JPWO2020225533A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020225533A5
JPWO2020225533A5 JP2022526527A JP2022526527A JPWO2020225533A5 JP WO2020225533 A5 JPWO2020225533 A5 JP WO2020225533A5 JP 2022526527 A JP2022526527 A JP 2022526527A JP 2022526527 A JP2022526527 A JP 2022526527A JP WO2020225533 A5 JPWO2020225533 A5 JP WO2020225533A5
Authority
JP
Japan
Prior art keywords
component
power function
power
grid
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022526527A
Other languages
Japanese (ja)
Other versions
JP2022538504A (en
Publication date
Priority claimed from GBGB1906325.4A external-priority patent/GB201906325D0/en
Application filed filed Critical
Publication of JP2022538504A publication Critical patent/JP2022538504A/en
Publication of JPWO2020225533A5 publication Critical patent/JPWO2020225533A5/ja
Pending legal-status Critical Current

Links

Claims (18)

電力供給網に接続される構成要素の動作を制御する方法であって、前記構成要素は内部にエネルギーを貯蔵することが可能であり、且つ2つの個別の電力レベルで動作可能であるタイプの発電機または負荷のいずれかであり、前記方法は、
(a)ある期間にわたって、前記構成要素を動作させるステップであって、前記期間内で、基準電力関数B(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調整を行う、動作させるステップと、
(b)同時に、さらに、高速動作電力関数F(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行うように、前記期間にわたって、前記構成要素を動作させるステップであって、前記高速動作電力関数F(t)は前記基準値電力関数に重ねられる、動作させるステップと、を含み、
前記基準値電力関数B(t)は低速動作電力関数D(t)及び前記高速動作電力関数F(t)の過去値の両方から導出され、前記低速動作電力関数D(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行う場合、前記構成要素は、前記供給網の現行の電気料金の変動または前記供給網の電力供給から直接もしくは間接的に導出できる値の変動から経済的な利益を得るだろう、また、
前記高速動作電力関数F(t)に従って前記構成要素と前記供給網との間でエネルギーを伝送する速度に行われる調節は、例えば、前記電力供給網を通じる発電量と消費電力との不均衡に応答して対処する調節であり、
前記構成要素は、前記不均衡に応答するサービスを提供するように一緒に動作する構成要素のグループの1つであり、前記サービスの役割は、各構成要素が高確率で前記サービスだけを断続的に提供するように、前記グループの周りに分配される、方法。
A method of controlling the operation of a component connected to a power grid, said component being capable of storing energy internally and being operable on two separate power levels. is either a generator or load of
(a) operating the component for a period of time, during which the rate at which energy is transferred between the component and the grid according to a reference power function B(t); adjusting and operating;
(b) at the same time, further controlling said component over said period of time to adjust the rate at which energy is transferred between said component and said grid according to a fast operating power function F(t); operating, wherein the fast operating power function F(t) is superimposed on the reference value power function;
The reference value power function B(t) is derived from both the low speed power function D(t) and the past values of the high speed power function F(t) , and according to the low speed power function D(t), the configuration When adjusting the rate at which energy is transferred between an element and said grid, said component can derive directly or indirectly from the current electricity tariff fluctuations of said grid or from the power supply of said grid. would benefit economically from fluctuations in value, and
Adjustments made to the rate of energy transfer between the component and the grid according to the fast operating power function F(t) may, for example, be due to imbalances between power generation and consumption through the grid. is a responsive and coping regulation,
Said component is one of a group of components working together to provide a service responsive to said imbalance, and said service role is such that each component intermittently provides only said service with a high probability. distributed around said group to provide for.
前記構成要素は、「オフ」または「オン」のいずれかであり、ひいては、2つの電力レベル(0及びC)だけで動作可能である2値素子である、請求項1に記載の方法。 2. The method of claim 1, wherein the component is either "off" or "on" and thus is a binary element operable at only two power levels (0 and C D ). 前記期間は連続する一連の決定期間を含み、決定期間 k=1~Nごとに、前記決定期間にわたる前記低速動作電力関数D(t)の平均値Dの決定に続いて、前記基準値電力関数B(t)は複数のステップを使用して導出され、前記複数のステップは、
(a)前記決定期間Tを連続する一連の部分区間に分割するステップと、
(b)部分区間期間s(m=1~M)のそれぞれで、前記部分区間期間sの開始点において、前記構成要素は網路不均衡に応答しないステップであって、
(i)前記部分区間期間の前記開始点の前に、前記構成要素と前記供給網との間の平均合計電力伝送量Pを決定することと、
(ii)前記部分区間の前に、ステップ(b)の(i)で決定された前記平均合計電力伝送量Pを、前記決定期間にわたる前記低速動作電力関数D(t)の前記平均値Dと比較することと、
(iii)P>Dの場合、前記部分区間で前記基準値電力関数B(t)を前記2つの個別の電力レベルのうち低い方のレベルに設定し、P<Dの場合、前記部分区間で前記基準値電力関数B(t)を前記2つの個別の電力レベルのうち高い方のレベルに設定することと、を行う、応答しないステップと、
を含む、請求項1又は2に記載の方法。
said time period comprises a succession of decision periods, wherein for each decision period T k ( k=1 to N ) , determining an average value D k of said slow operating power function D(t) over said decision period, The baseline power function B(t) is derived using a plurality of steps, the steps comprising:
(a) dividing the decision period Tk into a series of successive sub-intervals;
(b) at each sub-interval period s m (m=1 to M), at the beginning of said sub-interval period s m , said component does not respond to network imbalance;
(i) prior to said starting point of said subinterval period, determining an average total power transfer Pk between said component and said grid;
(ii) before said sub-interval, said average total power transfer Pk determined in (i) of step (b), said average value D of said slow operating power function D(t) over said determined period; comparing with k ;
(iii) if P k >D k , then in said sub-intervals setting said reference power function B(t) to the lower of said two discrete power levels , and if P k <D k : setting the reference power function B(t) to the higher of the two discrete power levels in the subintervals;
3. The method of claim 1 or 2 , comprising
前記部分区間期間sの前記開始点において、前記構成要素が網路不均衡に応答する場合、前記部分区間期間sの前記基準値電力関数B(t)は、直前の部分区間期間m-1の前記基準値電力関数B(t)と同じ値に設定される、請求項に記載の方法。 At the starting point of the sub-interval period s m , if the component responds to network imbalance , the reference power function B(t) for the sub-interval period s m is 4. The method of claim 3 , set to the same value as the reference power function B(t) of -1 . 電力供給網に接続される構成要素を動作させる方法であって、前記方法は、電力関数P(t)に従って、前記構成要素と前記電力供給網との間でエネルギーを伝送する速度を調節することを含み、前記電力関数は2つの成分(高速動作電力関数F(t)及び基準値電力関数B(t))を含み、前記基準値電力関数B(t)は以下のステップによって導出され、前記ステップは、
(a)決定期間Tにわたって、低速動作電力関数D(t)の平均値Dを導出するステップと、
(b)前記決定期間Tを連続する一連の部分区間期間(m=1~M)に分割するステップと、
(c)前記部分区間期間s(m=1~M)のそれぞれで、
(i)前記部分区間期間sの開始点においてF(t)≠0の場合、前記部分区間で前記B(t)の値を不変のままにし(B=Bm-1)、そうでなければ、
(ii)前記決定期間Tの範囲内で及び前記部分区間期間sの前記開始点の前に、前記構成要素と前記供給網との間の平均合計電力伝送量Pを決定することと、
(iii)前記部分区間期間の前に、ステップ(c)の(ii)で決定された前記平均合計電力伝送量Pを、前記決定期間にわたる前記低速動作電力関数D(t)の前記平均値Dと比較することと、
(iv)P>Dの場合、前記部分区間で前記基準値電力関数B最小電力に設定し、P<Dの場合、前記部分区間で前記基準値電力関数Bを最大電力Cに設定し、そうでなければ、前記部分区間で前記基準値電力関数を不変のままにする(B=Bm-1)ステップと、
を含む、方法。
A method of operating a component connected to a power grid, said method comprising adjusting a rate of transferring energy between said component and said power grid according to a power function P(t). wherein said power function comprises two components (a fast operating power function F(t) and a reference value power function B(t)), said reference value power function B(t) being derived by the following steps, said The step is
(a) deriving an average value Dk of the slow operating power function D(t) over a determined period Tk ;
(b) dividing the decision period T k into a series of successive sub-interval periods s m (m=1 to M);
(c) at each of said sub-interval periods s m (m=1 to M),
(i) if F(t)≠0 at the beginning of said subinterval period s m , then leave the value of B(t) unchanged during said subinterval (B m =B m−1 ), so if not
(ii) determining an average total power transfer Pk between the component and the grid within the determination period Tk and prior to the start of the subinterval period sm ; ,
(iii) prior to said sub-interval period s m , multiplying said average total power transfer Pk determined in (ii) of step (c) to said comparing with the mean value D k ;
(iv) if P k >D k , set the reference power function B m to the minimum power in the sub-interval; if P k <D k , set the reference power function B m to the maximum power in the sub-interval; setting the power to C D , otherwise leaving the reference value power function unchanged in the subinterval (B m =B m−1 );
A method, including
電力供給網に接続される非バッテリー構成要素の動作を制御する方法であって、前記構成要素は内部にエネルギーを貯蔵することが可能であるタイプの発電機または負荷のいずれかであり、前記方法は、
(a)内部に貯蔵されたエネルギー貯蔵量を示す前記構成要素の物理パラメータを監視するステップと、
(b)代理変数φ(0≦φ≦1)を前記測定された物理パラメータから導出するステップであって、前記代理変数φは、いずれかの時点で前記エネルギー貯蔵量に保持される貯蔵エネルギーのわずかな量を表す、導出するステップと、
(c)前記代理変数φが上限界値と下限界値との間の値を有する場合、低速動作電力関数D(t)に従って、前記構成要素の動作を制御するステップであって、前記低速動作電力関数D(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行う場合、前記構成要素は、前記供給網の現行の電気料金の変動または前記供給網の電力供給から直接もしくは間接的に導出できる値の変動から経済的な利益を得るだろう、制御するステップと、
(d)前記代理変数φが前記上限界値または前記下限界値の範囲外にある値を有する場合、前記パラメータを前記上限界値と前記下限界値との間の値に戻すことに従う動作電力で前記構成要素を動作させるステップと、
を含む、方法。
1. A method of controlling the operation of a non-battery component connected to a power grid, said component being either a generator or a load of the type capable of storing energy therein, said method teeth,
(a) monitoring a physical parameter of said component indicative of the amount of energy stored therein;
(b) deriving a proxy variable φ (0≦φ≦1) from the measured physical parameter, wherein the proxy variable φ is the amount of stored energy held in the energy store at any point in time; a step of deriving representing a nominal quantity;
(c) controlling operation of the component according to a low speed operation power function D(t) when the proxy variable φ has a value between an upper limit value and a lower limit value, wherein the low speed operation; When adjusting the rate of transferring energy between said component and said grid according to the power function D (t), said component is subject to fluctuations in the current electricity tariff of said grid or a controlling step that will economically benefit from variations in values that can be derived directly or indirectly from the power supply;
(d) operating power according to returning said parameter to a value between said upper limit value and said lower limit value when said proxy variable φ has a value outside said upper limit value or said lower limit value; operating the component at
A method, including
前記方法は、それぞれ、前記構成要素内に貯蔵された前記エネルギー貯蔵量を示す少なくとも2つのパラメータを監視するステップを含み、前記少なくとも2つのパラメータのそれぞれを使用して、各々の代理変数を導出し、全ての代理変数に関して、構成要素動作の前記限界値が定義され、前記全ての代理変数は、前記各々の代理変数の積として前記構成要素のために導出される、請求項に記載の方法。 The method includes monitoring at least two parameters each indicative of the energy reserve stored in the component, and using each of the at least two parameters to derive a respective proxy variable. 7. The method of claim 6 , wherein said bounds of component behavior are defined for all surrogates, and said all surrogates are derived for said components as the product of said respective surrogates. . 電力供給網に接続される構成要素の動作を制御する方法であって、前記構成要素は内部にエネルギーを貯蔵することが可能であるタイプの発電機または負荷のいずれかであり、前記方法は、
(a)内部に貯蔵されたエネルギー貯蔵量を示す前記構成要素の物理パラメータを監視するステップと、
(b)請求項1~のいずれか1項に記載の方法に従って、前記パラメータが上限界値と下限界値との間の値を有する場合、前記構成要素の動作を制御するステップと、
(c)前記パラメータが前記上限界値または前記下限界値の範囲外にある値を有する場合、前記パラメータを前記上限界値と前記下限界値との間の値に戻すことに従う動作電力で前記構成要素を動作させるステップと、
を含む、方法。
1. A method of controlling the operation of a component connected to an electrical power grid, said component being either a generator or a load of the type capable of storing energy therein, said method comprising the steps of:
(a) monitoring a physical parameter of said component indicative of the amount of energy stored therein;
(b) controlling operation of said component when said parameter has a value between an upper limit value and a lower limit value according to the method of any one of claims 1-5 ;
(c) if said parameter has a value outside said upper limit value or said lower limit value, said operating power according to returning said parameter to a value between said upper limit value and said lower limit value; operating the component;
A method, including
代理変数φ(0≦φ≦1)は前記構成要素のために導出され、前記代理変数は、いずれかの時点で前記エネルギー貯蔵量に保持される前記貯蔵エネルギーのわずかな量を表し、前記測定された物理パラメータから導出され、それによって、構成要素動作の限界値は前記代理変数に関して定義される、請求項に記載の方法。 A proxy variable φ (0≤φ≤1) is derived for said component, said proxy variable representing the fractional amount of said stored energy held in said energy storage at any point in time, said measurement 9. The method of claim 8 , wherein limits for component operation are defined with respect to said proxy variables derived from physical parameters determined by said parameters. 前記構成要素は発電機である、請求項1~のいずれかに記載の方法。 A method according to any preceding claim, wherein said component is a generator . 前記構成要素は負荷である、請求項1~のいずれか1項に記載の方法。 A method according to any preceding claim, wherein said component is a load. 電力供給網(18)に接続される構成要素(14)の動作を制御するためのシステムであって、前記構成要素(14)は内部にエネルギーを貯蔵することが可能であり、且つ2つの個別の電力レベルで動作可能であるタイプの発電機または負荷のいずれかであり、前記システムは、
前記構成要素(14)の動作の直接制御を働かせ、処理パラメータを監視するように構成される工業プロセス制御器(20)と、
低速動作電力関数D(t)を導出するように構成されるセントラル需要サーバー(30)であって、前記低速動作電力関数D(t)に従って、前記構成要素(14)と前記供給網(18)との間でエネルギーを伝送する速度の調節を行う場合、前記構成要素(14)は、前記供給網の現行の電気料金の変動または前記供給網(18)の電力供給から直接もしくは間接的に導出できる値の変動から経済的な利益を得るだろう、セントラル需要サーバー(30)と、
前記供給網(18)を通じて供給される電力の不均衡を示す信号を提供するように構成されるインジケータ(28)と、
前記工業プロセス制御器(20)及び前記構成要素(14)に関連付けられるローカルデバイス制御器(26)であって、
前記供給網(18)を通じて前記インジケータ(28)から供給される電力の不均衡を示す前記信号を受信し、前記低速動作電力関数D(t)を前記セントラル需要サーバー(30)から受信することと
速動作電力関数F(t)を、前記供給網(18)を通じて供給される電力の不均衡を示す前記信号から導出することと、
基準値電力関数B(t)を前記低速動作電力関数D(t)及び前記高速動作電力関数F(t)の過去値の両方から導出することと、
前記工業プロセス制御器(20)に、前記構成要素(14)を動作させる命令を提供し、前記基準値電力関数B(t)に重ねられる前記高速動作電力関数F(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行うことと、を実施するように構成される、ローカルデバイス制御器(26)と、
を備え
前記構成要素は、前記供給網(18)を通じて供給される電力の不均衡を示す信号に一緒に応答する構成要素のグループの1つであり、応答の役割は、各構成要素が高確率で前記不均衡にだけ断続的に応答するように、前記グループの周りに分配される、システム。
A system for controlling the operation of a component (14) connected to a power grid (18), said component (14) being capable of internally storing energy and having two either a generator or load of a type operable at discrete power levels , said system comprising:
an industrial process controller (20) configured to exercise direct control of the operation of said component (14) and to monitor process parameters;
a central demand server (30) configured to derive a slow operating power function D(t), said component (14) and said supply network (18) according to said slow operating power function D(t); said component (14) derives directly or indirectly from the current electricity tariff fluctuations of said grid or from the electricity supply of said grid (18), when adjusting the rate at which energy is transferred to and from a central demand server (30), which will profit economically from fluctuations in possible values;
an indicator (28) configured to provide a signal indicative of an imbalance in power supplied through the grid (18);
a local device controller (26) associated with the industrial process controller (20) and the component (14), comprising:
receiving the signal indicative of an imbalance in power supplied from the indicator (28) over the grid (18) and receiving the slow operating power function D(t) from the central demand server (30); ,
deriving a fast acting power function F(t) from the signal indicative of the imbalance of power supplied through the grid (18);
deriving a reference value power function B(t) from both past values of the slow operating power function D(t) and the fast operating power function F(t);
providing instructions to said industrial process controller (20) to operate said component (14), said component according to said fast operating power function F(t) superimposed on said reference value power function B(t); and adjusting the rate at which energy is transmitted between and said grid; and
with
Said component is one of a group of components that together respond to a signal indicative of an imbalance in the power supplied through said grid (18), the role of the response being such that each component with a high probability A system distributed around the group so as to respond intermittently only to disproportions .
電力供給網(18)に接続される構成要素(14)の動作の直接制御を働かせるように構成される工業プロセス制御器(20)に関連付けられるローカルデバイス制御器(26)であって、前記構成要素(14)は内部にエネルギーを貯蔵することが可能であり、且つ2つの個別の電力レベルで動作可能であるタイプの発電機または負荷のいずれかであり、前記ローカルデバイス制御器(26)は、
前記供給網(18)を通じてインジケータ(28)から供給される電力の不均衡を示す信号を受信し、低速動作電力関数D(t)をセントラルサーバー(30)から受信することと
速動作電力関数F(t)を、前記供給網(18)を通じて供給される電力の不均衡を示す前記信号から導出することと、
基準値電力関数B(t)を前記低速動作電力関数D(t)及び前記高速動作電力関数F(t)の過去値の両方から導出することと、
前記工業プロセス制御器(20)に、前記構成要素(14)を動作させる命令を提供し、前記基準値電力関数B(t)に重ねられる前記高速動作電力関数F(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行うことと、を実施するように構成され、
前記低速動作電力関数D(t)は、前記関数D(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行う場合、前記構成要素(14)は、1日の流れの中で、前記供給網によって分配される電気の料金の変動から経済的な利益を得るように導出され
前記構成要素は前記供給網(18)を通じて供給される電力の不均衡を示す信号に一緒に応答する構成要素のグループの1つであり、応答の役割は、各構成要素が高確率で前記不均衡にだけ断続的に応答するように、前記グループの周りに分配される、制御器。
A local device controller (26) associated with an industrial process controller (20) configured to exert direct control over the operation of a component (14) connected to a power grid (18), said configuration Element (14) is either a generator or load of the type capable of storing energy internally and capable of operating at two separate power levels , said local device controller (26 )teeth,
receiving a signal indicative of an imbalance in power supplied from an indicator (28) over the grid (18) and receiving a slow operating power function D(t) from a central server (30) ;
deriving a fast acting power function F(t) from the signal indicative of the imbalance of power supplied through the grid (18);
deriving a reference value power function B(t) from both past values of the slow operating power function D(t) and the fast operating power function F(t);
providing instructions to said industrial process controller (20) to operate said component (14), said component according to said fast operating power function F(t) superimposed on said reference value power function B(t); and adjusting the rate at which energy is transmitted between and said grid,
When said slow operating power function D(t) adjusts the speed of transmitting energy between said component and said grid according to said function D(t), said component (14) is 1 derived to profit economically from fluctuations in the price of electricity distributed by said grid in the course of the day ;
Said components are one of a group of components that together respond to a signal indicative of an imbalance in the power supplied through said grid (18), the role of response being that each component has a high probability of Controllers distributed around the group so as to respond intermittently only in equilibrium .
前記構成要素(14)は、「オフ」または「オン」のいずれかであり、ひいては、2つの電力レベル(0及びC)だけで動作可能である2値素子である、請求項1に記載の制御器。 4. According to claim 13 , wherein said component (14) is either "off" or "on" and is thus a binary element operable on only two power levels (0 and C D ). Controller as described. 記ローカルデバイス制御器(26)は
初に、決定期間Tにわたって、前記低速動作電力関数D(t)の平均値Dを決定することによって、前記基準値電力関数B(t)を導出し、次に、
(a)前記決定期間Tを連続する一連の部分区間に分割することと、
(b)部分区間期間s(m=1~M)のそれぞれで、前記部分区間期間sの開始点において、前記構成要素は網路不均衡に応答しなく、
(i)前記部分区間期間の前記開始点の前に、前記決定期間Tにわたって前記構成要素と前記供給網との間の平均合計電力伝送量Pを決定することと、
(ii)前記部分区間の前に、ステップ(b)の(i)で決定された前記平均合計電力伝送量Pを、前記決定期間にわたる前記低速動作電力関数D(t)の前記平均値Dと比較することと、
(iii)P>Dの場合、前記部分区間で前記基準値電力関数B(t)を前記2つの個別の電力レベルのうち低い方のレベルに設定し、P<Dの場合、前記部分区間で前記基準値電力関数B(t)を前記2つの個別の電力レベルのうち高い方のレベルに設定することと、
前記工業プロセス制御器(20)に、前記構成要素(14)を動作させる命令を提供し、前記基準値電力関数B(t)に重ねられる前記高速動作電力関数F(t)に従って、前記構成要素と前記供給網との間でエネルギーを伝送する速度の調節を行うことと、
を実施するように構成される、請求項13又は14に記載の制御器(26)。
The local device controller (26) comprises :
Deriving the baseline power function B(t) by first determining the average Dk of the slow operating power function D(t) over a decision period Tk , and then
(a) dividing the decision period Tk into a series of successive sub-intervals;
(b) at each subinterval period s m (m=1 to M), at the beginning of said subinterval period s m , said component does not respond to network imbalance;
(i) prior to the starting point of the subinterval period, determining an average total power transfer Pk between the component and the grid over the determination period Tk ;
(ii) before said sub-interval, said average total power transfer Pk determined in (i) of step (b), said average value D of said slow operating power function D(t) over said determined period; comparing with k ;
(iii) if P k >D k , then in said sub-intervals setting said reference power function B(t) to the lower of said two discrete power levels , and if P k <D k : setting the reference power function B(t) to the higher of the two discrete power levels in the subinterval;
providing instructions to said industrial process controller (20) to operate said component (14), said component according to said fast operating power function F(t) superimposed on said reference value power function B(t); adjusting the rate at which energy is transferred between and the grid;
15. A controller (26) according to claim 13 or 14 , adapted to implement
前記部分区間期間sの前記開始点において、前記構成要素が網路不均衡に応答する場合、前記制御器(26)は、前記部分区間期間sの前記基準値電力関数B(t)を、直前の部分区間期間m-1の前記基準値電力関数B(t)と同じ値に設定するように構成される、請求項1に記載の制御器。 At the starting point of the subinterval period sm , if the component responds to a network imbalance, the controller (26) adjusts the reference power function B(t) for the subinterval period sm to , to the same value as the reference value power function B(t) of the immediately preceding subinterval period s m−1 . 前記構成要素(14)は発電機である、請求項116のいずれか1項に記載の制御器。 A controller according to any one of claims 13 to 16 , wherein said component (14) is a generator. 前記構成要素(14)は負荷である、請求項116のいずれか1項に記載の制御器。 A controller according to any one of claims 13 to 16 , wherein said component (14) is a load.
JP2022526527A 2019-05-03 2020-04-30 Control method and system for operating electrical components Pending JP2022538504A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1906325.4 2019-05-03
GBGB1906325.4A GB201906325D0 (en) 2019-05-03 2019-05-03 A control method and system for operating an electric component
PCT/GB2020/051064 WO2020225533A1 (en) 2019-05-03 2020-04-30 A control method and system for operating an electrical component

Publications (2)

Publication Number Publication Date
JP2022538504A JP2022538504A (en) 2022-09-02
JPWO2020225533A5 true JPWO2020225533A5 (en) 2023-04-21

Family

ID=67385041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022526527A Pending JP2022538504A (en) 2019-05-03 2020-04-30 Control method and system for operating electrical components

Country Status (12)

Country Link
US (1) US20220224115A1 (en)
EP (1) EP3963409B1 (en)
JP (1) JP2022538504A (en)
KR (1) KR20220043071A (en)
AU (1) AU2020269495A1 (en)
BR (1) BR112021022082A2 (en)
CA (1) CA3138275A1 (en)
CL (1) CL2021002879A1 (en)
GB (1) GB201906325D0 (en)
MX (1) MX2021013450A (en)
SG (1) SG11202112182RA (en)
WO (1) WO2020225533A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361118B (en) 2000-04-07 2002-05-29 Responsiveload Ltd Responsive load system
GB0511361D0 (en) 2005-06-03 2005-07-13 Responsiveload Ltd Grid responsive control device
CN102264950B (en) * 2008-10-30 2013-12-11 下一氢公司 Power dispatch system for electrolytic production of hydrogen from wind power
US8344550B2 (en) * 2010-12-21 2013-01-01 General Electric Company Power conversion control with energy storage
CN103650285B (en) * 2011-05-24 2017-02-15 D·凯文·卡梅伦 System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
US8930035B2 (en) * 2011-06-29 2015-01-06 Acciona Energia, S.A. Procedure for supply control and storage of power provided by a renewable energy generation plant
US9207735B2 (en) * 2011-08-02 2015-12-08 Gram Power, Inc. Power management device and system
GB201113426D0 (en) 2011-08-03 2011-09-21 Responsiveload Ltd Responsive load control method
EP2725455A1 (en) * 2012-10-25 2014-04-30 BAE Systems PLC Energy management
US10079317B2 (en) * 2013-07-15 2018-09-18 Constantine Gonatas Device for smoothing fluctuations in renewable energy power production cause by dynamic environmental conditions
JP5811302B2 (en) * 2013-09-12 2015-11-11 日本電気株式会社 Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
WO2015075758A1 (en) 2013-11-19 2015-05-28 パナソニックIpマネジメント株式会社 Frequency control method, frequency control device, and rechargeable-battery system
US20160091912A1 (en) * 2014-09-30 2016-03-31 Schneider Electric Usa Inc. Demand-side grid-level load balancing aggregation system
EP3382298B1 (en) * 2015-11-27 2020-09-09 Mitsubishi Electric Corporation Water heater control system
WO2018066037A1 (en) * 2016-10-03 2018-04-12 三菱電機株式会社 Storage type hot water supplying device, hot water supplying method, and program
JP6525370B1 (en) * 2017-09-13 2019-06-05 三菱電機株式会社 Heat storage device, heat storage system, and heat storage method

Similar Documents

Publication Publication Date Title
US10742029B2 (en) Power control device
JP4635207B2 (en) Power system stabilization system using communication line
US20100298991A1 (en) System and method for controlling a wind farm
US10186879B2 (en) Energy storage device power consumption management
EP2863513B1 (en) Compensation of frequency deviations in grids with high turbine penetration
US20210218276A1 (en) System and Method for Controlling an Electrical Load
CN105406496B (en) A kind of isolated micro-capacitance sensor frequency modulation control method based on practical frequency response identification
US10101712B2 (en) Energy storage device control based on commands from an electrical power distribution system
CN109459985A (en) A kind of method of power plant&#39;s primary frequency modulation real time monitoring
JP2001086649A (en) Load frequency controlling method in power system
JPWO2020225533A5 (en)
CN111815479B (en) Intelligent power supply method and system based on electric big data and Internet of things
KR102384981B1 (en) Virtual power plahnt system using heat conversion device and virtual power plant operating method using the same
Kawachi et al. State of charge control for energy storage by use of cascade control system for microgrid
WO2012063576A1 (en) Device and method for controlling group of wind power generators
EP3963409B1 (en) A control method and system for operating an electrical component
CN109217378B (en) Power fluctuation adjusting method and device suitable for new energy
CN107634548A (en) A kind of active power of wind power field rate of change intelligent control method
JP2023079239A (en) Power system stabilization system utilizing communication line
CN117833283A (en) Variable coefficient wind-storage combined primary frequency modulation coordination control method considering rotation speed and SOC