT1、IL-10R、CD16、またはRPM-1がノックアウトされた腫瘍細胞の増殖が抑制されたことが明らかになった。また、システインを含まない培地では、腫瘍細胞が生存できないことが明らかとなった。本発明者らは、これらの結果から、GGT1、IL-10R、CD16、RPM-1、およびシステインを、腫瘍細胞、特にANKLの治療標的として同定した。
In the examples described later, it was revealed that growth of tumor cells in which GGT1, IL-10R, CD16, or RPM-1 had been knocked out was suppressed. It was also found that tumor cells could not survive in media without cysteine. From these results, we identified GGT1, IL-10R, CD16, RPM-1, and cysteine as therapeutic targets for tumor cells, particularly ANKL.
別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、システインを除去する、低減させる、または枯渇させることを含む。後述する実施例2に示されているように、ANKL細胞の生存にはシステインが必要である。システインは、食品中タンパク質に含まれるが、ヒトにとっては必須アミノ酸ではなく、メチオニンから合成される。システインを含まない食事を摂取する食事療法や、上記のようにシステイン関連酵素をノックダウンまたはノックアウトすることにより、ANKL細胞の増殖を抑制できると考えられる。本発明において、システインを除去する、低減させる、または枯渇させることは、例えば、システインを含まない食事を摂取することにより実施することができる。
In another aspect, the method of inhibiting tumor cell growth of the present invention comprises removing, reducing, or depleting cysteine. As shown in Example 2 below, cysteine is required for the survival of ANKL cells. Cysteine is contained in protein in foods, but is not an essential amino acid for humans, and is synthesized from methionine. It is believed that the proliferation of ANKL cells can be suppressed by a diet regimen in which a cysteine-free diet is taken, or by knocking down or knocking out cysteine-related enzymes as described above. In the present invention, removing, reducing, or depleting cysteine can be performed, for example, by ingesting a cysteine-free diet.
<スクリーニング方法>
本発明の腫瘍治療薬のスクリーニング方法は、以下を含む。
(i) 腫瘍細胞に候補物質を接触させること、
(ii) 腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および
(iii) 候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択すること。 <Screening method>
The method of screening for tumor therapeutic agents of the present invention includes the following.
(i) contacting the tumor cells with the candidate substance;
(ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and
(iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
本発明の腫瘍治療薬のスクリーニング方法は、以下を含む。
(i) 腫瘍細胞に候補物質を接触させること、
(ii) 腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および
(iii) 候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択すること。 <Screening method>
The method of screening for tumor therapeutic agents of the present invention includes the following.
(i) contacting the tumor cells with the candidate substance;
(ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and
(iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted.
上記のとおり、本発明者らは、GGT1、IL-10R、CD16、RPM-1、およびシステインを、腫瘍細胞、特にANKLの治療標的として同定した。これらの分子を用いて、腫瘍治療薬をスクリーニングすることができる。
As described above, the inventors identified GGT1, IL-10R, CD16, RPM-1, and cysteine as therapeutic targets for tumor cells, particularly ANKL. These molecules can be used to screen tumor therapeutics.
腫瘍細胞に候補物質を接触させることは、腫瘍細胞と候補物質(被験物質)とを同一の反応系又は培養系に存在させることを意味する。例えば、細胞培養容器に候補物質を添加すること、細胞と候補物質とを混合すること、細胞を候補物質の存在下で培養することなどが含まれるが、これらに限定されない。
Bringing the candidate substance into contact with the tumor cells means allowing the tumor cells and the candidate substance (test substance) to exist in the same reaction system or culture system. Examples include, but are not limited to, adding candidate substances to cell culture vessels, mixing cells and candidate substances, and culturing cells in the presence of candidate substances.
GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルは、免疫学的測定法を用いて測定することができる。免疫学的測定法は、例えば、ELISA、ウエスタンブロット、免疫沈降、スロットもしくはドットブロットアッセイ、免疫組織染色、ラジオイムノアッセイ(RIA)、蛍光イムノアッセイ、アビジン-ビオチンまたはストレプトアビジン-ビオチン系を用いるイムノアッセイなどを含むがこれらに限定されない。好ましくは、ELISAであり、例えば、サンドイッチELISAである。また、GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルは、mRNAの発現レベルとして測定することができ、ノーザンブロット法、サザンブロット法、定量的RT-PCR法、リアルタイムPCR法、in situハイブリダーゼーション法等を用いて、常法に従ってプライマーまたはプローブを利用して行うことができるがこれらに限定されない。
measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes using an immunological assay; can be done. Immunological assays include, for example, ELISA, Western blot, immunoprecipitation, slot or dot blot assay, immunohistochemical staining, radioimmunoassay (RIA), fluorescence immunoassay, immunoassay using avidin-biotin or streptavidin-biotin system, and the like. Including but not limited to. Preferably, it is an ELISA, such as a sandwich ELISA. In addition, the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes can be measured as the expression level of mRNA. Northern blotting, Southern blotting, quantitative RT-PCR, real-time PCR, in situ hybridization, etc. can be performed using primers or probes according to conventional methods, but are limited to these. not.
候補物質を接触させた腫瘍細胞と候補物質を接触させなかった腫瘍細胞における、上記の少なくとも1つの遺伝子またはそのタンパク質の発現レベルを比較し、発現レベルを減少させた候補物質を腫瘍の治療薬として選択することができる。選択した候補物質をさらなる解析に供することができる。
The expression level of at least one gene or protein thereof is compared between the tumor cells contacted with the candidate substance and the tumor cells not contacted with the candidate substance, and the candidate substance whose expression level is reduced is used as a therapeutic agent for tumors. can be selected. Selected candidate substances can be subjected to further analysis.
候補物質あるいは被験物質は、任意の化合物、例えばタンパク質(例えば、抗体、およびその抗原結合性断片)、ペプチド、核酸、糖質、脂質、タンパク質以外の高分子化合物または低分子化合物、およびこれらの誘導体などであるが、これらに限定されない。
Candidate substances or test substances can be any compound, such as proteins (e.g., antibodies and antigen-binding fragments thereof), peptides, nucleic acids, carbohydrates, lipids, high-molecular-weight or low-molecular-weight compounds other than proteins, and derivatives thereof. etc., but not limited to these.
本発明のスクリーニング方法では、腫瘍細胞が、固形腫瘍または血液腫瘍の細胞であってもよい。本発明のスクリーニング方法に用いられる固形腫瘍または血液腫瘍の種類は、上記<腫瘍細胞の増殖を抑制する方法>の記載と同様である。特に前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、多発性骨髄腫から選択することが好ましい。
In the screening method of the present invention, the tumor cells may be cells of solid tumors or hematologic tumors. The types of solid tumors or hematological tumors used in the screening method of the present invention are the same as described in <Method for inhibiting growth of tumor cells> above. In particular, the hematological tumor is preferably selected from leukemia including fulminant NK cell leukemia, malignant lymphoma, and multiple myeloma.
本発明において、治療薬がスクリーニングされる腫瘍は、上記<腫瘍細胞の増殖を抑制する方法>の記載と同様である。特に劇症型NK細胞白血病を含む白血病が好ましい。
In the present invention, the tumors for which therapeutic agents are screened are the same as those described in <Method for inhibiting tumor cell proliferation> above. Especially preferred are leukemias including fulminant NK cell leukemia.
特定の実施態様では、上記タンパク質の酵素活性は、細胞内と細胞外(例えば細胞膜表面上)に分けて測定することができる。例えば、候補物質が、細胞膜表面のみで上記タンパク質の酵素活性を減少させることができるか、あるいは細胞内と細胞外の両方において減少させることができるかを評価することができる。一態様では、細胞内で上記タンパク質の酵素活性を減少させた候補物質を腫瘍の治療薬として選択することができる。別の態様では、細胞膜表面上の上記タンパク質の酵素活性を減少させた候補物質を腫瘍の治療薬として選択することができる。
In certain embodiments, the enzymatic activity of the protein can be measured separately for intracellular and extracellular (eg, on the cell membrane surface). For example, it is possible to assess whether a candidate substance can reduce the enzymatic activity of the protein only at the cell membrane surface, or both intracellularly and extracellularly. In one aspect, candidate substances that have reduced the enzymatic activity of the protein in cells can be selected as therapeutic agents for tumors. In another aspect, a candidate substance that has decreased enzymatic activity of the protein on the cell membrane surface can be selected as a therapeutic agent for tumors.
後記する実施例では、ANKL細胞では、細胞外よりも、細胞内のGGT1活性の値が高いことが明らかになった。治療標的分子の発現レベルやその活性を、細胞内と細胞外(例えば細胞膜表面上)に分けて測定することがANKLの分子病因を解明するための手がかりとなり得る。
In the examples described later, it was revealed that ANKL cells have higher intracellular GGT1 activity values than extracellular ones. Separate measurement of the expression level and activity of therapeutic target molecules intracellularly and extracellularly (for example, on the cell membrane surface) can provide clues for elucidating the molecular pathogenesis of ANKL.
さらに、本発明は、NK細胞、特にANKL細胞において細胞内および/または細胞外のGGT1活性を阻害することを含む、ANKL細胞の増殖を抑制する方法に関する。本発明は、NK細胞、特にANKL細胞において細胞内のGGT1活性を阻害することを含む、ANKL細胞の増殖を抑制する方法に関する。後記する実施例では、ANKL細胞(NK92)において、細胞外のGGT1活性の阻害は、細胞生存に影響がないことが明らかになった。細胞内のGGT1活性がANKL細胞の生存に関わっていると考えられる。一態様では、本発明の腫瘍細胞の増殖を抑制する方法は、ヒトを処置する方法を除くか、またはヒトに対する医療行為を除く。別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vitroまたはex vivoで実施される。さらに別の態様では、本発明の腫瘍細胞の増殖を抑制する方法は、in vivoで実施される。
Furthermore, the present invention relates to a method for suppressing proliferation of ANKL cells, including inhibiting intracellular and/or extracellular GGT1 activity in NK cells, particularly ANKL cells. The present invention relates to a method for inhibiting proliferation of ANKL cells, including inhibiting intracellular GGT1 activity in NK cells, particularly ANKL cells. Examples described later revealed that inhibition of extracellular GGT1 activity had no effect on cell survival in ANKL cells (NK92). It is believed that intracellular GGT1 activity is involved in the survival of ANKL cells. In one aspect, the methods of inhibiting growth of tumor cells of the present invention exclude methods of treating humans or exclude medical interventions on humans. In another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vitro or ex vivo. In yet another aspect, the method of inhibiting tumor cell proliferation of the present invention is practiced in vivo.
<遺伝子の機能をノックダウンまたはノックアウトしたNK細胞>
本発明の別の態様では、GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトしたNK細胞が提供される。
一実施形態では、上記遺伝子の機能をノックダウンまたはノックアウトしたNK細胞は、NK細胞腫瘍の病因や病態の解析に利用することができる。別の実施形態では、遺伝子の機能をノックダウンまたはノックアウトしたNK細胞は、NK細胞腫瘍の治療に用いることができる。 <NK cells with gene function knocked down or knocked out>
In another aspect of the present invention, NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out provided.
In one embodiment, NK cells in which the functions of the above genes have been knocked down or knocked out can be used to analyze the etiology and pathology of NK cell tumors. In another embodiment, NK cells with gene function knocked down or knocked out can be used to treat NK cell tumors.
本発明の別の態様では、GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトしたNK細胞が提供される。
一実施形態では、上記遺伝子の機能をノックダウンまたはノックアウトしたNK細胞は、NK細胞腫瘍の病因や病態の解析に利用することができる。別の実施形態では、遺伝子の機能をノックダウンまたはノックアウトしたNK細胞は、NK細胞腫瘍の治療に用いることができる。 <NK cells with gene function knocked down or knocked out>
In another aspect of the present invention, NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out provided.
In one embodiment, NK cells in which the functions of the above genes have been knocked down or knocked out can be used to analyze the etiology and pathology of NK cell tumors. In another embodiment, NK cells with gene function knocked down or knocked out can be used to treat NK cell tumors.
本発明の上記の遺伝子の機能をノックダウンまたはノックアウトしたNK細胞には、正常NK細胞のほか、腫瘍性NK細胞が包含され得る。前記腫瘍性NK細胞は、ANKL細胞であってもよいが、これに限定されない。
ノックダウンまたはノックアウトは、上記<腫瘍細胞の増殖を抑制する方法>に記載のとおり実施することができる。 NK cells in which the functions of the above genes of the present invention have been knocked down or knocked out may include normal NK cells as well as neoplastic NK cells. The neoplastic NK cells may be, but are not limited to, ANKL cells.
Knockdown or knockout can be performed as described in <Method for suppressing growth of tumor cells> above.
ノックダウンまたはノックアウトは、上記<腫瘍細胞の増殖を抑制する方法>に記載のとおり実施することができる。 NK cells in which the functions of the above genes of the present invention have been knocked down or knocked out may include normal NK cells as well as neoplastic NK cells. The neoplastic NK cells may be, but are not limited to, ANKL cells.
Knockdown or knockout can be performed as described in <Method for suppressing growth of tumor cells> above.
以下の例に基づいて本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。なお、本明細書において、特に記載しない限り、「%」等は質量基準である。
The present invention will be described more specifically based on the following examples, but the present invention is not limited to these examples. In this specification, "%" and the like are based on mass unless otherwise specified.
本発明者らは、少なくとも15種類の既知の分子がANKL細胞増殖または生存に関与するかを、患者由来異種移植(PDX)モデルと試験管内共培養系、CRISPRによる遺伝子欠損法、分画精製法を用いて解析した。以下の実施例は、腫瘍生存を減少させる分子6種(GGT1、IL-10R、CD16、RPM-1、およびシステイン)を同定した結果である。
The present inventors investigated whether at least 15 known molecules are involved in ANKL cell proliferation or survival in patient-derived xenograft (PDX) models and in vitro co-culture systems, gene deletion methods by CRISPR, fractionation and purification methods. was analyzed using The following examples are the results of identifying six molecules (GGT1, IL-10R, CD16, RPM-1, and cysteine) that decrease tumor survival.
実施例1~3の実験に用いたANKL細胞は、東海大学医学部付属病院にて、患者1人(45歳)の末梢血から分離した。ANKL細胞は、患者の末梢血をフィコール(Ficoll(登録商標)Paque Plus SIGMA)に重層し1000rpm、20分間遠心)を用いて単核球を分離することで得た。すべての実験は、倫理審査委員会の承認を受けた後、患者の同意を得て行った。
患者由来異種移植(PDX)モデルは、免疫不全マウス(NOD/Shi-scid,IL-2RγKO、In vivo science社)に患者の腫瘍細胞を移入することで作成した。 The ANKL cells used in the experiments of Examples 1 to 3 were isolated from the peripheral blood of one patient (45 years old) at Tokai University Hospital. The ANKL cells were obtained by layering the patient's peripheral blood on Ficoll (Ficoll (registered trademark) Paque Plus SIGMA) and separating mononuclear cells using centrifugation at 1000 rpm for 20 minutes). All experiments were performed with patient consent after approval by an ethics review board.
A patient-derived xenograft (PDX) model was created by transferring patient tumor cells into immunodeficient mice (NOD/Shi-scid, IL-2RγKO, In vivo science).
患者由来異種移植(PDX)モデルは、免疫不全マウス(NOD/Shi-scid,IL-2RγKO、In vivo science社)に患者の腫瘍細胞を移入することで作成した。 The ANKL cells used in the experiments of Examples 1 to 3 were isolated from the peripheral blood of one patient (45 years old) at Tokai University Hospital. The ANKL cells were obtained by layering the patient's peripheral blood on Ficoll (Ficoll (registered trademark) Paque Plus SIGMA) and separating mononuclear cells using centrifugation at 1000 rpm for 20 minutes). All experiments were performed with patient consent after approval by an ethics review board.
A patient-derived xenograft (PDX) model was created by transferring patient tumor cells into immunodeficient mice (NOD/Shi-scid, IL-2RγKO, In vivo science).
実施例1
<RPM-1、IL-10R、CD16>
本実施例では、CRISPR/Cas9を用いて、ANKL細胞で、RPM-1、IL-10R、CD16を欠損させた。
CRISPR/Cas9はレンチウイルスを用いてANKL細胞に導入した。レンチウイルスはHEK293T細胞を用いて以下のように作成した。10%FBS、100U/mLペニシリン、100g/mLストレプトマイシンを添加したD-MEM(Wako、Cat#044-29765)でHEK293T細胞を培養し、10cmディッシュにリエチレンイミン(PEI-MAX、Polysciences、Cat#24765-1)を付加し、FUGW-Cas9-Venusベクター10μg、pCAG-KGP1Rベクター10μg、pCAG-4RTR2ベクター2μg、pCMV-VSVG3μgをトランスフェクトした。トランスフェクション後48時間目にレンチウイルス上清を回収し、12000gで20℃4時間遠心分離し、ペレットを10mM HEPESを含むHBSSで再懸濁した。濃縮されたレンチウイルス上清は、RetroNectin(Takara Bio、Cat#T100B)コートされた24ウェルプレートと結合させた。レンチウイルスを結合させたRetroNectinコートプレートに、患者より採取したANKL細胞を用いて作成したPDXマウスの肝臓から採取したANKL細胞を播種し(1ウェルあたり1~5×105細胞)、1220g、32℃で2時間スピン感染させた。 Example 1
<RPM-1, IL-10R, CD16>
In this example, CRISPR/Cas9 was used to deplete RPM-1, IL-10R, and CD16 in ANKL cells.
CRISPR/Cas9 was introduced into ANKL cells using lentivirus. Lentivirus was prepared using HEK293T cells as follows. HEK293T cells were cultured in D-MEM (Wako, Cat #044-29765) supplemented with 10% FBS, 100 U/mL penicillin, and 100 g/mL streptomycin, and placed in a 10 cm dish with ethylenimine (PEI-MAX, Polysciences, Cat #24765). -1) was added, and 10 μg of FUGW-Cas9-Venus vector, 10 μg of pCAG-KGP1R vector, 2 μg of pCAG-4RTR2 vector, and 3 μg of pCMV-VSVG were transfected. Lentiviral supernatants were harvested 48 hours after transfection, centrifuged at 12000 g for 4 hours at 20° C., and pellets were resuspended in HBSS containing 10 mM HEPES. Concentrated lentiviral supernatants were bound to RetroNectin (Takara Bio, Cat#T100B) coated 24-well plates. ANKL cells collected from the liver of PDX mice prepared using ANKL cells collected from patients were seeded on a lentivirus-bound RetroNectin-coated plate (1-5 × 10 5 cells per well), 1220 g, 32 C. for 2 hours by spin infection.
<RPM-1、IL-10R、CD16>
本実施例では、CRISPR/Cas9を用いて、ANKL細胞で、RPM-1、IL-10R、CD16を欠損させた。
CRISPR/Cas9はレンチウイルスを用いてANKL細胞に導入した。レンチウイルスはHEK293T細胞を用いて以下のように作成した。10%FBS、100U/mLペニシリン、100g/mLストレプトマイシンを添加したD-MEM(Wako、Cat#044-29765)でHEK293T細胞を培養し、10cmディッシュにリエチレンイミン(PEI-MAX、Polysciences、Cat#24765-1)を付加し、FUGW-Cas9-Venusベクター10μg、pCAG-KGP1Rベクター10μg、pCAG-4RTR2ベクター2μg、pCMV-VSVG3μgをトランスフェクトした。トランスフェクション後48時間目にレンチウイルス上清を回収し、12000gで20℃4時間遠心分離し、ペレットを10mM HEPESを含むHBSSで再懸濁した。濃縮されたレンチウイルス上清は、RetroNectin(Takara Bio、Cat#T100B)コートされた24ウェルプレートと結合させた。レンチウイルスを結合させたRetroNectinコートプレートに、患者より採取したANKL細胞を用いて作成したPDXマウスの肝臓から採取したANKL細胞を播種し(1ウェルあたり1~5×105細胞)、1220g、32℃で2時間スピン感染させた。 Example 1
<RPM-1, IL-10R, CD16>
In this example, CRISPR/Cas9 was used to deplete RPM-1, IL-10R, and CD16 in ANKL cells.
CRISPR/Cas9 was introduced into ANKL cells using lentivirus. Lentivirus was prepared using HEK293T cells as follows. HEK293T cells were cultured in D-MEM (Wako, Cat #044-29765) supplemented with 10% FBS, 100 U/mL penicillin, and 100 g/mL streptomycin, and placed in a 10 cm dish with ethylenimine (PEI-MAX, Polysciences, Cat #24765). -1) was added, and 10 μg of FUGW-Cas9-Venus vector, 10 μg of pCAG-KGP1R vector, 2 μg of pCAG-4RTR2 vector, and 3 μg of pCMV-VSVG were transfected. Lentiviral supernatants were harvested 48 hours after transfection, centrifuged at 12000 g for 4 hours at 20° C., and pellets were resuspended in HBSS containing 10 mM HEPES. Concentrated lentiviral supernatants were bound to RetroNectin (Takara Bio, Cat#T100B) coated 24-well plates. ANKL cells collected from the liver of PDX mice prepared using ANKL cells collected from patients were seeded on a lentivirus-bound RetroNectin-coated plate (1-5 × 10 5 cells per well), 1220 g, 32 C. for 2 hours by spin infection.
ANKL PDXマウスの肝臓からANKL細胞を採取し、上記レンチウイルスをスピンインフェクション後、細胞を2回洗浄し、NOD/Shi-scid,IL-2RγKOマウスに静脈より注射し、3~4週間後にANKL細胞を回収し、蛍光タンパク質Venusの発現量に基づいて選別し、マウスに連続的に注入した。この回収・選別・注入のプロセスを計2回行い、Cas9発現ANKL細胞を得た。
ANKL cells were harvested from the liver of ANKL PDX mice, spin-infected with the above lentivirus, washed twice, injected intravenously into NOD/Shi-scid, IL-2RγKO mice, and ANKL cells were cultured 3-4 weeks later. were harvested, sorted based on the amount of expression of the fluorescent protein Venus, and serially injected into mice. This collection, selection, and injection process was performed twice to obtain Cas9-expressing ANKL cells.
PDXマウスの肝臓から採取したCas9発現ANKL細胞にCSII-sgRNA-mOrangeベクターに表1に記載のsgRNAを導入することにより、それぞれの遺伝子を欠損したANKL細胞を樹立した。細胞は、導入後すぐにマウスに注入するか、または5%FBS、非必須アミノ酸溶液、1mMピルビン酸ナトリウム、0.1mM 2-メルカプトテスを添加したRPMI-1640で2日間培養した。1mM 2-メルカプトエタノールを添加した後、FACSAria(TM)III(日本ベクトン・ディッキンソン株式会社)でmOrange陽性細胞を分離し、上記4種類の遺伝子を個々に欠損させたANKL細胞または遺伝子非欠損ANKL細胞をそれぞれ1×104個マウスに注射した。
注射14日後、肝臓における各ANKL細胞をFACSVerse(TM)(日本ベクトン・ディッキンソン株式会社)にて定量した。 By introducing the sgRNAs listed in Table 1 into the CSII-sgRNA-mOrange vector into Cas9-expressing ANKL cells collected from the liver of PDX mice, ANKL cells deficient in each gene were established. Cells were either injected into mice immediately after transfer or cultured for 2 days in RPMI-1640 supplemented with 5% FBS, non-essential amino acid solution, 1 mM sodium pyruvate, 0.1 mM 2-mercaptothes. After adding 1 mM 2-mercaptoethanol, mOrange-positive cells were separated by FACSAria (TM) III (Nippon Becton Dickinson Co., Ltd.), and the above four types of genes were individually deficient ANKL cells or non-defective ANKL cells. were injected into 1×10 4 mice each.
Fourteen days after the injection, each ANKL cell in the liver was quantified by FACSVerse (TM) (Nippon Becton Dickinson Co., Ltd.).
注射14日後、肝臓における各ANKL細胞をFACSVerse(TM)(日本ベクトン・ディッキンソン株式会社)にて定量した。 By introducing the sgRNAs listed in Table 1 into the CSII-sgRNA-mOrange vector into Cas9-expressing ANKL cells collected from the liver of PDX mice, ANKL cells deficient in each gene were established. Cells were either injected into mice immediately after transfer or cultured for 2 days in RPMI-1640 supplemented with 5% FBS, non-essential amino acid solution, 1 mM sodium pyruvate, 0.1 mM 2-mercaptothes. After adding 1 mM 2-mercaptoethanol, mOrange-positive cells were separated by FACSAria (TM) III (Nippon Becton Dickinson Co., Ltd.), and the above four types of genes were individually deficient ANKL cells or non-defective ANKL cells. were injected into 1×10 4 mice each.
Fourteen days after the injection, each ANKL cell in the liver was quantified by FACSVerse (TM) (Nippon Becton Dickinson Co., Ltd.).
non-targetコントロール(Gene Script 社に作成を依頼した)を、標的遺伝子特異的sgRNAの非存在下でCRISPR-Cas9コンポーネントに対するベースラインの細胞応答を評価するために用いた。また、比較例として、多くのがん腫において、発がんに重要な役割を示すが阻害が正常細胞にも多大な影響を及ぼすため創薬が困難であるがん遺伝子c-mycを用いた(表1では、MYCと記載する)。
A non-target control (commissioned by GeneScript) was used to assess baseline cellular responses to the CRISPR-Cas9 component in the absence of target gene-specific sgRNA. In addition, as a comparative example, the oncogene c-myc, which shows an important role in carcinogenesis in many carcinomas but is difficult to develop drugs because its inhibition also greatly affects normal cells, was used (Table 1, it is described as MYC).
結果
RPM-1、IL-10R、CD16遺伝子を欠損させたANKL細胞を注射したマウスのANKL細胞の生存率(以下、腫瘍生存率という)が、遺伝子非欠損ANKL細胞を注射したマウスの腫瘍生存率に対して50%以下であった(図1)。
比較例として、がん遺伝子c-mycをCRISPRを用いて欠損させたANKL細胞を上記競合PDXマウスモデルで検討した結果生存率は、約60%であった(図1)。RPM-1、IL-10R、CD16遺伝子を欠損させたANKL細胞の生存率は、がん遺伝子c-mycを欠損させたANKL細胞の生存率よりも、低いことが示された。 Results The survival rate of ANKL cells in mice injected with RPM-1, IL-10R, and CD16 gene-deficient ANKL cells (hereinafter referred to as tumor survival rate) was higher than the tumor survival rate in mice injected with gene-free ANKL cells. It was 50% or less against (Fig. 1).
As a comparative example, ANKL cells in which the oncogene c-myc was deficient using CRISPR were examined in the competitive PDX mouse model, and the survival rate was about 60% (Fig. 1). It was shown that the survival rate of ANKL cells deficient in RPM-1, IL-10R, and CD16 genes was lower than that of ANKL cells deficient in oncogene c-myc.
RPM-1、IL-10R、CD16遺伝子を欠損させたANKL細胞を注射したマウスのANKL細胞の生存率(以下、腫瘍生存率という)が、遺伝子非欠損ANKL細胞を注射したマウスの腫瘍生存率に対して50%以下であった(図1)。
比較例として、がん遺伝子c-mycをCRISPRを用いて欠損させたANKL細胞を上記競合PDXマウスモデルで検討した結果生存率は、約60%であった(図1)。RPM-1、IL-10R、CD16遺伝子を欠損させたANKL細胞の生存率は、がん遺伝子c-mycを欠損させたANKL細胞の生存率よりも、低いことが示された。 Results The survival rate of ANKL cells in mice injected with RPM-1, IL-10R, and CD16 gene-deficient ANKL cells (hereinafter referred to as tumor survival rate) was higher than the tumor survival rate in mice injected with gene-free ANKL cells. It was 50% or less against (Fig. 1).
As a comparative example, ANKL cells in which the oncogene c-myc was deficient using CRISPR were examined in the competitive PDX mouse model, and the survival rate was about 60% (Fig. 1). It was shown that the survival rate of ANKL cells deficient in RPM-1, IL-10R, and CD16 genes was lower than that of ANKL cells deficient in oncogene c-myc.
実施例2
<システイン>
1×106個のANKL細胞を6cm培養皿において、システイン(Cys)を除く全てのアミノ酸19種類を添加したRPMI(FCS10%)培養液2ml中で72時間培養した。アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。 Example 2
<cysteine>
1×10 6 ANKL cells were cultured in 2 ml of RPMI (FCS 10%) medium supplemented with all 19 amino acids except cysteine (Cys) in a 6 cm culture dish for 72 hours. Dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
<システイン>
1×106個のANKL細胞を6cm培養皿において、システイン(Cys)を除く全てのアミノ酸19種類を添加したRPMI(FCS10%)培養液2ml中で72時間培養した。アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。 Example 2
<cysteine>
1×10 6 ANKL cells were cultured in 2 ml of RPMI (FCS 10%) medium supplemented with all 19 amino acids except cysteine (Cys) in a 6 cm culture dish for 72 hours. Dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
全20種類の主要なアミノ酸を含む培地、いずれも含まない培地のほか、必須アミノ酸(メチオニン(Met)、スレオニン(Thr)、イソロイシン(Ile)、ヒスチジン(His)、バリン(Val)、リジン(Lys)、フェニルアラニン(Phe)、ロイシン(Leu)、トリプトファン(Trp))、非必須アミノ酸(アスパラギン(Asn)、アラニン(Ala)、アスパラギン酸(Asp)、グルタミン酸(Glu)、グリシン(Gly))、システイン以外の条件付き必須アミノ酸(グルタミン(Gln)、アルギニン(Arg)、チロシン(Tyr)、セリン(Ser)、プロリン(Pro)のいずれか1種類のアミノ酸を除く培地でも、上記システインを除いた場合と同様にANKL細胞を培養し、アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。
In addition to media containing all 20 major amino acids, media containing none of them, essential amino acids (methionine (Met), threonine (Thr), isoleucine (Ile), histidine (His), valine (Val), lysine (Lys) ), phenylalanine (Phe), leucine (Leu), tryptophan (Trp)), non-essential amino acids (asparagine (Asn), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), glycine (Gly)), cysteine Conditionally essential amino acids other than (glutamine (Gln), arginine (Arg), tyrosine (Tyr), serine (Ser), proline (Pro) even in the medium excluding any one amino acid, the case of removing the cysteine and ANKL cells were cultured in the same manner, dead cells were stained with annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
結果
システインを含むアミノ酸20種類を添加した群は生存率が100%であるのに対し(図中のAll)、システインのみを除去した群では生存率が0%であった(図2)。必須アミノ酸、非必須アミノ酸、システイン以外の条件付き必須アミノ酸を除去した群と比較しても、システインを除去した群は、生存率が低かった。 Results The group to which 20 types of amino acids containing cysteine were added had a survival rate of 100% (All in the figure), whereas the group to which only cysteine was removed had a survival rate of 0% (Fig. 2). The survival rate was lower in the group from which cysteine was removed than in the group from which essential amino acids, non-essential amino acids, and conditionally essential amino acids other than cysteine were removed.
システインを含むアミノ酸20種類を添加した群は生存率が100%であるのに対し(図中のAll)、システインのみを除去した群では生存率が0%であった(図2)。必須アミノ酸、非必須アミノ酸、システイン以外の条件付き必須アミノ酸を除去した群と比較しても、システインを除去した群は、生存率が低かった。 Results The group to which 20 types of amino acids containing cysteine were added had a survival rate of 100% (All in the figure), whereas the group to which only cysteine was removed had a survival rate of 0% (Fig. 2). The survival rate was lower in the group from which cysteine was removed than in the group from which essential amino acids, non-essential amino acids, and conditionally essential amino acids other than cysteine were removed.
実施例3
<GGT1>
ANKL細胞でのGGT1欠損は、実施例1と同様に実施した。GGT1用のsgRNAは、表1に記載した。
実施例1と同じくCRISPRによってGGT1を欠損させたANKL細胞1×106個を6cm培養皿において、システインを含むアミノ酸20種類を添加したRPMI(FCS10%)培養液中で72時間培養した。アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。
non-targetコントロールを、標的遺伝子特異的sgRNAの非存在下でCRISPR-Cas9コンポーネントに対するベースラインの細胞応答を評価するために用いた。 Example 3
<GGT1>
GGT1 deficiency in ANKL cells was performed in the same manner as in Example 1. sgRNAs for GGT1 are listed in Table 1.
As in Example 1, 1×10 6 ANKL cells deficient in GGT1 by CRISPR were cultured in a 6 cm culture dish in RPMI (10% FCS) culture medium supplemented with 20 amino acids including cysteine for 72 hours. Dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
A non-target control was used to assess baseline cellular responses to the CRISPR-Cas9 component in the absence of target gene-specific sgRNA.
<GGT1>
ANKL細胞でのGGT1欠損は、実施例1と同様に実施した。GGT1用のsgRNAは、表1に記載した。
実施例1と同じくCRISPRによってGGT1を欠損させたANKL細胞1×106個を6cm培養皿において、システインを含むアミノ酸20種類を添加したRPMI(FCS10%)培養液中で72時間培養した。アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。
non-targetコントロールを、標的遺伝子特異的sgRNAの非存在下でCRISPR-Cas9コンポーネントに対するベースラインの細胞応答を評価するために用いた。 Example 3
<GGT1>
GGT1 deficiency in ANKL cells was performed in the same manner as in Example 1. sgRNAs for GGT1 are listed in Table 1.
As in Example 1, 1×10 6 ANKL cells deficient in GGT1 by CRISPR were cultured in a 6 cm culture dish in RPMI (10% FCS) culture medium supplemented with 20 amino acids including cysteine for 72 hours. Dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
A non-target control was used to assess baseline cellular responses to the CRISPR-Cas9 component in the absence of target gene-specific sgRNA.
結果
GGT1欠損ANKL細胞の生存率は、遺伝子非欠損ANKL細胞の生存率に対して20%未満であった(図3)。 Results The viability of GGT1-deficient ANKL cells was less than 20% relative to that of non-gene-deficient ANKL cells (Fig. 3).
GGT1欠損ANKL細胞の生存率は、遺伝子非欠損ANKL細胞の生存率に対して20%未満であった(図3)。 Results The viability of GGT1-deficient ANKL cells was less than 20% relative to that of non-gene-deficient ANKL cells (Fig. 3).
実施例4
<GGT1欠損NK92細胞>
本実施例では、ANKLの細胞株であるNK92において、GGT1遺伝子をノックアウトした。
方法
NK92細胞株は、ATCCより購入した。
NK92細胞株でのGGT1欠損は、実施例1と同様に実施した。GGT1用のsgRNAは、表1に記載した。実施例1と同じくCRISPRによってGGT1を欠損させたNK92細胞株1×105個を6ウェルプレートにおいて、ヒト血清を2%添加したArtemis-1(日本テクノサービス株式会社)培養液中で培養した。
非特異的sgRNA(図4ではnon-target1と記載)およびGGT1に対するsgRNAのウイルス感染から3日後の感染陽性細胞を100%として一週間ごとに感染陽性細胞の割合をフローサイトメトリーにより測定した。具体的には、アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。 Example 4
<GGT1-deficient NK92 cells>
In this example, the GGT1 gene was knocked out in the ANKL cell line NK92.
Methods NK92 cell line was purchased from ATCC.
GGT1 deletion in the NK92 cell line was performed as in Example 1. sgRNAs for GGT1 are listed in Table 1. As in Example 1, 1×10 5 cells of the NK92 cell line deficient in GGT1 by CRISPR were cultured in a 6-well plate in Artemis-1 (Japan Techno Service Co., Ltd.) culture medium supplemented with 2% human serum.
The ratio of infection-positive cells was measured by flow cytometry every week, with the infection-positive cells 3 days after virus infection of non-specific sgRNA (denoted as non-target1 in FIG. 4) and GGT1 being 100%. Specifically, dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
<GGT1欠損NK92細胞>
本実施例では、ANKLの細胞株であるNK92において、GGT1遺伝子をノックアウトした。
方法
NK92細胞株は、ATCCより購入した。
NK92細胞株でのGGT1欠損は、実施例1と同様に実施した。GGT1用のsgRNAは、表1に記載した。実施例1と同じくCRISPRによってGGT1を欠損させたNK92細胞株1×105個を6ウェルプレートにおいて、ヒト血清を2%添加したArtemis-1(日本テクノサービス株式会社)培養液中で培養した。
非特異的sgRNA(図4ではnon-target1と記載)およびGGT1に対するsgRNAのウイルス感染から3日後の感染陽性細胞を100%として一週間ごとに感染陽性細胞の割合をフローサイトメトリーにより測定した。具体的には、アネキシン染色、PI染色にて死細胞を染色し、FACSVerse(TM)にて定量し、陰性分画を生細胞とした。 Example 4
<GGT1-deficient NK92 cells>
In this example, the GGT1 gene was knocked out in the ANKL cell line NK92.
Methods NK92 cell line was purchased from ATCC.
GGT1 deletion in the NK92 cell line was performed as in Example 1. sgRNAs for GGT1 are listed in Table 1. As in Example 1, 1×10 5 cells of the NK92 cell line deficient in GGT1 by CRISPR were cultured in a 6-well plate in Artemis-1 (Japan Techno Service Co., Ltd.) culture medium supplemented with 2% human serum.
The ratio of infection-positive cells was measured by flow cytometry every week, with the infection-positive cells 3 days after virus infection of non-specific sgRNA (denoted as non-target1 in FIG. 4) and GGT1 being 100%. Specifically, dead cells were stained by annexin staining and PI staining, quantified by FACSVerse (TM), and negative fractions were defined as viable cells.
結果
レンチウイルス感染によりCas9およびGGT1遺伝子に対するsgRNAを発現させることによりCRISPR/Cas9システムを用いてGGT1をノックアウトするとANKLの細胞株であるNK92は急速に死滅した。 Results Knocking out GGT1 using the CRISPR/Cas9 system by expressing sgRNA against the Cas9 and GGT1 genes by lentiviral infection rapidly killed the ANKL cell line NK92.
レンチウイルス感染によりCas9およびGGT1遺伝子に対するsgRNAを発現させることによりCRISPR/Cas9システムを用いてGGT1をノックアウトするとANKLの細胞株であるNK92は急速に死滅した。 Results Knocking out GGT1 using the CRISPR/Cas9 system by expressing sgRNA against the Cas9 and GGT1 genes by lentiviral infection rapidly killed the ANKL cell line NK92.
実施例5
<GGT1の細胞における発現位置>
ANKLの治療標的として同定されたGGT1についてさらに解析を行った。
まず、6ウェルプレートにおいてヒト血清を2%添加したArtemis-1(日本テクノサービス株式会社)培養液中でNK92細胞株1×105個にGGT1阻害剤であるGGsTop(登録商標)(富士フイルム和光純薬株式会社)を100μg/mLの濃度で添加した。しかし、GGsTop(登録商標)添加は、NK92細胞株の細胞生存に影響はなかった(図5A)。 Example 5
<Expression position of GGT1 in cells>
Further analysis was performed on GGT1, identified as a therapeutic target for ANKL.
First, GGsTop (registered trademark), a GGT1 inhibitor, was added to 1×10 5 NK92 cell lines in Artemis-1 (Japan Techno Service Co., Ltd.) culture medium supplemented with 2% human serum in a 6-well plate. Kojunyaku Co., Ltd.) was added at a concentration of 100 μg/mL. However, GGsTop® addition had no effect on cell survival of the NK92 cell line (Fig. 5A).
<GGT1の細胞における発現位置>
ANKLの治療標的として同定されたGGT1についてさらに解析を行った。
まず、6ウェルプレートにおいてヒト血清を2%添加したArtemis-1(日本テクノサービス株式会社)培養液中でNK92細胞株1×105個にGGT1阻害剤であるGGsTop(登録商標)(富士フイルム和光純薬株式会社)を100μg/mLの濃度で添加した。しかし、GGsTop(登録商標)添加は、NK92細胞株の細胞生存に影響はなかった(図5A)。 Example 5
<Expression position of GGT1 in cells>
Further analysis was performed on GGT1, identified as a therapeutic target for ANKL.
First, GGsTop (registered trademark), a GGT1 inhibitor, was added to 1×10 5 NK92 cell lines in Artemis-1 (Japan Techno Service Co., Ltd.) culture medium supplemented with 2% human serum in a 6-well plate. Kojunyaku Co., Ltd.) was added at a concentration of 100 μg/mL. However, GGsTop® addition had no effect on cell survival of the NK92 cell line (Fig. 5A).
(細胞膜表面のGGT1活性)
次に、細胞膜表面のGGT1活性を調べるため、GGT1により分解されて蛍光を生じるgGlu-HMRGプローブ(ProteoGREENTM-gGlu、五稜化薬株式会社)のみのサンプル、細胞にプローブを添加したサンプル、さらに阻害剤GGsTop(登録商標)を添加したサンプルを24時間反応させて蛍光強度を測定した。gGlu-HMRGプローブは細胞膜を透過しないが、細胞膜表面上のGGTによる反応が起こり、強い蛍光を発するHMRGが生成する(図5B)。NK92細胞株にプローブを添加したサンプル(Probe+cell)では、プローブのみのサンプル(Probe)と比較して蛍光強度が大きくなったが、阻害剤を添加したサンプル(Probe+cell+GGstop)では、蛍光強度はプローブのみのサンプルと比較して蛍光強度が小さくなった(図5C)。ANKLの細胞株NK92に、GGT1阻害剤であるGGsTop(登録商標)を添加すると細胞膜表面のGGT1活性は阻害されていた。 (GGT1 activity on cell membrane surface)
Next, in order to examine the GGT1 activity on the surface of the cell membrane, a sample containing only a gGlu-HMRG probe (ProteoGREEN ™ -gGlu, Goryo Chemical Co., Ltd.) that is cleaved by GGT1 to generate fluorescence, a sample containing the probe added to cells, and The sample added with the agent GGsTop (registered trademark) was allowed to react for 24 hours, and the fluorescence intensity was measured. Although the gGlu-HMRG probe does not permeate the cell membrane, it reacts with GGT on the cell membrane surface to produce HMRG that emits strong fluorescence (Fig. 5B). In the NK92 cell line probe-added sample (Probe + cell), the fluorescence intensity increased compared to the probe-only sample (Probe), but in the inhibitor-added sample (Probe + cell + GGstop), Fluorescence intensity decreased compared to probe-only samples (Fig. 5C). When the GGT1 inhibitor GGsTop (registered trademark) was added to the ANKL cell line NK92, GGT1 activity on the cell membrane surface was inhibited.
次に、細胞膜表面のGGT1活性を調べるため、GGT1により分解されて蛍光を生じるgGlu-HMRGプローブ(ProteoGREENTM-gGlu、五稜化薬株式会社)のみのサンプル、細胞にプローブを添加したサンプル、さらに阻害剤GGsTop(登録商標)を添加したサンプルを24時間反応させて蛍光強度を測定した。gGlu-HMRGプローブは細胞膜を透過しないが、細胞膜表面上のGGTによる反応が起こり、強い蛍光を発するHMRGが生成する(図5B)。NK92細胞株にプローブを添加したサンプル(Probe+cell)では、プローブのみのサンプル(Probe)と比較して蛍光強度が大きくなったが、阻害剤を添加したサンプル(Probe+cell+GGstop)では、蛍光強度はプローブのみのサンプルと比較して蛍光強度が小さくなった(図5C)。ANKLの細胞株NK92に、GGT1阻害剤であるGGsTop(登録商標)を添加すると細胞膜表面のGGT1活性は阻害されていた。 (GGT1 activity on cell membrane surface)
Next, in order to examine the GGT1 activity on the surface of the cell membrane, a sample containing only a gGlu-HMRG probe (ProteoGREEN ™ -gGlu, Goryo Chemical Co., Ltd.) that is cleaved by GGT1 to generate fluorescence, a sample containing the probe added to cells, and The sample added with the agent GGsTop (registered trademark) was allowed to react for 24 hours, and the fluorescence intensity was measured. Although the gGlu-HMRG probe does not permeate the cell membrane, it reacts with GGT on the cell membrane surface to produce HMRG that emits strong fluorescence (Fig. 5B). In the NK92 cell line probe-added sample (Probe + cell), the fluorescence intensity increased compared to the probe-only sample (Probe), but in the inhibitor-added sample (Probe + cell + GGstop), Fluorescence intensity decreased compared to probe-only samples (Fig. 5C). When the GGT1 inhibitor GGsTop (registered trademark) was added to the ANKL cell line NK92, GGT1 activity on the cell membrane surface was inhibited.
(GGT1の活性に対する内側および外側の比率)
さらに、GGT1の活性に対する内側および外側の比率を分析するため、細胞内に透過されるプローブであるgGlu-HMJCRと細胞膜を透過しないGGT1阻害剤であるGGsTop(登録商標)を組み合わせて細胞内および全GGT1の活性を測定して細胞内および細胞外GGT1活性を求めた。
「細胞とプローブのサンプル」、「細胞とプローブと阻害剤のサンプル」、「プローブと阻害剤のサンプル」および「プローブのみのサンプル」について蛍光強度を測定した。「細胞とプローブのサンプル」が、細胞内GGT1活性+細胞外GGT1活性+培地のGGT1活性、「細胞とプローブと阻害剤のサンプル」が、細胞内GGT1活性+測定バックグラウンド、「プローブと阻害剤のサンプル」が、測定のバックグラウンド、「プローブのみのサンプル」が、培地のGGT1活性をそれぞれ測定しているので、「細胞とプローブのサンプル」の蛍光強度から「プローブのみのサンプル」の蛍光強度を引いて細胞内GGT1活性+細胞外GGT1活性の値を算出し、また「細胞とプローブと阻害剤のサンプル」の蛍光強度から「プローブと阻害剤のサンプル」の蛍光強度を引くことで細胞内GGT1活性の値を算出して、比率をとった。
NK92細胞株、ANKL1、およびANKL3の三種類のANKL細胞について、蛍光強度を測定し、細胞内および細胞外のGGT1活性の値を算出して比率をとった。結果を図5Dに示す。細胞膜を透過してGGT1により分解されて蛍光を示すプローブおよびGGT1阻害剤GGsTop(登録商標)を添加して細胞内および細胞外GGT1の活性を測定したところ、ANKL細胞では細胞内GGT1活性の割合が著しく高かった。 (ratio of inner and outer to activity of GGT1)
In addition, to analyze the inner and outer ratios of GGT1 activity, gGlu-HMJCR, an intracellular permeable probe, was combined with GGsTop®, a GGT1 inhibitor that does not permeate the cell membrane, to GGT1 activity was measured to determine intracellular and extracellular GGT1 activity.
Fluorescence intensities were measured for the "cell and probe sample", "cell and probe and inhibitor sample", "probe and inhibitor sample" and "probe only sample". "Cell and probe sample" is intracellular GGT1 activity + extracellular GGT1 activity + medium GGT1 activity, "cell, probe and inhibitor sample" is intracellular GGT1 activity + measurement background, "probe and inhibitor 'sample' measures the background of the measurement, and 'probe-only sample' measures the GGT1 activity of the medium. is subtracted to calculate the value of intracellular GGT1 activity + extracellular GGT1 activity, and the fluorescence intensity of the "probe and inhibitor sample" is subtracted from the fluorescence intensity of the "cell, probe and inhibitor sample" The value of GGT1 activity was calculated and ratioed.
Fluorescence intensity was measured for three types of ANKL cells, NK92 cell line, ANKL1, and ANKL3, and the intracellular and extracellular GGT1 activity values were calculated and ratioed. The results are shown in Figure 5D. A probe that permeates the cell membrane and is degraded by GGT1 to show fluorescence and the GGT1 inhibitor GGsTop (registered trademark) were added to measure the activity of intracellular and extracellular GGT1. was significantly higher.
さらに、GGT1の活性に対する内側および外側の比率を分析するため、細胞内に透過されるプローブであるgGlu-HMJCRと細胞膜を透過しないGGT1阻害剤であるGGsTop(登録商標)を組み合わせて細胞内および全GGT1の活性を測定して細胞内および細胞外GGT1活性を求めた。
「細胞とプローブのサンプル」、「細胞とプローブと阻害剤のサンプル」、「プローブと阻害剤のサンプル」および「プローブのみのサンプル」について蛍光強度を測定した。「細胞とプローブのサンプル」が、細胞内GGT1活性+細胞外GGT1活性+培地のGGT1活性、「細胞とプローブと阻害剤のサンプル」が、細胞内GGT1活性+測定バックグラウンド、「プローブと阻害剤のサンプル」が、測定のバックグラウンド、「プローブのみのサンプル」が、培地のGGT1活性をそれぞれ測定しているので、「細胞とプローブのサンプル」の蛍光強度から「プローブのみのサンプル」の蛍光強度を引いて細胞内GGT1活性+細胞外GGT1活性の値を算出し、また「細胞とプローブと阻害剤のサンプル」の蛍光強度から「プローブと阻害剤のサンプル」の蛍光強度を引くことで細胞内GGT1活性の値を算出して、比率をとった。
NK92細胞株、ANKL1、およびANKL3の三種類のANKL細胞について、蛍光強度を測定し、細胞内および細胞外のGGT1活性の値を算出して比率をとった。結果を図5Dに示す。細胞膜を透過してGGT1により分解されて蛍光を示すプローブおよびGGT1阻害剤GGsTop(登録商標)を添加して細胞内および細胞外GGT1の活性を測定したところ、ANKL細胞では細胞内GGT1活性の割合が著しく高かった。 (ratio of inner and outer to activity of GGT1)
In addition, to analyze the inner and outer ratios of GGT1 activity, gGlu-HMJCR, an intracellular permeable probe, was combined with GGsTop®, a GGT1 inhibitor that does not permeate the cell membrane, to GGT1 activity was measured to determine intracellular and extracellular GGT1 activity.
Fluorescence intensities were measured for the "cell and probe sample", "cell and probe and inhibitor sample", "probe and inhibitor sample" and "probe only sample". "Cell and probe sample" is intracellular GGT1 activity + extracellular GGT1 activity + medium GGT1 activity, "cell, probe and inhibitor sample" is intracellular GGT1 activity + measurement background, "probe and inhibitor 'sample' measures the background of the measurement, and 'probe-only sample' measures the GGT1 activity of the medium. is subtracted to calculate the value of intracellular GGT1 activity + extracellular GGT1 activity, and the fluorescence intensity of the "probe and inhibitor sample" is subtracted from the fluorescence intensity of the "cell, probe and inhibitor sample" The value of GGT1 activity was calculated and ratioed.
Fluorescence intensity was measured for three types of ANKL cells, NK92 cell line, ANKL1, and ANKL3, and the intracellular and extracellular GGT1 activity values were calculated and ratioed. The results are shown in Figure 5D. A probe that permeates the cell membrane and is degraded by GGT1 to show fluorescence and the GGT1 inhibitor GGsTop (registered trademark) were added to measure the activity of intracellular and extracellular GGT1. was significantly higher.
配列番号1~5:ガイドRNAの配列
SEQ ID NOs: 1-5: Sequences of guide RNAs
Claims (9)
- 腫瘍細胞においてGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトすることを含む、腫瘍細胞の増殖を抑制する方法。 Proliferating tumor cells comprising knocking down or knocking out the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells. how to suppress
- 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、請求項1に記載の方法。 The method of claim 1, wherein said tumor cells are cells of a solid tumor or a hematologic tumor.
- 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、または多発性骨髄腫から選択される、請求項2に記載の方法。 The method of claim 2, wherein said hematological tumor is selected from leukemia, including fulminant NK-cell leukemia, malignant lymphoma, or multiple myeloma.
- 以下の(i)から(iii)を含む腫瘍治療薬のスクリーニング方法:
(i) 腫瘍細胞に候補物質を接触させること、
(ii) 腫瘍細胞におけるGGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子またはそのタンパク質の発現レベルを測定すること、および
(iii) 候補物質を接触させなかった場合と比較して、前記発現レベルを減少させた候補物質を腫瘍の治療薬として選択すること。 A method of screening for an antitumor drug comprising (i) to (iii) below:
(i) contacting the tumor cells with the candidate substance;
(ii) measuring the expression level of at least one gene or protein thereof selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes in tumor cells; and
(iii) Selecting the candidate substance with reduced expression level as a therapeutic agent for the tumor compared to when the candidate substance is not contacted. - 前記腫瘍細胞が、固形腫瘍または血液腫瘍の細胞である、請求項4に記載の方法。 The method of claim 4, wherein said tumor cells are cells of a solid tumor or hematological tumor.
- 前記血液腫瘍が、劇症型NK細胞白血病を含む白血病、悪性リンパ腫、多発性骨髄腫から選択される、請求項5に記載の方法。 The method according to claim 5, wherein said hematological tumor is selected from leukemia including fulminant NK-cell leukemia, malignant lymphoma, and multiple myeloma.
- 前記腫瘍が、劇症型NK細胞白血病を含む白血病である、請求項4から6のいずれか一項に記載の方法。 The method according to any one of claims 4 to 6, wherein the tumor is leukemia, including fulminant NK-cell leukemia.
- GGT1、IL-10R、CD16、RPM-1、およびシステイン関連酵素をコードする遺伝子からなる群から選択される少なくとも1つの遺伝子の機能をノックダウンまたはノックアウトしたNK細胞。 NK cells in which the function of at least one gene selected from the group consisting of genes encoding GGT1, IL-10R, CD16, RPM-1, and cysteine-related enzymes is knocked down or knocked out.
- 細胞内および/または細胞外のGGT1活性を阻害することを含む、ANKL細胞の増殖を抑制する方法。 A method of suppressing the proliferation of ANKL cells, comprising inhibiting intracellular and/or extracellular GGT1 activity.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-180891 | 2021-11-05 | ||
JP2021180891 | 2021-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023080210A1 true WO2023080210A1 (en) | 2023-05-11 |
Family
ID=86241499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/041228 WO2023080210A1 (en) | 2021-11-05 | 2022-11-04 | Identification of treatment target in aggressive nk leukemia |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023080210A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100255472A1 (en) * | 2007-06-04 | 2010-10-07 | The Johns Hopkins University | Biomarkers for prostate cancer |
JP2019144152A (en) * | 2018-02-22 | 2019-08-29 | 国立研究開発法人国立がん研究センター | Sulfur-containing amino acid depletion therapy for cancer |
JP2020513574A (en) * | 2016-11-24 | 2020-05-14 | ヒュベット バイオ, インコーポレイテッドHuvet Bio, Inc. | Composition for diagnosing disease |
WO2021087466A1 (en) * | 2019-10-31 | 2021-05-06 | Research Institute At Nationwide Children's Hospital | Generation of cd38 knock-out primary and expanded human nk cells |
-
2022
- 2022-11-04 WO PCT/JP2022/041228 patent/WO2023080210A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100255472A1 (en) * | 2007-06-04 | 2010-10-07 | The Johns Hopkins University | Biomarkers for prostate cancer |
JP2020513574A (en) * | 2016-11-24 | 2020-05-14 | ヒュベット バイオ, インコーポレイテッドHuvet Bio, Inc. | Composition for diagnosing disease |
JP2019144152A (en) * | 2018-02-22 | 2019-08-29 | 国立研究開発法人国立がん研究センター | Sulfur-containing amino acid depletion therapy for cancer |
WO2021087466A1 (en) * | 2019-10-31 | 2021-05-06 | Research Institute At Nationwide Children's Hospital | Generation of cd38 knock-out primary and expanded human nk cells |
Non-Patent Citations (2)
Title |
---|
SUZUKI RITSURO: "Leukemia and Lymphoma of Natural Killer Cells", JOURNAL OF CLINICAL AND EXPERIMENTAL HEMATOPATHOLOGY, vol. 45, no. 2, 1 January 2005 (2005-01-01), pages 51 - 70, XP093064121, ISSN: 1346-4280, DOI: 10.3960/jslrt.45.51 * |
VENZA MARIO, VISALLI MARIA, BENINATI CONCETTA, BENFATTO SALVATORE, TETI DIANA, VENZA ISABELLA: "miR-92a-3p and MYCBP2 are involved in MS-275-induced and c-myc-mediated TRAIL-sensitivity in melanoma cells", INTERNATIONAL IMMUNOPHARMACOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 40, 1 November 2016 (2016-11-01), NL , pages 235 - 243, XP093064120, ISSN: 1567-5769, DOI: 10.1016/j.intimp.2016.09.004 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schubert et al. | Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1) | |
Ribeiro et al. | STAT5 is essential for IL-7–mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells | |
CA3008289C (en) | Inhibition of cytokine-induced sh2 protein in nk cells | |
Yoshimi et al. | Gene disruption study reveals a nonredundant role for TRIM21/Ro52 in NF-κB-dependent cytokine expression in fibroblasts | |
García-Vílchez et al. | METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer | |
Xiong et al. | Glutamylation of deubiquitinase BAP1 controls self-renewal of hematopoietic stem cells and hematopoiesis | |
US20180318448A1 (en) | Method for determining presence or absence of suffering from malignant lymphoma or leukemia, and agent for treatment and/or prevention of leukemia | |
WO2017117331A1 (en) | Methods for identifying and treating hemoglobinopathies | |
CN106701801B (en) | Detection marker and kit for B lymphoma and leukemia and application of detection marker and kit | |
Noh et al. | Additive effect of Cd73 inhibitor in colorectal cancer treatment with cdk4/6 inhibitor through regulation of Pd-L1 | |
Pan et al. | EHBP1L1 drives immune evasion in renal cell carcinoma through binding and stabilizing JAK1 | |
Jiang et al. | TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer | |
Liao et al. | The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells | |
Joshi et al. | The extreme C-terminus of IRAK2 assures full TRAF6 ubiquitination and optimal TLR signaling | |
WO2023080210A1 (en) | Identification of treatment target in aggressive nk leukemia | |
Yang et al. | Hippo Pathway Activation in Aged Mesenchymal Stem Cells Contributes to the Dysregulation of Hepatic Inflammation in Aged Mice | |
Bach et al. | Premature terminal differentiation protects from deregulated lymphocyte activation by ITK-Syk | |
JP2007282628A (en) | Method for screening anti-cancer agent | |
CN116036285B (en) | Application of substance for inhibiting STAT6 site ubiquitination in regulating macrophage polarization | |
WO2007037538A1 (en) | Therapeutic or diagnostic application of spo11 gene | |
Hong | RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes | |
US20230141417A1 (en) | Methods and compositions for inactivating interleukin-2-inducible t-cell kinase (itk) | |
WO2011029193A1 (en) | Method of treating cancer by inhibiting trim59 expression or activity | |
RU2775674C2 (en) | Immune therapy methods and compositions including modulators of tryptophan metabolic path | |
Goyama et al. | MECOM promotes leukemia progression and inhibits mast cell differentiation through functional competition with GATA2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22890030 Country of ref document: EP Kind code of ref document: A1 |