JPWO2020235635A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020235635A5
JPWO2020235635A5 JP2021520845A JP2021520845A JPWO2020235635A5 JP WO2020235635 A5 JPWO2020235635 A5 JP WO2020235635A5 JP 2021520845 A JP2021520845 A JP 2021520845A JP 2021520845 A JP2021520845 A JP 2021520845A JP WO2020235635 A5 JPWO2020235635 A5 JP WO2020235635A5
Authority
JP
Japan
Prior art keywords
region
nucleic acid
seq
acid aptamer
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021520845A
Other languages
Japanese (ja)
Other versions
JPWO2020235635A1 (en
JP7477886B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/020119 external-priority patent/WO2020235635A1/en
Publication of JPWO2020235635A1 publication Critical patent/JPWO2020235635A1/ja
Publication of JPWO2020235635A5 publication Critical patent/JPWO2020235635A5/ja
Application granted granted Critical
Publication of JP7477886B2 publication Critical patent/JP7477886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

【0002】
[0005]
特許文献1:米国特許第6011020号明細書
発明の概要
発明が解決しようとする課題
[0006]
本発明は、上記事情に鑑みてなされたものであって、細胞内の任意の標的分子に対する結合能及び細胞膜透過能を時空間的に制御可能である核酸アプタマーを提供する。
課題を解決するための手段
[0007]
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、グアニンリッチなDNA分子が陽イオンに応答し四重鎖構造を形成することに着目し、細胞内の任意の標的分子に対して高い特異性及び選択性を有し、且つ陽イオン刺激により細胞内の任意の標的分子への結合能及び細胞膜透過能を時空間的に制御できる核酸アプタマーを見出し、本発明を完成するに至った。
[0008]
すなわち、本発明は、以下の態様を含む。
本発明の第1態様に係る方法は、陽イオン存在下でグアニン四重鎖構造を形成し、細胞膜透過能を有する、核酸アプタマーを、陽イオン存在下で、導入剤を使用せずに細胞と接触させることを含む、前記核酸アプタマーの細胞膜透過方法であって、
前記核酸アプタマーが、
グアニン四重鎖構造を形成する第1領域、第2領域、第3領域及び第4領域と、
前記第1領域、前記第2領域、前記第3領域及び前記第4領域のそれぞれの間に連結領域A、連結領域B及び連結領域Cと、を有し、
前記第1領域は配列番号1に示される塩基配列からなり、
前記第2領域、前記第3領域及び前記第4領域はそれぞれ配列番号2に示される塩基配列からなり、
前記連結領域A、前記連結領域B及び前記連結領域Cからなる群より選ばれる少なくとも1つの領域は、陽イオン存在下で標的分子への特異的な結合能を有する。
0002.
[0005]
Patent Document 1: US Pat. No. 6,011,020 Outline of the invention Problem to be solved by the invention [0006]
The present invention has been made in view of the above circumstances, and provides a nucleic acid aptamer capable of spatiotemporally controlling the ability to bind to an arbitrary target molecule in a cell and the ability to permeate a cell membrane.
Means for Solving Problems [0007]
As a result of diligent research to achieve the above objectives, the present inventors focused on the fact that guanine-rich DNA molecules respond to cations to form a quadruplex structure, and used them as arbitrary target molecules in cells. To complete the present invention, a nucleic acid aptamer having high specificity and selectivity and capable of spatiotemporally controlling the ability to bind to an arbitrary target molecule in a cell and the ability to permeate a cell membrane by cation stimulation has been found. I arrived.
[0008]
That is, the present invention includes the following aspects.
In the method according to the first aspect of the present invention, a nucleic acid aptamer that forms a guanine quadruplex structure in the presence of cations and has cell membrane permeability can be used with cells in the presence of cations without using an introducer. A method for permeating the cell membrane of the nucleic acid aptamer, which comprises contacting the nucleic acid aptamer.
The nucleic acid aptamer
The first region, the second region, the third region, and the fourth region forming the guanine quadruple chain structure,
A connecting region A, a connecting region B, and a connecting region C are provided between the first region, the second region, the third region, and the fourth region, respectively.
The first region consists of the base sequence shown in SEQ ID NO: 1.
The second region, the third region, and the fourth region each consist of the base sequence shown in SEQ ID NO: 2.
At least one region selected from the group consisting of the linking region A, the linking region B, and the linking region C has a specific binding ability to a target molecule in the presence of a cation.

【0003】
前記陽イオンが特定の種類の陽イオンであってもよい。
上記第1態様に係る方法において、前記核酸アプタマーは、前記第4領域の下流に、3’末端付加配列を更に有し、前記3’末端付加配列は、配列番号3に示される塩基配列からなってもよい。
上記第1態様に係る方法において、前記核酸アプタマーは、配列番号4に示される塩基配列からなるポリヌクレオチドを含んでもよい。
上記第1態様に係る方法において、前記核酸アプタマーは、配列番号5~7のいずれかに示される塩基配列からなるポリヌクレオチドを含んでもよい。
本発明の第2態様に係る核酸アプタマーは、陽イオン存在下でグアニン四重鎖構造を形成し、細胞膜透過能を有する、核酸アプタマーであって、
グアニン四重鎖構造を形成する第1領域、第2領域、第3領域及び第4領域と、
前記第1領域、前記第2領域、前記第3領域及び前記第4領域のそれぞれの間に連結領域A、連結領域B及び連結領域Cと、を有し、
前記第1領域は配列番号1に示される塩基配列からなり、
前記第2領域、前記第3領域及び前記第4領域はそれぞれ配列番号2に示される塩基配列からなり、
前記連結領域A、前記連結領域B及び前記連結領域Cからなる群より選ばれる少なくとも1つの領域は、陽イオン存在下で標的分子への特異的な結合能を有し、
配列番号5~7のいずれかに示される塩基配列からなるポリヌクレオチドを含む。
発明の効果
[0009]
上記態様の核酸アプタマーによれば、細胞内の任意の標的分子に対する結合能及び細胞膜透過能を時空間的に制御可能である核酸アプタマーを提供することができる。
図面の簡単な説明
[0010]
[図1]グアニン四重鎖構造の分類型を示す図である。
[図2A]本発明の一実施形態に係る核酸アプタマーを模式的に示す図である。
[図2B]本発明の他の実施形態に係る核酸アプタマーを模式的に示す図である。
[図3]実施例1における各DNAアプタマーの塩基配列を模式的に示す図である。
[図4]実施例1における各DNAアプタマーによるPPM1Dの阻害曲線を示すグラフである。
[図5]実施例1における異なる濃度のカリウムイオン存在下での各DNAアプタマーの円偏光二色性(Circular Dichroism;CD)スペクトルを示すグラフである。
[図6]図5に示すCDスペクトルにおけるピーク波長(M1D-Q5F:267nm、M1D-Q5M及びM1D-Q5:265nm)でのカリウムイオンの濃度の違いによる変化を解析したグラフである。
[図7]実施例1におけるM1D-Q5F又はM1D-Q5MをAuto-panetration法で投与したMCF7細胞でのp53及びβ-アクチンのタンパク質発現量をウエスタンブロッティング法で解析した結果を示す画像である。
[図8]図7に示すバンドのシグナルを定量化したグラフである。
0003
The cation may be a specific type of cation.
In the method according to the first aspect, the nucleic acid aptamer further has a 3'end-end addition sequence downstream of the fourth region, and the 3'end-end addition sequence comprises the base sequence shown in SEQ ID NO: 3. You may.
In the method according to the first aspect, the nucleic acid aptamer may contain a polynucleotide consisting of the base sequence shown in SEQ ID NO: 4.
In the method according to the first aspect, the nucleic acid aptamer may contain a polynucleotide consisting of the base sequence shown in any of SEQ ID NOs: 5 to 7.
The nucleic acid aptamer according to the second aspect of the present invention is a nucleic acid aptamer that forms a guanine quadruplex structure in the presence of cations and has a cell membrane penetrating ability.
The first region, the second region, the third region, and the fourth region forming the guanine quadruple chain structure,
A connecting region A, a connecting region B, and a connecting region C are provided between the first region, the second region, the third region, and the fourth region, respectively.
The first region consists of the base sequence shown in SEQ ID NO: 1.
The second region, the third region, and the fourth region each consist of the base sequence shown in SEQ ID NO: 2.
At least one region selected from the group consisting of the linking region A, the linking region B, and the linking region C has a specific binding ability to a target molecule in the presence of a cation.
It contains a polynucleotide consisting of the base sequence shown in any of SEQ ID NOs: 5 to 7.
Effect of the invention [0009]
According to the nucleic acid aptamer of the above aspect, it is possible to provide a nucleic acid aptamer capable of spatiotemporally controlling the binding ability and the cell membrane permeation ability to any target molecule in the cell.
Brief Description of Drawings [0010]
FIG. 1 is a diagram showing a classification type of a guanine quadruple chain structure.
FIG. 2A is a diagram schematically showing a nucleic acid aptamer according to an embodiment of the present invention.
FIG. 2B is a diagram schematically showing a nucleic acid aptamer according to another embodiment of the present invention.
FIG. 3 is a diagram schematically showing the base sequence of each DNA aptamer in Example 1.
FIG. 4 is a graph showing the inhibition curve of PPM1D by each DNA aptamer in Example 1.
FIG. 5 is a graph showing Circular Dichroism (CD) spectra of each DNA aptamer in the presence of different concentrations of potassium ions in Example 1.
FIG. 6 is a graph analyzed for changes in potassium ion concentration at peak wavelengths (M1D-Q5F: 267 nm, M1D-Q5M and M1D-Q5: 265 nm) in the CD spectrum shown in FIG.
FIG. 7 is an image showing the results of analysis of p53 and β-actin protein expression levels in MCF7 cells administered with M1D-Q5F or M1D-Q5M by the Auto-panetration method in Example 1 by Western blotting.
FIG. 8 is a graph quantifying the signal of the band shown in FIG. 7.

Claims (6)

陽イオン存在下でグアニン四重鎖構造を形成し、細胞膜透過能を有する、核酸アプタマーを、陽イオン存在下で、導入剤を使用せずに細胞と接触させることを含む、前記核酸アプタマーの細胞膜透過方法であって、
前記核酸アプタマーが、
グアニン四重鎖構造を形成する第1領域、第2領域、第3領域及び第4領域と、
前記第1領域、前記第2領域、前記第3領域及び前記第4領域のそれぞれの間に連結領域A、連結領域B及び連結領域Cと、を有し、
前記第1領域は配列番号1に示される塩基配列からなり、
前記第2領域、前記第3領域及び前記第4領域はそれぞれ配列番号2に示される塩基配列からなり、
前記連結領域A、前記連結領域B及び前記連結領域Cからなる群より選ばれる少なくとも1つの領域は、陽イオン存在下で標的分子への特異的な結合能を有する、方法。
The cell membrane of the nucleic acid aptamer, which comprises contacting a nucleic acid aptamer, which forms a guanine quadruplex structure in the presence of a cation and has cell membrane permeability, with a cell in the presence of a cation without the use of a introducer. It is a transmission method,
The nucleic acid aptamer
The first region, the second region, the third region, and the fourth region forming the guanine quadruple chain structure,
A connecting region A, a connecting region B, and a connecting region C are provided between the first region, the second region, the third region, and the fourth region, respectively.
The first region consists of the base sequence shown in SEQ ID NO: 1.
The second region, the third region, and the fourth region each consist of the base sequence shown in SEQ ID NO: 2.
A method in which at least one region selected from the group consisting of the connection region A, the connection region B and the connection region C has a specific binding ability to a target molecule in the presence of a cation.
前記陽イオンが特定の種類の陽イオンである、請求項1に記載の方法。The method of claim 1, wherein the cation is a particular type of cation. 前記核酸アプタマーは、前記第4領域の下流に、3’末端付加配列を更に有し、
前記3’末端付加配列は、配列番号3に示される塩基配列からなる、請求項1又は2に記載の方法。
The nucleic acid aptamer further has a 3'end addition sequence downstream of the fourth region.
The method according to claim 1 or 2, wherein the 3'end addition sequence comprises the base sequence shown in SEQ ID NO: 3.
前記核酸アプタマーは、配列番号4に示される塩基配列からなるポリヌクレオチドを含む、請求項1~3のいずれか一項に記載の方法。The method according to any one of claims 1 to 3, wherein the nucleic acid aptamer contains a polynucleotide consisting of the base sequence shown in SEQ ID NO: 4. 前記核酸アプタマーは、配列番号5~7のいずれかに示される塩基配列からなるポリヌクレオチドを含む、請求項1~4のいずれか一項に記載の方法。The method according to any one of claims 1 to 4, wherein the nucleic acid aptamer contains a polynucleotide consisting of the nucleotide sequence set forth in any of SEQ ID NOs: 5 to 7. 陽イオン存在下でグアニン四重鎖構造を形成し、細胞膜透過能を有する、核酸アプタマーであって、
グアニン四重鎖構造を形成する第1領域、第2領域、第3領域及び第4領域と、
前記第1領域、前記第2領域、前記第3領域及び前記第4領域のそれぞれの間に連結領域A、連結領域B及び連結領域Cと、を有し、
前記第1領域は配列番号1に示される塩基配列からなり、
前記第2領域、前記第3領域及び前記第4領域はそれぞれ配列番号2に示される塩基配列からなり、
前記連結領域A、前記連結領域B及び前記連結領域Cからなる群より選ばれる少なくとも1つの領域は、陽イオン存在下で標的分子への特異的な結合能を有し、
配列番号5~7のいずれかに示される塩基配列からなるポリヌクレオチドを含む、核酸アプタマー。
A nucleic acid aptamer that forms a guanine quadruple chain structure in the presence of cations and has cell membrane permeability.
The first region, the second region, the third region, and the fourth region forming the guanine quadruple chain structure,
A connecting region A, a connecting region B, and a connecting region C are provided between the first region, the second region, the third region, and the fourth region, respectively.
The first region consists of the base sequence shown in SEQ ID NO: 1.
The second region, the third region, and the fourth region each consist of the base sequence shown in SEQ ID NO: 2.
At least one region selected from the group consisting of the linking region A, the linking region B, and the linking region C has a specific binding ability to a target molecule in the presence of a cation.
A nucleic acid aptamer comprising a polynucleotide consisting of the nucleotide sequence set forth in any of SEQ ID NOs: 5-7.
JP2021520845A 2019-05-22 2020-05-21 Nucleic acid aptamers Active JP7477886B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019096035 2019-05-22
JP2019096035 2019-05-22
PCT/JP2020/020119 WO2020235635A1 (en) 2019-05-22 2020-05-21 Nucleic acid aptamer

Publications (3)

Publication Number Publication Date
JPWO2020235635A1 JPWO2020235635A1 (en) 2020-11-26
JPWO2020235635A5 true JPWO2020235635A5 (en) 2022-05-17
JP7477886B2 JP7477886B2 (en) 2024-05-02

Family

ID=73458818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021520845A Active JP7477886B2 (en) 2019-05-22 2020-05-21 Nucleic acid aptamers

Country Status (2)

Country Link
JP (1) JP7477886B2 (en)
WO (1) WO2020235635A1 (en)

Similar Documents

Publication Publication Date Title
Kohlberger et al. SELEX: Critical factors and optimization strategies for successful aptamer selection
Wang et al. Particle display: a quantitative screening method for generating high‐affinity aptamers
US11319579B2 (en) Method of amplifying circular DNA
JP2005533646A5 (en)
JP2008502332A5 (en)
JP2010178744A5 (en)
JP2009519705A5 (en)
WO2007021944A3 (en) In vitro recombination method
Wessels et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq
CN110730822A (en) Method for identifying compounds
Lichtor et al. Side chain determinants of biopolymer function during selection and replication
JPWO2020235635A5 (en)
Sandberg et al. Thiophilic interaction chromatography for supercoiled plasmid DNA purification
Preece et al. ‘Mini’U6 Pol III promoter exhibits nucleosome redundancy and supports multiplexed coupling of CRISPR/Cas9 effects
US20220170007A1 (en) Methods and Uses of Introducing Mutations into Genetic Material for Genome Assembly
Schachermeyer et al. Aptamer–protein binding detected by asymmetric flow field flow fractionation
El-Osta et al. Analysis of chromatin-immunopurified MeCP2-associated fragments
KR101656232B1 (en) SINGLE STRANDED DNA APTAMERS SPECIFICALLY BINDING TO E. coli O157:H7 AND PRODUCTION METHOD THEREOF
Alper From the bioweapons trenches, new tools for battling microbes
AU1477299A (en) Selective technique for rapid identification of proteins and genes and uses thereof
JP2004525618A5 (en)
JP4482517B2 (en) Purification method of target substances using silver nanoparticles
Taniguchi et al. Multiple site-directed and saturation mutagenesis by the patch cloning method
Wakimoto et al. Isolation of Single‐Stranded DNA
WO2020094457A1 (en) Liquid sample workflow for nanopore sequencing