JPWO2021030630A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021030630A5
JPWO2021030630A5 JP2022509056A JP2022509056A JPWO2021030630A5 JP WO2021030630 A5 JPWO2021030630 A5 JP WO2021030630A5 JP 2022509056 A JP2022509056 A JP 2022509056A JP 2022509056 A JP2022509056 A JP 2022509056A JP WO2021030630 A5 JPWO2021030630 A5 JP WO2021030630A5
Authority
JP
Japan
Prior art keywords
rotational speed
rotor blades
aircraft
blade pitch
speed threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022509056A
Other languages
Japanese (ja)
Other versions
JP2022544540A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/046240 external-priority patent/WO2021030630A2/en
Publication of JP2022544540A publication Critical patent/JP2022544540A/en
Publication of JPWO2021030630A5 publication Critical patent/JPWO2021030630A5/ja
Pending legal-status Critical Current

Links

Claims (18)

前方推力を提供するように構成されたプロップローターと、
ローターアセンブリと、を備え、
前記ローターアセンブリは、
揚力を提供するように構成された複数のローターブレードと、
少なくとも1つの取り付け部材とを含む、上部ローターハブアセンブリと、を備え、
前記各取り付け部材は、
中央セクションと、
複数の前記ローターブレードのうちの2つを前記中央セクションの対向する端部に結合するブレードピッチ調整リンケージであって、前記ローターブレードの回転速度が第1の回転速度閾値よりも遅い間は前記2つのローターブレードを第1のブレードピッチに維持し、前記ローターブレードの回転速度が第1の回転速度閾値よりも大きい第2の回転速度閾値よりも速い間は前記2つのローターブレードを第2のブレードピッチに維持するように構成された、ブレードピッチ調整リンケージと、を備え、
前記ブレードピッチ調整リンケージは、前記ローターブレードの1つを前記中央セクションに結合するガススプリングをそれぞれ含み、前記ガススプリングは、前記ローターブレードの回転速度の増加に関連する遠心力の増加を受けたとき、前記ブレードピッチの増加を引き起こすように構成された、航空機。
a prop rotor configured to provide forward thrust;
a rotor assembly;
The rotor assembly is
a plurality of rotor blades configured to provide lift;
an upper rotor hub assembly including at least one mounting member;
Each of the mounting members
a central section;
A blade pitch adjustment linkage coupling two of the plurality of rotor blades to opposite ends of the central section, wherein the two rotor blades rotate while the rotational speed of the rotor blades is less than a first rotational speed threshold. maintaining one rotor blade at a first blade pitch, and maintaining the two rotor blades at a second blade pitch while the rotational speed of the rotor blades is greater than a second rotational speed threshold greater than the first rotational speed threshold; a blade pitch adjustment linkage configured to maintain pitch;
The blade pitch adjustment linkages each include a gas spring coupling one of the rotor blades to the central section, the gas springs being subjected to an increase in centrifugal force associated with an increase in rotational speed of the rotor blades. , an aircraft configured to cause an increase in said blade pitch.
前記ガススプリングは、前記第1の回転速度閾値よりも低い回転速度の範囲にわたって伸長された位置に留まるように構成されている、請求項1に記載の航空機。 2. The aircraft of claim 1, wherein the gas spring is configured to remain in an extended position over a range of rotational speeds below the first rotational speed threshold. 前記ガススプリングは、前記ローターブレードの回転速度が前記第1の回転速度閾値から前記第2の回転速度閾値まで増加したときに、前記伸長された位置から完全に崩壊される位置まで崩壊するようにさらに構成されている、請求項2に記載の航空機。 The gas spring collapses from the extended position to a fully collapsed position when the rotational speed of the rotor blades increases from the first rotational speed threshold to the second rotational speed threshold. 3. The aircraft of claim 2, further comprising: 前記第1の回転速度閾値は、450RPM以下であり、前記第2の回転速度閾値は、少なくとも550RPMである、請求項1に記載の航空機。 2. The aircraft of claim 1, wherein the first rotational speed threshold is no greater than 450 RPM and the second rotational speed threshold is at least 550 RPM. 前記第2のブレードピッチは正のブレードピッチであり、前記第1のブレードピッチはフラットブレードピッチまたは前記第2のブレードピッチより低い正のブレードピッチである、請求項1に記載の航空機。 2. The aircraft of claim 1, wherein the second blade pitch is a positive blade pitch and the first blade pitch is a flat blade pitch or a positive blade pitch less than the second blade pitch. モーターを介して前記ローターブレードを回転させるように構成された制御回路をさらに含む、請求項1に記載の航空機。 2. The aircraft of claim 1, further comprising a control circuit configured to rotate said rotor blades via a motor. 前記制御回路は、前記航空機が垂直飛行モードまたはホバリング飛行モードで動作している間、前記第2の回転速度閾値よりも速い回転速度で前記ローターブレードを回転させるように構成されている、請求項6に記載の航空機。 4. The control circuit is configured to rotate the rotor blades at a rotational speed greater than the second rotational speed threshold while the aircraft is operating in a vertical flight mode or a hovering flight mode. 6. Aircraft according to 6. 前記制御回路は、前記航空機が前進飛行モードで動作している間、前記第1の回転速度閾値よりも遅い回転速度で前記ローターブレードを回転させるように構成されている、請求項6に記載の航空機。 7. The control circuit of claim 6, wherein the control circuit is configured to rotate the rotor blades at a rotational speed less than the first rotational speed threshold while the aircraft is operating in a forward flight mode. aircraft. 前記制御回路は、前記第1の回転速度閾値と前記第2の回転速度閾値との間の回転速度の中間範囲内で、前記ローターブレードの持続的な回転を防止するように構成されている、請求項6に記載の航空機。 the control circuit is configured to prevent sustained rotation of the rotor blades within an intermediate range of rotational speeds between the first rotational speed threshold and the second rotational speed threshold; 7. An aircraft according to claim 6. 前記モーターは、前記モーターが動力を供給しているときには前記モーターを前記ローターアセンブリに回転可能に結合し、前記モーターが動力を供給していないときには前記ローターアセンブリが自由に回転することを可能にするクラッチ機構またはワンウェイベアリングによって前記ローターアセンブリに結合される、請求項6に記載の航空機。 The motor rotatably couples the motor to the rotor assembly when the motor is powered and allows the rotor assembly to rotate freely when the motor is not powered. 7. The aircraft of claim 6, coupled to said rotor assembly by a clutch mechanism or a one-way bearing. 前記制御回路は、前記モーターが前記第2の回転速度閾値よりも速い回転速度で前記ローターブレードを回転させる垂直飛行モードまたはホバリング飛行モードから、
少なくとも、一つまたは複数の前記プロップローターを作動させて前方推力を提供し、
前記ローターブレードの回転速度が、前記第1の回転速度閾値と前記第2の回転速度閾値との間の中間範囲にある間に、前記ローターブレードの回転速度が前記第1の回転速度閾値よりも低下し、前記ブレードピッチ調整リンケージが前記2つのローターブレードを前記第2のブレードピッチから前記第1のブレードピッチに移動させるように、前記モーターに前記ローターブレードの回転を停止させることによって、
前進飛行モードに移行するように構成されている、請求項6に記載の航空機。
from a vertical flight mode or a hovering flight mode in which the motor rotates the rotor blades at a rotational speed greater than the second rotational speed threshold;
actuating at least one or more of said proprotors to provide forward thrust;
the rotational speed of the rotor blades is greater than the first rotational speed threshold while the rotational speed of the rotor blades is in an intermediate range between the first rotational speed threshold and the second rotational speed threshold; by causing the motor to stop rotating the rotor blades so that the blade pitch adjustment linkage moves the two rotor blades from the second blade pitch to the first blade pitch;
7. The aircraft of claim 6, configured to transition to a forward flight mode.
前記制御回路は、前記ローターアセンブリを垂直位置から、前記前進飛行モードにおける前記ローターブレードの自由回転を容易にする後方の傾斜位置に傾けるようにさらに構成されている、請求項11に記載の航空機。 12. The aircraft of claim 11, wherein the control circuit is further configured to tilt the rotor assembly from a vertical position to a tilted aft position that facilitates free rotation of the rotor blades in the forward flight mode. 前記制御回路は、前記ローターブレードが前記第1の回転速度閾値よりも遅い回転速度で自由回転する前記前進飛行モードから、
少なくとも、一つまたは複数の前記プロップローターを停止して前方推力の供給を停止し、
前記ローターブレードの回転速度が、前記第1の回転速度閾値と前記第2の回転速度閾値との間の中間範囲にある間に、前記ブレードピッチ調整リンケージが前記2つのローターブレードを前記第1のブレードピッチから前記第2のブレードピッチに移動させ、前記ローターブレードの回転速度を前記第2の回転速度閾値よりも上げるように、前記モーターを作動させることによって、
垂直飛行モードまたはホバリング飛行モードに移行するように構成されている、請求項6に記載の航空機。
from the forward flight mode in which the rotor blades are free-rotating at a rotational speed less than the first rotational speed threshold;
stopping at least one or more of said prop rotors from supplying forward thrust;
The blade pitch adjustment linkage moves the two rotor blades to the first position while the rotational speed of the rotor blades is in the intermediate range between the first rotational speed threshold and the second rotational speed threshold. by actuating the motor to move from the blade pitch to the second blade pitch and increase the rotational speed of the rotor blades above the second rotational speed threshold;
7. The aircraft of claim 6, configured to transition to a vertical flight mode or a hovering flight mode.
前記制御回路は、前記垂直飛行モードまたはホバリング飛行モードに移行するときに、前記ローターアセンブリを後方の傾斜位置から垂直位置に傾けるようにさらに構成されている、請求項13に記載の航空機。 14. The aircraft of claim 13, wherein the control circuit is further configured to tilt the rotor assembly from a rearward tilted position to a vertical position when transitioning to the vertical or hovering flight mode. 前記ブレードピッチ調整リンケージは、前記取り付け部材に結合され、前記ローターブレードのブレードピッチを同期させるように構成された少なくとも1つの同期リンケージを含む、請求項1に記載の航空機。 2. The aircraft of claim 1, wherein the blade pitch adjustment linkage includes at least one synchronizing linkage coupled to the mounting member and configured to synchronize blade pitch of the rotor blades. 前記ローターアセンブリは、前記前記中央セクションの対向する端部から延びる内側シリンダーをさらに含み、前記2つのローターブレードはそれぞれ、前記内側シリンダーの1つをスライド式に受け入れる外側シリンダーに結合される、請求項15に記載の航空機。 4. The rotor assembly further comprising an inner cylinder extending from opposite ends of the central section, the two rotor blades each being coupled to an outer cylinder slidingly receiving one of the inner cylinders. 15. Aircraft according to 15. 前記外側シリンダーは、ピン受け入れ開口部を含み、前記内側シリンダーは、トラックを画定する開口部を含み、前記ブレードピッチ調整リンケージは、前記内側シリンダーの開口部を通って延在するピンを含み、前記外側シリンダーが前記内側シリンダーに対して相対的にスライドするとき、前記ピンが前記トラックを通ってスライドし、それによって前記内側シリンダーに対する前記外側シリンダーの相対的な回転を引き起こす、請求項16に記載の航空機。 the outer cylinder includes a pin receiving opening, the inner cylinder includes an opening defining a track, the blade pitch adjustment linkage includes a pin extending through the opening of the inner cylinder, and the 17. The pin of claim 16, wherein when the outer cylinder slides relative to the inner cylinder, the pin slides through the track, thereby causing relative rotation of the outer cylinder with respect to the inner cylinder. aircraft. 前記航空機は、少なくとも4つのローターブレードおよび少なくとも2つの取り付け部材を含み、各々の取り付け部材は、複数のローターブレードのうちの2つの反対側に配置されたローターブレードに結合され、各々の取り付け部材は、少なくとも1つの他の取り付け部材が独立してティータリングすることができるように成形される、請求項1に記載の航空機。 The aircraft includes at least four rotor blades and at least two mounting members, each mounting member coupled to two oppositely disposed rotor blades of the plurality of rotor blades, each mounting member comprising: , wherein the at least one other mounting member is shaped such that it can be teetered independently.
JP2022509056A 2019-08-14 2020-08-13 aircraft Pending JP2022544540A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962886578P 2019-08-14 2019-08-14
US62/886,578 2019-08-14
US201962896257P 2019-09-05 2019-09-05
US62/896,257 2019-09-05
US202063018848P 2020-05-01 2020-05-01
US63/018,848 2020-05-01
PCT/US2020/046240 WO2021030630A2 (en) 2019-08-14 2020-08-13 Aerial vehicle

Publications (2)

Publication Number Publication Date
JP2022544540A JP2022544540A (en) 2022-10-19
JPWO2021030630A5 true JPWO2021030630A5 (en) 2023-07-28

Family

ID=74570261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022509056A Pending JP2022544540A (en) 2019-08-14 2020-08-13 aircraft

Country Status (7)

Country Link
US (3) US11332242B2 (en)
EP (1) EP3999420A4 (en)
JP (1) JP2022544540A (en)
KR (1) KR20220047338A (en)
CA (1) CA3147197A1 (en)
IL (2) IL310129A (en)
WO (1) WO2021030630A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618656B2 (en) * 2017-10-04 2020-04-14 Textron Innovations Inc. Tiltrotor aircraft having interchangeable payload modules
US11453513B2 (en) * 2018-04-26 2022-09-27 Skydio, Inc. Autonomous aerial vehicle hardware configuration
US11851178B2 (en) * 2020-02-14 2023-12-26 The Aerospace Corporation Long range endurance aero platform system
CN113093769A (en) * 2021-03-29 2021-07-09 西北工业大学 Active disturbance rejection control method for perching and falling of fixed-wing unmanned aerial vehicle
CN113562168B (en) * 2021-07-08 2023-06-16 河南星冕机器人科技有限公司 Two-dimensional vector propulsion type triaxial aircraft and control method thereof
US12024307B2 (en) * 2021-10-14 2024-07-02 Textron Innovations Inc. Method and system for regulation of speed and position of a rotor in wing-borne flight
US11673660B1 (en) 2022-05-25 2023-06-13 Beta Air, Llc Systems and devices for parking a propulsor teeter
US20230382524A1 (en) * 2022-05-25 2023-11-30 Beta Air, Llc Systems and devices for parking a propulsor teeter
US20240051681A1 (en) * 2022-08-09 2024-02-15 Beta Air, Llc Methods and systems for landing spot analysis for electric aircraft
US20240059409A1 (en) * 2022-08-17 2024-02-22 Honeywell International Inc. Aircraft and methods of operating the same to increase descent angles thereof
KR20240146180A (en) * 2023-03-28 2024-10-08 서울대학교산학협력단 5 degrees-of-freedom multirotor aerial vehicle and control method
CN117104546B (en) * 2023-10-16 2024-01-05 中国空气动力研究与发展中心计算空气动力研究所 Multi-duct unmanned aerial vehicle and control method

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1370876A (en) * 1918-10-22 1921-03-08 Charles H Caspar Propeller
US1482690A (en) * 1919-02-10 1924-02-05 Evelyn Elizabeth Fairbanks Lan Aeroplane propeller
US1859584A (en) * 1925-11-19 1932-05-24 Autogiro Co Of America Aircraft with rotative wings
US1839347A (en) * 1925-12-05 1932-01-05 Seppeler Eduard Propeller
US1788263A (en) * 1929-04-12 1931-01-06 William S Williams Variable-pitch propeller
US1876634A (en) * 1930-12-08 1932-09-13 Desautels Joseph Romeo Automatically adjustable airplane propeller
US1841497A (en) * 1931-04-14 1932-01-19 Edwin A Parham Automatic variable pitch propeller
US1875998A (en) * 1931-05-22 1932-09-06 Everts Propeller Company Propeller
US1952802A (en) * 1931-05-29 1934-03-27 Bendix Res Comporation Propeller
US2075682A (en) * 1935-03-08 1937-03-30 C L W Aviat Company Ltd Screw propeller
US2163728A (en) * 1935-07-31 1939-06-27 Kay Gyroplanes Ltd Aircraft
US2052454A (en) * 1936-01-04 1936-08-25 Ellwood Isaac Leonard Variable pitch propeller
US2074149A (en) * 1936-05-27 1937-03-16 Joseph H Jacobs Propeller tip centrifugal pitch control
US2275361A (en) * 1937-03-06 1942-03-03 Coiumbia Aircraft Products Inc Adjustable pitch propeller
US2151216A (en) * 1938-04-30 1939-03-21 Autogiro Co Of America Construction of aircraft sustaining rotors
US2282077A (en) * 1940-02-03 1942-05-05 Hamilton K Moore Changeable pitch propeller unit
US2292147A (en) * 1941-06-04 1942-08-04 Miller Francis Propeller
US2417917A (en) * 1944-02-01 1947-03-25 Everel Propeller Corp Variable pitch propeller
US2415421A (en) * 1944-05-13 1947-02-11 Filippis Raymond De Adjustable propeller
US2483912A (en) * 1945-03-03 1949-10-04 United Aircraft Corp Automatic propeller
US2515607A (en) * 1945-08-06 1950-07-18 Loyal K Miller Variable pitch propeller
US2547037A (en) * 1945-11-19 1951-04-03 Ober B Morelock Automatic pitch change propeller
US2545736A (en) * 1946-07-19 1951-03-20 Isacco Vittorio Rotating wing parachute
US2612963A (en) * 1947-05-27 1952-10-07 Dorand Rene Spring-biased autogyro rotor blade
US2663372A (en) * 1948-05-04 1953-12-22 United Aircraft Corp Variable pitch control of helicopter coaxial rotors
US2589826A (en) * 1949-05-26 1952-03-18 Glenn L Martin Co Epicyclic helicopter rotor system
US2978211A (en) * 1955-04-27 1961-04-04 Kaman Aircraft Corp Aerial device having rotor for retarding descent
US2998080A (en) * 1958-07-22 1961-08-29 Jr George H Moore Automatically adjustable propeller
US3105558A (en) * 1961-06-22 1963-10-01 Gen Motors Corp Variable pitch propeller
US3149802A (en) * 1961-09-11 1964-09-22 Voorhis F Wigal Autogiro
US3092186A (en) * 1962-01-04 1963-06-04 James K Maclean Variable pitch propeller mechanism
US3217809A (en) * 1963-02-28 1965-11-16 Kaman Aircraft Corp Rotor blade pitch changing mechanism for rotary wing aircraft
US3232349A (en) * 1964-12-02 1966-02-01 Enstrom Corp Rotor system utilizing centrifugal deflection of non-radial blades
US3790302A (en) * 1972-10-10 1974-02-05 Textron Inc Tail rotor mounting for coning relief
US3957227A (en) * 1975-02-10 1976-05-18 The Boeing Company Rotor pitch control mechanism
US4131391A (en) * 1976-10-04 1978-12-26 Robinson Helicopter Co. Rotor hub and oil seal
US4789305A (en) * 1985-04-26 1988-12-06 Vaughen Jack F Self-feathering rotary wing
US4741672A (en) * 1985-07-08 1988-05-03 Gerald Breuner Collective pitch change system for teter-bar type gyroplane rotary wing aircraft
US5304036A (en) * 1990-12-12 1994-04-19 Sego Tool, Incorporated Autogyro aircraft
US5301900A (en) * 1990-12-12 1994-04-12 Groen Henry J Autogyro aircraft
US5879131A (en) * 1994-04-25 1999-03-09 Arlton; Paul E. Main rotor system for model helicopters
US6158960A (en) * 1997-11-18 2000-12-12 Marsi; Joseph A. Propeller hub with self-adjusting pitch mechanism
US6089501A (en) * 1998-06-22 2000-07-18 Frost; Stanley A. Tandem-rotor gyroplane
US6513752B2 (en) * 2000-05-22 2003-02-04 Cartercopters, L.L.C. Hovering gyro aircraft
US7168656B2 (en) * 2001-02-07 2007-01-30 Council Of Scientific And Industrial Research Lightweight helicopter
US6886777B2 (en) * 2001-02-14 2005-05-03 Airscooter Corporation Coaxial helicopter
CA2430727C (en) * 2003-06-03 2006-12-05 Rotary Air Force Management Inc. A method of controlling pitch on a gyroplane and a gyroplane
US7828525B2 (en) * 2003-08-27 2010-11-09 Bell Helicopter Textron Inc. Soft in-plane tiltrotor hub
GB2409845A (en) * 2004-01-08 2005-07-13 Robert Graham Burrage Tilt-rotor aircraft changeable between vertical lift and forward flight modes
US7510377B1 (en) * 2004-11-16 2009-03-31 Cartercopters, L.L.C. Rotor aircraft tilting hub with reduced drag rotor head and mast
US7677492B1 (en) * 2004-11-16 2010-03-16 Cartercopters, L.L.C. Automatic mechanical control of rotor blade collective pitch
US7448571B1 (en) * 2004-11-16 2008-11-11 Cartercopters, L.L.C. Rotor collective pitch VS Mu to control flapping and mast/rotor tilt to control rotor RPM
FR2916418B1 (en) * 2007-05-22 2009-08-28 Eurocopter France FAST HYBRID HELICOPTER WITH EXTENDABLE HIGH DISTANCE.
US8167233B2 (en) * 2007-12-21 2012-05-01 Avx Aircraft Company Coaxial rotor aircraft
FR2929243B1 (en) * 2008-03-25 2010-04-23 Eurocopter France RAPID HYBRID HELICOPTER WITH EXTENDABLE HIGH DISTANCE
DE102009015804A1 (en) * 2009-04-01 2010-10-07 Otmar Birkner Helicopter, with a rotor and a rear propeller, has a hydraulic control system for the joystick movement to tilt the rotor head
DE102009015805A1 (en) * 2009-04-01 2010-10-07 Otmar Birkner Gyrocopter for carrying passengers or freight has roll axis forming angle of at least four degrees with horizontal when gyrocopter is on ground
DE102009040278B4 (en) * 2009-09-04 2013-08-01 Otmar Birkner gyrocopter
US8540183B2 (en) * 2009-12-12 2013-09-24 Heliplane, Llc Aerovehicle system including plurality of autogyro assemblies
EP2690012A1 (en) * 2012-07-27 2014-01-29 Eurocopter Deutschland GmbH Semi-convertible rotorcraft
EP2690010B1 (en) * 2012-07-27 2014-09-03 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Compound helicopter with tail booms
US20150102175A1 (en) * 2012-11-15 2015-04-16 Aviron Consulting Developmentand Manufacture For Advanced Aviation Fixed winged aircraft with foldable auto-rotation rotor
GB201305349D0 (en) * 2013-03-24 2013-05-08 Fearn Brian Semi-automatic collective pitch rotor head for an autogyro
FR3006292B1 (en) * 2013-05-30 2017-01-27 Eurocopter France ROTARY SAILING GIRAVION WITH A PLURALITY OF PROPELLERS
EP2818407B1 (en) * 2013-06-24 2016-12-21 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotor system of a helicopter
DE102014011441B4 (en) * 2014-08-07 2020-03-19 Autogyro Ag Gyrocopter
US9550567B1 (en) * 2014-10-27 2017-01-24 Amazon Technologies, Inc. In-flight reconfigurable hybrid unmanned aerial vehicle
CN109808877A (en) * 2014-12-26 2019-05-28 深圳智航无人机有限公司 A kind of unmanned plane variable wing and its method
CN105539838A (en) * 2015-12-29 2016-05-04 王伟 Automatic variable-pitch propeller and automatic variable-pitch rotorcraft
CN105539837A (en) * 2015-12-30 2016-05-04 王伟 Propeller capable of changing pitch automatically and rotorcraft capable of changing pitch automatically
US20170355447A1 (en) * 2016-06-10 2017-12-14 Gopro, Inc. Thrust-Dependent Variable Blade Pitch Propeller
FR3055311B1 (en) * 2016-08-30 2018-08-17 Airbus Helicopters GIRAVION PROVIDED WITH A ROTARY VESSEL AND AN ORIENTABLE PROPELLER, AND A METHOD APPLIED BY THIS GIRAVION
DE102016121102B3 (en) * 2016-11-04 2018-05-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Variable offset on the rotor head of a gyrocopter
US10494095B2 (en) * 2017-08-18 2019-12-03 Textron Innovations Inc. Hybrid powered unmanned aircraft system
US11001374B2 (en) * 2017-09-14 2021-05-11 The Boeing Company System and method for vertical take-off in an autogyro
CN110030154B (en) * 2017-09-25 2023-08-01 青岛兰道尔航空科技有限公司 Elastic movement steering system
WO2019056892A1 (en) * 2017-09-25 2019-03-28 Qingdao Randall Aerodynamic Engineering, Llc Pitch control system
DE202017106992U1 (en) * 2017-11-17 2017-11-30 SCHOPPE DEVELOPMENT UG (haftungsbeschränkt) gyrocopter
EP3495265B1 (en) * 2017-12-05 2019-11-27 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A rotor assembly for a rotorcraft with torque controlled collective pitch
DE102018104192A1 (en) * 2018-02-23 2019-08-29 Autogyro Ag gyrocopter
FR3080605B1 (en) * 2018-04-26 2020-05-29 Airbus Helicopters GIRAVION PROVIDED WITH A TURNING WING AND AT LEAST TWO PROPELLERS AND METHOD APPLIED BY THIS GIRAVION
US11174016B2 (en) * 2018-05-03 2021-11-16 Jaunt Air Mobility, Llc Compound rotorcraft with propeller
US20200180755A1 (en) * 2018-12-11 2020-06-11 Airbus Helicopters Hybrid helicopter including inclined propulsion propellers
CA3077774C (en) * 2019-04-09 2023-02-07 Ft Holdings Inc. Negative hinge offset rotor head for a helicopter
EP3736211B1 (en) * 2019-05-07 2022-08-31 The Boeing Company A system and method for enhanced altitude control of an autogyro
FR3103174B1 (en) * 2019-11-19 2021-12-03 De Perera Sylvain Roldan DRONE
US20210380221A1 (en) * 2020-06-04 2021-12-09 Bell Textron Inc. Continuous variable pitch rotor system

Similar Documents

Publication Publication Date Title
JPWO2021030630A5 (en)
US2256635A (en) Aircraft and means for stabilizing the same
KR101125870B1 (en) The tiltrotor aircraft
US7674091B2 (en) Rotor blade pitch control
US8322647B2 (en) High torque aerial lift (HTAL)
US3409248A (en) Rotary winged aircraft with drag propelling rotors and controls
JPH09512515A (en) Main rotor system for helicopter
CN109515704B (en) Ducted plume rotorcraft based on cycloidal propeller technology
EP3495265B1 (en) A rotor assembly for a rotorcraft with torque controlled collective pitch
US10479482B1 (en) Propeller with passive variable pitch and rotatable base
US20150246725A1 (en) Propulsive tail propeller assembly or tail duct fan assembly with cyclic and collective control and/or a method of thrust vectoring for aircraft maneuvering and for helicoptor single rotor head anti torque
US3877836A (en) Horizontal windmill
CN109533320B (en) Helicopter cone type main rotor parallel driving device
BR112015020873B1 (en) VARIABLE PITCH BLADE AND TURBOMACHINE ASSEMBLY
US8911209B2 (en) Helicopter, rotor thereof, and control method thereof
US4092084A (en) Rotor for an autogiro
CN102869570A (en) Counterweight-based device for controlling the orientation of fan blades of a turboprop engine
JP2022054657A (en) Vertical take-off and landing aircraft and airfoil device
CN209581870U (en) Duct plume rotor craft based on cycloid propeller technology
CN210027888U (en) Torque balance transmission assembly for helicopter rotor shaft and helicopter
CN108438209A (en) Vertical axis propeller eccentric circle control mechanism
KR20050034486A (en) A vertical takeoff and landing aircraft
KR102558225B1 (en) Automatic feathering apparatus for propeller driven aircraft
AU2020103061A4 (en) Propeller for tilt-rotor aircraft
US2684212A (en) Disk rotor with retracting blades for convertible aircraft