JPWO2020214531A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020214531A5
JPWO2020214531A5 JP2021561639A JP2021561639A JPWO2020214531A5 JP WO2020214531 A5 JPWO2020214531 A5 JP WO2020214531A5 JP 2021561639 A JP2021561639 A JP 2021561639A JP 2021561639 A JP2021561639 A JP 2021561639A JP WO2020214531 A5 JPWO2020214531 A5 JP WO2020214531A5
Authority
JP
Japan
Prior art keywords
silicon ingot
single crystal
speed
silicon
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021561639A
Other languages
Japanese (ja)
Other versions
JP2022529451A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/027953 external-priority patent/WO2020214531A1/en
Publication of JP2022529451A publication Critical patent/JP2022529451A/en
Publication of JPWO2020214531A5 publication Critical patent/JPWO2020214531A5/ja
Pending legal-status Critical Current

Links

Claims (25)

連続チョクラルスキー法による単結晶シリコンインゴットの製造方法であって、
多結晶シリコンの初期投入量をルツボに加えること;
前記多結晶シリコンの初期投入量を含むルツボを加熱して、シリコン融液をルツボにて形成させること、ここでは、前記シリコン融液は、溶融シリコンの初期ボリュームを含み、かつ初期の融液高さレベルを有する;
シリコン種結晶をシリコン融液と接触させること;
前記シリコン種結晶を引いて、ネック部を成長させること、ここでは、前記シリコン種結晶は前記ネック部の成長中にネック部引上速度にて引かれる;
前記シリコン種結晶を引いて、前記ネック部に隣接する外側に広がる種コーンを成長させること、ここでは、前記シリコン種結晶は前記外側に広がる種コーンの成長中に種コーン引上速度にて引かれる;および
前記シリコン種結晶を引いて、外側に広がる種コーンに隣接する前記単結晶シリコンインゴットの本体を成長させること、ここでは、前記シリコン融液は、前記単結晶シリコンインゴットの本体の成長中に、あるボリュームの溶融シリコンおよび融液高さレベルを含む、
を含み、
前記単結晶シリコンインゴットの本体は、第1の可変的な領域(ここに、引上速度は第1の引上速度から第2の引上速度に減少する)および第2の可変的な領域(ここに、前記引上速度は前記第2の引上速度から一定の本体引上速度に増加する)を有する初期の可変的な本体引上速度条件下で成長させ、前記単結晶シリコンインゴットの本体は、前記単結晶シリコンインゴットの本体長さの約20%未満について、前記初期の可変的な本体引上速度条件下で成長され、かつ、前記単結晶シリコンインゴットの本体長さの少なくとも約30%の成長について、一定の本体引上速度で成長され、前記一定の本体引上速度は、前記一定の本体引上速度で成長させた単結晶シリコンインゴットの本体長さにわたり、凝集した点欠陥を回避するのに十分な一定の臨界引上速度であり;多結晶をルツボへと連続供給し、それにより、前記単結晶シリコンインゴットの本体の成長中に、ルツボにおいて溶融シリコンのボリュームおよび融液高さレベルを補充し;および磁界が、前記単結晶シリコンインゴットの本体の成長中に前記シリコン融液に印加される、前記製造方法
A method for producing a single crystal silicon ingot by the continuous Czochralski method, comprising:
adding an initial charge of polycrystalline silicon to the crucible;
heating the crucible containing the initial charge of polycrystalline silicon to form a silicon melt in the crucible, wherein the silicon melt contains an initial volume of molten silicon and an initial melt height; have a degree level;
contacting a silicon seed crystal with a silicon melt;
pulling the silicon seed crystal to grow a neck, wherein the silicon seed crystal is pulled at a neck pull rate during growth of the neck;
pulling the silicon seed crystal to grow an outwardly-flaring seed cone adjacent to the neck, wherein the silicon seed crystal is pulled at a seed cone pulling rate during growth of the outwardly-flaring seed cone; and pulling the silicon seed crystal to grow a body of the monocrystalline silicon ingot adjacent to an outwardly-flaring seed cone, wherein the silicon melt flows during growth of the body of the monocrystalline silicon ingot. contains a volume of molten silicon and a melt height level,
including
The body of said monocrystalline silicon ingot has a first variable region (wherein the pulling speed decreases from the first pulling speed to a second pulling speed) and a second variable region ( wherein the pulling speed increases from the second pulling speed to a constant body pulling speed, wherein the body of the single crystal silicon ingot is grown under an initial variable body pulling speed condition ; is grown under the initial variable body pull rate condition for less than about 20% of the body length of the single crystal silicon ingot, and is at least about 30% of the body length of the single crystal silicon ingot; is grown at a constant body pull-up speed, said constant body pull-up speed removing agglomerated point defects over the body length of the single crystal silicon ingot grown at said constant body pull-up speed. a constant critical pulling rate sufficient to avoid; continuously feeding polycrystal into the crucible, thereby increasing the volume of molten silicon and the melt height in the crucible during the growth of the body of said monocrystalline silicon ingot; and a magnetic field is applied to the silicon melt during growth of the body of the monocrystalline silicon ingot .
水平磁界が、前記単結晶シリコンインゴットの本体の成長中に前記シリコン融液に印加される、請求項記載の製造方法。 2. The method of claim 1 , wherein a horizontal magnetic field is applied to the silicon melt during growth of the body of the monocrystalline silicon ingot. 先端磁界が、前記単結晶シリコンインゴットの本体の成長中に前記シリコン融液に印加される、請求項記載の製造方法 2. The method of claim 1 , wherein a tip magnetic field is applied to the silicon melt during growth of the body of the single crystal silicon ingot . 印加された前記磁界が、前記単結晶シリコンインゴットの本体の成長の約70%~約90%の間、実質的に一定の融液/固体界面プロファイルを維持する、請求項記載の製造方法。 The method of claim 1 , wherein the applied magnetic field maintains a substantially constant melt/solid interface profile during about 70% to about 90% of the growth of the body of the single crystal silicon ingot. 前記単結晶シリコンインゴットの本体が、少なくとも約1000ミリメートル長、少なくとも1400ミリメートル長、または少なくとも1500ミリメートル長である、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the monocrystalline silicon ingot is at least about 1000 millimeters long, at least 1400 millimeters long, or at least 1500 millimeters long. 前記単結晶シリコンインゴットの本体が、少なくとも2000ミリメートル長、少なくとも2200ミリメートル長、少なくとも約3000ミリメートル長、または少なくとも約4000ミリメートル長である、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the monocrystalline silicon ingot is at least 2000 millimeters long, at least 2200 millimeters long, at least about 3000 millimeters long, or at least about 4000 millimeters long. 前記単結晶シリコンインゴットの本体の直径が、少なくとも約150ミリメートル、または少なくとも約200ミリメートルである、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the single crystal silicon ingot has a diameter of at least about 150 millimeters, or at least about 200 millimeters. 前記単結晶シリコンインゴットの本体の直径が、少なくとも約300ミリメートル、または少なくとも約450ミリメートルである、請求項1記載の方法 3. The method of claim 1 , wherein the body of the monocrystalline silicon ingot has a diameter of at least about 300 millimeters, or at least about 450 millimeters. 前記一定の本体引上速度が、約0.4mm/分~約0.8mm/分、約0.4mm/分~約0.7mm/分、または約0.4mm/分~約0.65mm/分である、請求項1記載の製造方法。 The constant body pull rate is from about 0.4 mm/min to about 0.8 mm/min, from about 0.4 mm/min to about 0.7 mm/min, or from about 0.4 mm/min to about 0.65 mm/min. 2. The manufacturing method according to claim 1, wherein the manufacturing method is minutes. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの約5%~約20%について、初期の可変的な本体引上速度条件下で成長される、請求項1記載の製造方法。 2. The monocrystalline silicon ingot body of claim 1 , wherein the monocrystalline silicon ingot body is grown under an initial variable body pull rate condition for about 5% to about 20% of the monocrystalline silicon ingot body length. Production method. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約50%の成長中に一定の本体引上速度で成長される、請求項1記載の製造方法。 The method of claim 1 , wherein the body of the single crystal silicon ingot is grown at a constant body pull rate during growth of at least about 50% of the body length of the single crystal silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約70%の成長中に一定の本体引上速度で成長される、請求項1記載の製造方法。 The method of claim 1 , wherein the body of the single crystal silicon ingot is grown at a constant body pull rate during growth of at least about 70% of the body length of the single crystal silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約80%の成長中に一定の本体引上速度で成長される、請求項1記載の製造方法。 The method of claim 1 , wherein the body of the single crystal silicon ingot is grown at a constant body pull rate during growth of at least about 80% of the body length of the single crystal silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約90%の成長中に一定の本体引上速度で成長される、請求項1記載の製造方法。 The method of claim 1 , wherein the body of the single crystal silicon ingot is grown at a constant body pull rate during growth of at least about 90% of the body length of the single crystal silicon ingot. 前記本体引上速度が、前記単結晶シリコンインゴットの本体長さの少なくとも70%にわたり、凝集した点欠陥を回避するのに十分な一定の臨界引上速度である、請求項1記載の製造方法。 The method of claim 1 , wherein the body pull speed is a constant critical pull speed sufficient to avoid agglomerated point defects over at least 70% of the body length of the single crystal silicon ingot. . 前記本体引上速度が、前記単結晶シリコンインゴットの本体長さの少なくとも90%にわたり、凝集した点欠陥を回避するのに十分な一定の臨界引上速度である、請求項1記載の製造方法。 The method of claim 1 , wherein the body pull speed is a constant critical pull speed sufficient to avoid agglomerated point defects over at least 90% of the body length of the single crystal silicon ingot. . 溶融シリコンのボリュームが、前記単結晶シリコンインゴットの本体の少なくとも約90%の成長中に、約1.0体積%以下変化する、請求項1記載の製造方法。 2. The method of claim 1 , wherein the volume of molten silicon changes by no more than about 1.0% by volume during growth of at least about 90% of the body of the single crystal silicon ingot. 溶融シリコンのボリュームが、前記単結晶シリコンインゴットの本体の少なくとも約90%の成長中に、約0.5体積%以下変化する、請求項1記載の製造方法。 2. The method of claim 1 , wherein the volume of molten silicon changes by no more than about 0.5% by volume during growth of at least about 90% of the body of the single crystal silicon ingot. 溶融シリコンのボリュームが、前記単結晶シリコンインゴットの本体の少なくとも約90%の成長中に、約0.1体積%以下変化する、請求項1記載の製造方法。 2. The method of claim 1 , wherein the volume of molten silicon changes by no more than about 0.1% by volume during growth of at least about 90% of the body of the single crystal silicon ingot. 前記融液高さレベルが、前記単結晶シリコンインゴットの本体の少なくとも約90%の成長中に、約+/-0.5ミリメートル未満変化する、請求項1記載の製造方法。 The method of claim 1 , wherein the melt height level changes by less than about +/−0.5 millimeters during growth of at least about 90% of the body of the single crystal silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約70%にわたる完全シリコンを含む、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the monocrystalline silicon ingot comprises complete silicon over at least about 70% of the body length of the monocrystalline silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約80%にわたる完全シリコンを含む、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the monocrystalline silicon ingot comprises complete silicon over at least about 80% of the body length of the monocrystalline silicon ingot. 前記単結晶シリコンインゴットの本体が、前記単結晶シリコンインゴットの本体長さの少なくとも約90%にわたる完全シリコンを含む、請求項1記載の製造方法。 2. The method of manufacturing of claim 1 , wherein the body of the monocrystalline silicon ingot comprises complete silicon over at least about 90% of the body length of the monocrystalline silicon ingot. 前記第1の引上速度が約0.5mm/分~約2.0mm/分であり、前記第2の引上速度が約0.4mm/分未満であり、前記一定の本体引上速度が約0.4mm/分~約0.8mm/分である、請求項1記載の製造方法。wherein the first pull-up speed is between about 0.5 mm/min and about 2.0 mm/min, the second pull-up speed is less than about 0.4 mm/min, and the constant body pull-up speed is The manufacturing method of claim 1, wherein the speed is from about 0.4 mm/min to about 0.8 mm/min. 前記第1の引上速度が約1.0mm/分であり、前記第2の引上速度が約0.3mm/分~約0.4mm/分であり、前記一定の本体引上速度が約0.4mm/分~約0.65mm/分である、請求項1記載の製造方法。The first pulling speed is about 1.0 mm/min, the second pulling speed is about 0.3 mm/min to about 0.4 mm/min, and the constant body lifting speed is about The manufacturing method of claim 1, wherein the speed is from 0.4 mm/min to about 0.65 mm/min.
JP2021561639A 2019-04-18 2020-04-13 Growth method of single crystal silicon ingot using continuous Czochralski method Pending JP2022529451A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962835735P 2019-04-18 2019-04-18
US62/835,735 2019-04-18
PCT/US2020/027953 WO2020214531A1 (en) 2019-04-18 2020-04-13 Methods for growing a single crystal silicon ingot using continuous czochralski method

Publications (2)

Publication Number Publication Date
JP2022529451A JP2022529451A (en) 2022-06-22
JPWO2020214531A5 true JPWO2020214531A5 (en) 2023-04-20

Family

ID=70465569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021561639A Pending JP2022529451A (en) 2019-04-18 2020-04-13 Growth method of single crystal silicon ingot using continuous Czochralski method

Country Status (8)

Country Link
US (1) US11408090B2 (en)
EP (1) EP3956499B1 (en)
JP (1) JP2022529451A (en)
KR (1) KR102576552B1 (en)
CN (1) CN113728129B (en)
SG (1) SG11202111451WA (en)
TW (1) TWI821556B (en)
WO (1) WO2020214531A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767611B2 (en) * 2020-07-24 2023-09-26 Globalwafers Co., Ltd. Methods for producing a monocrystalline ingot by horizontal magnetic field Czochralski
KR20240004605A (en) * 2021-04-28 2024-01-11 글로벌웨이퍼스 씨오., 엘티디. Methods for producing silicon ingots by horizontal magnetic field Czochralski

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104026A (en) 1976-03-12 1978-08-01 University Of Virginia Immunoassay separation technique
DE3049376A1 (en) 1980-12-29 1982-07-29 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen METHOD FOR PRODUCING VERTICAL PN TRANSITIONS WHEN DRAWING SILICO DISC FROM A SILICONE MELT
JPH0733305B2 (en) 1987-03-20 1995-04-12 三菱マテリアル株式会社 Method for manufacturing double quartz crucible
JPH0633218B2 (en) 1987-12-08 1994-05-02 日本鋼管株式会社 Silicon single crystal manufacturing equipment
US4943160A (en) * 1988-07-25 1990-07-24 Massachusetts Institute Of Technology Interface angle estimation system
WO1991005891A1 (en) 1989-10-16 1991-05-02 Nkk Corporation Apparatus for manufacturing silicon single crystals
JPH04317493A (en) 1991-04-15 1992-11-09 Nkk Corp Producing device for silicon single crystal
TW440613B (en) 1996-01-11 2001-06-16 Mitsubishi Material Silicon Method for pulling single crystal
JP3769800B2 (en) 1996-01-12 2006-04-26 株式会社Sumco Single crystal pulling device
DE19637182A1 (en) 1996-09-12 1998-03-19 Wacker Siltronic Halbleitermat Process for the production of silicon wafers with low defect density
KR20040065306A (en) 1997-04-09 2004-07-21 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 Process for preparing low defect density, vacancy dominated silicon
JP4510948B2 (en) * 1998-03-25 2010-07-28 シルトロニック・ジャパン株式会社 Manufacturing method of silicon single crystal wafer
US6077343A (en) 1998-06-04 2000-06-20 Shin-Etsu Handotai Co., Ltd. Silicon single crystal wafer having few defects wherein nitrogen is doped and a method for producing it
DE69901115T2 (en) 1998-06-26 2002-12-19 Memc Electronic Materials, Inc. METHOD FOR PRODUCING ERROR-FREE SILICON CRYSTALS OF AN arbitrary LARGE DIAMETER
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
WO2000022196A1 (en) * 1998-10-14 2000-04-20 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
JP3601324B2 (en) 1998-11-19 2004-12-15 信越半導体株式会社 Silicon single crystal wafer with few crystal defects and method of manufacturing the same
EP1222324B1 (en) 1999-09-23 2004-05-06 MEMC Electronic Materials, Inc. Czochralski process for growing single crystal silicon by controlling the cooling rate
JP2001089294A (en) 1999-09-27 2001-04-03 Mitsubishi Materials Silicon Corp Method of continuously pulling up silicon single crystal free from agglomerates of point defects
JP3994602B2 (en) 1999-11-12 2007-10-24 信越半導体株式会社 Silicon single crystal wafer, manufacturing method thereof, and SOI wafer
JP4718668B2 (en) 2000-06-26 2011-07-06 株式会社Sumco Epitaxial wafer manufacturing method
EP1346086A2 (en) * 2000-11-30 2003-09-24 MEMC Electronic Materials, Inc. Process for controlling thermal history of vacancy-dominated, single crystal silicon
EP1356139B1 (en) * 2001-01-26 2006-08-09 MEMC Electronic Materials, Inc. Low defect density silicon substantially free of oxidation induced stacking faults having a vacancy-dominated core
JP2005015313A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal, and single crystal
JP4407192B2 (en) * 2003-07-29 2010-02-03 信越半導体株式会社 Single crystal manufacturing method
US7635414B2 (en) * 2003-11-03 2009-12-22 Solaicx, Inc. System for continuous growing of monocrystalline silicon
JP2005162599A (en) * 2003-12-03 2005-06-23 Siltron Inc Single crystal silicon ingot and wafer having homogeneous vacancy defect, and method and apparatus for making same
JP2007022863A (en) 2005-07-19 2007-02-01 Sumco Corp Method for growing silicon single crystal and method for manufacturing silicon wafer
JP4483729B2 (en) * 2005-07-25 2010-06-16 株式会社Sumco Silicon single crystal manufacturing method
EP2027312B1 (en) 2006-05-19 2015-02-18 MEMC Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during cz growth
FR2929960B1 (en) 2008-04-11 2011-05-13 Apollon Solar PROCESS FOR PRODUCING CRYSTALLINE SILICON OF PHOTOVOLTAIC QUALITY BY ADDING DOPING IMPURITIES
WO2010017389A1 (en) * 2008-08-07 2010-02-11 Memc Electronic Materials, Inc. Generating a pumping force in a silicon melt by applying a time-varying magnetic field
MY159737A (en) 2010-09-03 2017-01-31 Gtat Ip Holding Llc Silicon single crystal doped with gallium, indium, or aluminum
JP2014511146A (en) 2011-04-14 2014-05-12 ジーティー アドヴァンスト シーズィー, エルエルシー Silicon ingot having a plurality of uniform dopants and method and apparatus for producing the same
EP2699716B1 (en) * 2011-04-20 2019-12-18 GTAT IP Holding LLC Side feed system for czochralski growth of silicon ingots
CN102260900B (en) 2011-07-14 2013-11-27 西安华晶电子技术股份有限公司 Device for improving consistency of longitudinal resistivity of single crystal silicon and treatment process thereof
JP5470349B2 (en) 2011-10-17 2014-04-16 ジルトロニック アクチエンゲゼルシャフト P-type silicon single crystal and manufacturing method thereof
DE102012214085B4 (en) 2012-08-08 2016-07-07 Siltronic Ag Single crystal silicon wafer and process for its production
US20140144371A1 (en) * 2012-11-29 2014-05-29 Solaicx, Inc. Heat Shield For Improved Continuous Czochralski Process
US10060045B2 (en) 2012-12-31 2018-08-28 Corner Star Limited Fabrication of indium-doped silicon by the czochralski method
CN104711674B (en) * 2013-12-09 2017-06-06 有研半导体材料有限公司 A kind of method of the micro- stomatal frequency in reduction pulling of silicon single crystal inside
KR20150107241A (en) * 2014-03-13 2015-09-23 (주)기술과가치 Method for manufacturing ingot and apparatus for the same
JP6222013B2 (en) 2014-08-29 2017-11-01 信越半導体株式会社 Resistivity control method
KR101680213B1 (en) * 2015-04-06 2016-11-28 주식회사 엘지실트론 Method for growing silicon single crystal ingot
CN105887194A (en) 2016-05-30 2016-08-24 上海超硅半导体有限公司 Growth method of type-n monocrystalline silicon

Similar Documents

Publication Publication Date Title
US9885122B2 (en) Method of manufacturing silicon single crystal
JPH1095698A (en) Control of heat history of czochralski growth type silicon
US6869477B2 (en) Controlled neck growth process for single crystal silicon
TWI632257B (en) Single crystal silicon manufacturing method
US20100319613A1 (en) Silicon monocrystal growth method
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
CN110670122A (en) Novel seed crystal for pulling single crystal and welding process
CN110629283A (en) Silicon single crystal growth method
JP2002020193A (en) Single crystal rod and method of producing the same
JP3969460B2 (en) Manufacturing method of semiconductor single crystal by applying magnetic field
CN101363132A (en) Method of pulling up silicon single crystal
JP6458590B2 (en) Method for producing silicon single crystal
KR101620770B1 (en) Method for manufacturing single-crystal silicon
JP4521933B2 (en) Method for growing silicon single crystal
JPWO2020214531A5 (en)
JPH0543379A (en) Production of silicon single crystal
JPH04139092A (en) Production of silicon single crystal and seed crystal
EP0947611A3 (en) A method for producing a silicon single crystal and the silicon single crystal produced thereby
JP2001240494A (en) Single crystal growth method
CN107955964A (en) The preparation method and its hot systems of a kind of MEMS hypoxemia silicon single crystal materials
WO2014174752A1 (en) Method for producing silicon single crystal
JP3840683B2 (en) Single crystal pulling method
JPH09227278A (en) Method for growing single crystal
JP2982053B2 (en) Single crystal pulling method
JP2023535079A (en) Method for producing monocrystalline silicon ingot by horizontal magnetic field Czochralski