JPWO2020212330A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020212330A5
JPWO2020212330A5 JP2021562026A JP2021562026A JPWO2020212330A5 JP WO2020212330 A5 JPWO2020212330 A5 JP WO2020212330A5 JP 2021562026 A JP2021562026 A JP 2021562026A JP 2021562026 A JP2021562026 A JP 2021562026A JP WO2020212330 A5 JPWO2020212330 A5 JP WO2020212330A5
Authority
JP
Japan
Prior art keywords
pump
signal
rotational speed
vibrations
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021562026A
Other languages
Japanese (ja)
Other versions
JP2022529976A (en
Publication date
Priority claimed from DE102019002826.0A external-priority patent/DE102019002826A1/en
Application filed filed Critical
Publication of JP2022529976A publication Critical patent/JP2022529976A/en
Publication of JPWO2020212330A5 publication Critical patent/JPWO2020212330A5/ja
Pending legal-status Critical Current

Links

Description

ポンプの周波数応答を決定するための代替または追加の動作パラメータとしては、ポンプ圧力、例えば特にポンプの吐出圧が好適である。ここで、機械的振動は、信号形状にも反映される。ポンプの吐出圧は、例えば、既存の圧力センサによって決定可能であり、信号変換、特に高速フーリエ変換によって、その周波数スペクトルに変換され得る。 As an alternative or additional operating parameter for determining the frequency response of the pump, the pump pressure, for example in particular the pump discharge pressure , is suitable, where the mechanical vibrations are also reflected in the signal shape. The pump discharge pressure can be determined, for example, by an existing pressure sensor and can be converted into its frequency spectrum by a signal transformation, in particular a fast Fourier transformation.

モータ電流とは別に、または、これに加えて、ポンプの吐出圧の信号も調べることができる。ここでも、モータ電流と同様に、高速フーリエ変換によって、対応する共振周波数に関する周波数スペクトルが分析され評価される。吐出圧は、例えばポンプの圧力センサ等を用いるか、動作点の推定によって計算できる。 Apart from or in addition to the motor current, the signal of the pump discharge pressure can also be examined. Here, as with the motor current, the frequency spectrum for the corresponding resonant frequencies is analyzed and evaluated by means of a fast Fourier transformation. The discharge pressure can be calculated, for example, using a pressure sensor of the pump or by operating point estimation.

信号品質を向上させるために、両方の信号(吐出圧およびモータ電流)を、センサデータフュージョンによってマージ(merge)することもできる。これが不可能な場合、電流および圧力信号を個々に評価することもできる。センサフュージョンに関して、例えば例えば個々の信号値を上述のように評価し、次に重み付けによってマージすることができる。個別に評価された信号の個々の結果に異なる重みを付けることができる範囲を規定することも考えられる。例えば例えば、10~200Hzの周波数範囲のモータ電流の評価結果が使用され、一方、より高い周波数の吐出圧の評価結果が考慮される。 To improve the signal quality, both signals ( discharge pressure and motor current) can also be merged by sensor data fusion. If this is not possible, the current and pressure signals can also be evaluated individually. For sensor fusion, for example, the individual signal values can be evaluated as described above and then merged by weighting. It is also conceivable to define a range in which the individual results of the individually evaluated signals can be weighted differently. For example, the evaluation results of the motor current in the frequency range of 10 to 200 Hz are used, while the evaluation results of the discharge pressure at higher frequencies are taken into account.

Claims (11)

遠心ポンプを含むポンプのポンプ運転中の機械的振動を防止するまたは低減するための方法であって、
周波数変換器およびポンプ制御装置が提供される第1のステップと
前記ポンプ制御装置がポンプ動作パラメータの少なくとも1つの信号を検出し、信号振動に関して前記少なくとも1つの信号を調査することで、前記ポンプの機械的振動を検出する第2のステップと
前記周波数変換器によって前記ポンプの回転速度を変更することで、検出された機械的振動を低減する第3のステップと
を含み、
前記第2のステップ及び前記第3のステップは、前記少なくとも1つの信号の周波数スペクトルにおいて検出された機械的振動の振幅が最小になるポンプ回転速度を識別するために、前記ポンプの特定の回転速度に対して最大に逸脱する可能性のある許容値で事前に規定された許容公差範囲内で前記ポンプの回転速度を変化させながら繰り返し実行されることを特徴とする、方法。
1. A method for preventing or reducing mechanical vibrations during pump operation of a pump, including a centrifugal pump, comprising :
a first step in which a frequency converter and a pump controller are provided;
a second step of detecting mechanical vibrations of the pump by the pump controller detecting at least one signal of a pump operating parameter and examining the at least one signal for signal vibrations;
a third step of reducing the detected mechanical vibrations by varying the rotational speed of the pump by the frequency converter;
Including,
The method, characterized in that the second and third steps are repeatedly performed while varying the rotational speed of the pump within a predefined tolerance range with a maximum possible deviation for a particular rotational speed of the pump in order to identify a pump rotational speed at which the amplitude of mechanical vibrations detected in the frequency spectrum of the at least one signal is minimized.
前記少なくとも1つの信号の周波数スペクトルが高速フーリエ変換によって計算されることを特徴とする、請求項1に記載の方法。 2. The method of claim 1, wherein the frequency spectrum of said at least one signal is calculated by means of a Fast Fourier Transform. 調査される前記少なくとも1つの信号が、ポンプドライブのモータ電流に対応することを特徴とする、請求項1または請求項2に記載の方法。 The method of claim 1 or 2, characterized in that the at least one signal examined corresponds to a motor current of a pump drive. 調査される前記少なくとも1つの信号が、前記ポンプの吐出圧に対応し、前記吐出圧が、圧力センサを用いた計測、及び、前記ポンプの運転中における吐出流量及び全揚程により規定される前記ポンプの動作点の推定、の少なくとも一方によって、決定されることを特徴とする、請求項1~請求項3のいずれか1項に記載の方法。 4. The method according to claim 1, wherein the at least one signal to be investigated corresponds to a discharge pressure of the pump, the discharge pressure being determined at least one of by measurement using a pressure sensor and by estimation of an operating point of the pump defined by a discharge flow rate and a total head during operation of the pump . 前記少なくとも1つの信号は、ポンプドライブのモータ電流に対応する信号と前記ポンプの吐出圧に対応する信号とからなり、前記第3のステップにおいて、前記ポンプの回転速度に応じて、前記ポンプドライブのモータ電流に対応する信号について検出された第1の機械的振動、又は、前記ポンプの吐出圧に対応する信号について検出された前記ポンプの第2の機械的振動を使用することを特徴とする、請求項1~請求項4のいずれか1項に記載の方法。The method according to any one of claims 1 to 4, characterized in that the at least one signal consists of a signal corresponding to a motor current of a pump drive and a signal corresponding to a discharge pressure of the pump, and in the third step, a first mechanical vibration of the pump detected for the signal corresponding to the motor current of the pump drive or a second mechanical vibration of the pump detected for the signal corresponding to the discharge pressure of the pump is used depending on the rotational speed of the pump. 前記ポンプの回転速度が比較的低いときには前記第1の機械的振動を使用し、前記ポンプの回転速度が比較的高いときには前記第2の機械的振動を使用する、請求項5に記載の方法。6. The method of claim 5, further comprising using the first mechanical vibration when the rotational speed of the pump is relatively low and using the second mechanical vibration when the rotational speed of the pump is relatively high. 前記方法は、前記ポンプの少なくとも1つの反共振を識別して前記ポンプを前記反共振で運転するために、前記ポンプの回転速度を任意に変化させながら繰り返し実行されることを特徴とする、請求項1~請求項6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, characterized in that the method is repeatedly performed while arbitrarily varying the rotational speed of the pump in order to identify at least one anti-resonance of the pump and to operate the pump at said anti- resonance . 識別された共振振動の周波数が記憶され、前記方法は、識別された共振振動の周波数の変化を検出するために繰り返し実行されることを特徴とする、請求項1~請求項7のいずれか1項に記載の方法。The method according to any one of claims 1 to 7, characterized in that the frequencies of the identified resonant vibrations are stored and the method is repeatedly performed in order to detect changes in the frequencies of the identified resonant vibrations. 前記ポンプが、検出された前記周波数の変化に基づいて、前記ポンプの材料摩耗、および、前記ポンプの構造体への任意の損傷の少なくとも一方を検出可能であることを特徴とする、請求項8に記載の方法。9. The method of claim 8, wherein the pump is capable of detecting at least one of material wear of the pump and any damage to the structure of the pump based on the detected change in frequency. 請求項1~請求項9のいずれか1項に記載の方法を実行するように構成された周波数変換器およびポンプ制御装置を備えたポンプ構成であって、排水ポンプ、固体部分を有する液体を移送するソリッドポンプまたは供給ポンプ、を含む遠心ポンプである、ポンプ構成。A pump arrangement comprising a frequency converter and a pump control device configured to carry out the method according to any one of claims 1 to 9, the pump arrangement being a centrifugal pump including a drainage pump, a solids pump for transporting a liquid having a solid portion or a feed pump. 請求項10に記載のポンプ構成の使用であって、排水ポンプ、固体部分を有する液体を移送するソリッドポンプまたは供給ポンプとしての使用。11. Use of the pump arrangement according to claim 10 as a drainage pump, a solids pump for transporting a liquid having a solid portion or a feed pump.
JP2021562026A 2019-04-18 2020-04-14 How to prevent vibration in the pump Pending JP2022529976A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019002826.0 2019-04-18
DE102019002826.0A DE102019002826A1 (en) 2019-04-18 2019-04-18 Process for avoiding vibrations in pumps
PCT/EP2020/060432 WO2020212330A1 (en) 2019-04-18 2020-04-14 Method for preventing vibration in pumps

Publications (2)

Publication Number Publication Date
JP2022529976A JP2022529976A (en) 2022-06-27
JPWO2020212330A5 true JPWO2020212330A5 (en) 2024-07-11

Family

ID=70289784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021562026A Pending JP2022529976A (en) 2019-04-18 2020-04-14 How to prevent vibration in the pump

Country Status (7)

Country Link
US (1) US20220186749A1 (en)
EP (1) EP3956567A1 (en)
JP (1) JP2022529976A (en)
CN (1) CN113646538A (en)
BR (1) BR112021019522A2 (en)
DE (1) DE102019002826A1 (en)
WO (1) WO2020212330A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773107B (en) * 2021-01-29 2022-08-01 復盛股份有限公司 Surge detection method and compression device
DE102021206777A1 (en) 2021-06-29 2022-12-29 Rolls-Royce Solutions GmbH Control device for controlling the operation of a turbomachine, turbomachine arrangement with such a control device, internal combustion engine with such a turbomachine arrangement, and method for operating a turbomachine
CN115929608B (en) * 2022-10-12 2024-07-26 中国船舶重工集团公司第七一九研究所 Variable-frequency speed regulation control method for reducing vibration noise of ship pump set

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100757B2 (en) * 1992-06-02 2000-10-23 三菱電機株式会社 Monitoring and diagnostic equipment
US5623579A (en) * 1993-05-27 1997-04-22 Martin Marietta Energy Systems, Inc. Automated method for the systematic interpretation of resonance peaks in spectrum data
US5846056A (en) * 1995-04-07 1998-12-08 Dhindsa; Jasbir S. Reciprocating pump system and method for operating same
US6260004B1 (en) * 1997-12-31 2001-07-10 Innovation Management Group, Inc. Method and apparatus for diagnosing a pump system
US6757665B1 (en) * 1999-09-28 2004-06-29 Rockwell Automation Technologies, Inc. Detection of pump cavitation/blockage and seal failure via current signature analysis
US6532433B2 (en) * 2001-04-17 2003-03-11 General Electric Company Method and apparatus for continuous prediction, monitoring and control of compressor health via detection of precursors to rotating stall and surge
DE10334817A1 (en) * 2003-07-30 2005-03-10 Bosch Rexroth Ag Pump failure detection unit uses Fourier analysis of pressure sensor measurement to determine if characteristic frequency exceeds reference amplitude
US20060198744A1 (en) * 2005-03-03 2006-09-07 Carrier Corporation Skipping frequencies for variable speed controls
US20060266913A1 (en) * 2005-05-26 2006-11-30 Baker Hughes Incororated System, method, and apparatus for nodal vibration analysis of a device at different operational frequencies
US20070194772A1 (en) * 2006-02-20 2007-08-23 Fix Joshua M Assessing soundness of motor-driven devices
PL1972793T3 (en) * 2007-03-23 2010-12-31 Grundfos Management As Method for detecting faults in pumping units
US20110189028A1 (en) * 2010-01-29 2011-08-04 Rod Shampine Pressure pulse interaction management in a multiple pump system
DE102014004336A1 (en) * 2014-03-26 2015-10-01 Wilo Se Method for determining the hydraulic operating point of a pump unit
GB2536461A (en) * 2015-03-18 2016-09-21 Edwards Ltd Pump monitoring apparatus and method
DE102017213131A1 (en) * 2017-07-31 2019-01-31 Robert Bosch Gmbh Method and control device for controlling an actuator of a system and such a system
GB201718068D0 (en) * 2017-11-01 2017-12-13 Rolls Royce Plc Resonance vibration control method and system
DE102018200651A1 (en) 2018-01-16 2019-07-18 KSB SE & Co. KGaA Method for the self-diagnosis of the mechanical and / or hydraulic condition of a centrifugal pump
WO2020033682A1 (en) * 2018-08-08 2020-02-13 Fluid Handling Llc Variable speed pumping control system with active temperature and vibration monitoring and control means

Similar Documents

Publication Publication Date Title
JP6496061B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing
KR102323514B1 (en) Method for measuring the axial force of bolts
US6711942B2 (en) Apparatus for determining and/or monitoring the viscosity of a medium in a container
KR102181339B1 (en) Elasticity detection method and device
US4615216A (en) Method of anticipating machine failure
CN109863692A (en) Control device of electric motor and method of motor control
JP4591176B2 (en) Engine inertia moment measurement device
WO2016078337A1 (en) Washing machine and method for determining load weight of washing machine
US20070101511A1 (en) Washing machine and method for detecting unbalanced state of laundry therein
CN1636133A (en) Method and device for detecting a pulse-type mechanical effect on a system part
US20220186749A1 (en) Method for Preventing Vibration in Pumps
JPWO2020212330A5 (en)
WO2003017459A1 (en) Electric motor controller resonance frequency detection apparatus
WO2016050060A1 (en) Washing machine and method for determining load weight of washing machine
CN110133665B (en) Doppler measurement method of ultrasonic transducer based on envelope curve
JPH0843193A (en) Rubbing detecting method for rotary machine
JPH0238930A (en) Measuring instrument for gear noise
JP7559246B2 (en) ULTRASONIC SENSOR SYSTEM FOR AN AUTOMOTIVE VEHICLE AND METHOD FOR OPERATION OF AN ULTRASONIC SENSOR SYSTEM - Patent application
JP2008145374A (en) Apparatus for detecting vibrational characteristic in mechanical system
RU2285247C2 (en) Method of measuring of resonance frequency, q-factor and amplitude of stationary oscillations
JPH06294728A (en) Liquid density measuring equipment
JP3821754B2 (en) Screen abnormality detection device
RU2589743C2 (en) Determination of eccentricity of induction motor rotor
JPH11248528A (en) Abnormal vibration detecting apparatus
JP2020022260A (en) Machine abnormality prediction device