JPWO2020202791A1 - 物理量検出装置 - Google Patents

物理量検出装置 Download PDF

Info

Publication number
JPWO2020202791A1
JPWO2020202791A1 JP2021511172A JP2021511172A JPWO2020202791A1 JP WO2020202791 A1 JPWO2020202791 A1 JP WO2020202791A1 JP 2021511172 A JP2021511172 A JP 2021511172A JP 2021511172 A JP2021511172 A JP 2021511172A JP WO2020202791 A1 JPWO2020202791 A1 JP WO2020202791A1
Authority
JP
Japan
Prior art keywords
passage
sub
gas
measured
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021511172A
Other languages
English (en)
Other versions
JP7074928B2 (ja
Inventor
信章 五来
崇裕 三木
暁 上ノ段
直生 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of JPWO2020202791A1 publication Critical patent/JPWO2020202791A1/ja
Application granted granted Critical
Publication of JP7074928B2 publication Critical patent/JP7074928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Abstract

異物を伴う空気の取込量を減らすことができる物理量検出装置を得ること。本発明の物理量検出装置(20)は、被計測気体(2)が流れる主通路に配置される筐体を備え、筐体には、主通路を流れる被計測気体(2)の一部を取り込む第2副通路(B)と、被計測気体(2)の圧力を検出する圧力センサ(320)が収容された回路室(135)と、第2副通路(B)の通路途中に一端が開口し他端が回路室(135)に開口して第2副通路(B)から回路室(135)に被計測気体(2)の圧力を導入可能な圧力導入通路(170)とが設けられており、圧力導入通路(170)は、第2副通路(B)の側壁面(152b)から外側にオフセットした位置に導入口(171)が配置されていることを特徴とする。

Description

本発明は、例えば内燃機関の吸入空気の物理量を検出する物理量検出装置に関する。
特許文献1には、ダクト内に形成される主流路を流れる空気の一部を取り込むバイパス流路と、バイパス流路から分岐してバイパス流路を流れる空気の一部を取り込むサブバイパス流路とが内部に形成され、サブバイパス流路にセンサが設置された空気流量測定装置の構造が示されている。
特開2015−87254号公報
特許文献1の構成によれば、バイパス流路からサブバイパス流路に、異物を伴う空気が取り込まれた場合に、センサに異物が付着してセンサを汚損させるおそれがある。
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、異物を伴う空気の取込量を減らすことができる物理量検出装置を提供することである。
上記課題を解決する本発明の物理量検出装置は、被計測気体が流れる主通路に配置される筐体を備え、該筐体には、前記主通路を流れる前記被計測気体の一部を取り込む副通路と、前記被計測気体の圧力を検出する圧力センサが収容されたセンサ室と、前記副通路の通路途中に一端が開口し他端が前記センサ室に開口して前記副通路から前記センサ室に前記被計測気体の圧力を導入可能な圧力導入通路とが設けられており、該圧力導入通路は、前記副通路の側壁面から外側にオフセットした位置に導入口が配置されていることを特徴とする。
本発明によれば、圧力導入通路は、副通路の側壁面から外側にオフセットした位置に導入口が配置されているので、側壁面と導入口との間に剥離流を形成することができる。この剥離流によって、導入口の周辺環境を負圧状態にすることができ、副通路を通過する流体の動圧の影響を受けにくくすることができる。したがって、例えば被計測気体に含まれている水が導入口に流入して導入通路が塞がれてしまうのを防ぐことができ、センサ室の圧力センサにより安定したセンシングを行うことができる。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
内燃機関制御システムに本発明に係る物理量検出装置を使用した一実施例を示すシステム図。 物理量検出装置の正面図。 物理量検出装置の背面図。 図2AのIIC方向矢視図。 図2AのIID方向矢視図。 物理量検出装置の平面図。 物理量検出装置の下面図。 図2AのIIG−IIG線断面図。 図2AのIIH−IIH線断面図。 ハウジングの正面図。 カバーの背面図。 図3に示す構成の要部VAを拡大して示す図。 図5AのVB−VB線断面図。 図5AのVC−VC線断面図。 図5Aの要部拡大図。 導入口の作用を説明する図。 第1実施形態の変形例1を説明する図。 図6Aに示す構成の要部VBを拡大して示す図。 図6BのVIC−VIC線断面図。 第1実施形態の変形例2を説明する図。 図7Aに示す構成の要部VCを拡大して示す図。 図7BのVIIC−VIIC線断面図。 第2実施形態における物理量検出装置のハウジングの正面図。 図8Aに示す構成の要部VDを拡大して示す図。 圧力導入口の作用を説明する図。 図8BのVIIID−VIIID線断面図。 図8BのVIIIE−VIIIE線断面図。
以下に説明する、発明を実施するための形態(以下、実施例)は、実際の製品として要望されている種々の課題を解決しており、特に車両の吸入空気の物理量を検出する検出装置として使用するために望ましい色々な課題を解決し、種々の効果を奏している。下記実施例が解決している色々な課題の内の一つが、上述した発明が解決しようとする課題の欄に記載した内容であり、また下記実施例が奏する種々の効果のうちの1つが、発明の効果の欄に記載された効果である。下記実施例が解決している色々な課題について、さらに下記実施例により奏される種々の効果について、下記実施例の説明の中で述べる。従って、下記実施例の中で述べる、実施例が解決している課題や効果は、発明が解決しようとする課題の欄や発明の効果の欄の内容以外の内容についても記載されている。
以下の実施例で、同一の参照符号は、図番が異なっていても同一の構成を示しており、同じ作用効果を成す。既に説明済みの構成について、図に参照符号のみを付し、説明を省略する場合がある。
図1は、電子燃料噴射方式の内燃機関制御システム1に、本発明に係る物理量検出装置を使用した一実施例を示す、システム図である。エンジンシリンダ11とエンジンピストン12を備える内燃機関10の動作に基づき、吸入空気が被計測気体2としてエアクリーナ21から吸入され、主通路22である例えば吸気ボディと、スロットルボディ23と、吸気マニホールド24を介してエンジンシリンダ11の燃焼室に導かれる。燃焼室に導かれる吸入空気である被計測気体2の物理量は、本発明に係る物理量検出装置20で検出され、その検出された物理量に基づいて燃料噴射弁14より燃料が供給され、被計測気体2と共に混合気の状態で燃焼室に導かれる。なお、本実施例では、燃料噴射弁14は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が被計測気体2と共に混合気を成形し、吸気弁15を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
燃焼室に導かれた燃料および空気は、燃料と空気の混合状態を成しており、点火プラグ13の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁16から排気管に導かれ、排気ガス3として排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体2の流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ25により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ25の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。
エアクリーナ21から取り込まれ主通路22を流れる吸入空気である被計測気体2の流量、温度、湿度、圧力などの物理量が物理量検出装置20により検出され、物理量検出装置20から吸入空気の物理量を表す電気信号が制御装置4に入力される。また、スロットルバルブ25の開度を計測するスロットル角度センサ26の出力が制御装置4に入力され、さらに内燃機関のエンジンピストン12や吸気弁15や排気弁16の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ17の出力が、制御装置4に入力される。排気ガス3の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ28の出力が制御装置4に入力される。
制御装置4は、物理量検出装置20の出力である吸入空気の物理量と、回転角度センサ17の出力に基づき計測された内燃機関の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁14から供給される燃料量、また点火プラグ13により点火される点火時期が制御される。燃料供給量や点火時期は、実際にはさらに物理量検出装置20で検出される温度やスロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ28で計測された空燃比の状態に基づいて、きめ細かく制御されている。制御装置4は、さらに内燃機関のアイドル運転状態において、スロットルバルブ25をバイパスする空気量をアイドルエアコントロールバルブ27により制御し、アイドル運転状態での内燃機関の回転速度を制御する。
内燃機関の主要な制御量である燃料供給量や点火時期はいずれも物理量検出装置20の出力を主パラメータとして演算される。従って、物理量検出装置20の検出精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。
特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには、物理量検出装置20により検出される吸入空気の物理量の検出精度の向上が極めて重要である。また、物理量検出装置20が高い信頼性を維持していることも大切である。
物理量検出装置20が搭載される車両は、温度や湿度の変化が大きい環境で使用される。物理量検出装置20は、その使用環境における温度や湿度の変化への対応や、塵埃や汚染物質などへの対応も、考慮されていることが望ましい。
また、物理量検出装置20は、内燃機関からの発熱の影響を受ける吸気管に装着される。このため、内燃機関の発熱が吸気管を介して物理量検出装置20に伝わる。物理量検出装置20は、被計測気体と熱伝達を行うことにより被計測気体の流量を検出するので、外部からの熱の影響をできるだけ抑制することが重要である。
車に搭載される物理量検出装置20は、以下で説明するように、単に発明が解決しようとする課題の欄に記載された課題を解決し、発明の効果の欄に記載された効果を奏するのみでなく、以下で説明するように、上述した色々な課題を十分に考慮し、製品として求められている色々な課題を解決し、色々な効果を奏している。物理量検出装置20が解決する具体的な課題や奏する具体的な効果は、以下の実施例の記載の中で説明する。
<第1実施形態>
図2Aから図2Fは、物理量検出装置の外観を示す図である。なお、以下の説明では、主通路の中心軸に沿って被計測気体が流れるものとする。
物理量検出装置20は、主通路22の通路壁に設けられた取り付け孔から主通路22の内部に挿入して主通路22に固定された状態で使用される。物理量検出装置20は、被計測気体が流れる主通路22に配置される筐体を備えている。物理量検出装置20の筐体は、ハウジング100と、ハウジング100に取り付けられるカバー200を有している。
ハウジング100は、例えば合成樹脂製材料を射出成形することによって構成されている。そして、カバー200は、例えば金属材料や合成樹脂材料からなる板状部材によって構成されており、本実施例では、アルミニウム合金であったり、合成樹脂材料の射出成形品によって構成されている。
ハウジング100は、物理量検出装置20を主通路22である吸気ボディに固定するためのフランジ111と、フランジ111から突出して外部機器との電気的な接続を行うために吸気ボディから外部に露出するコネクタ112と、フランジ111から主通路22の中心に向かって突出するように延びる計測部113を有している。
計測部113は、フランジ111から真っ直ぐ延びる薄くて長い形状を成し、幅広な正面121と背面122、及び幅狭な一対の側面123、124を有している。計測部113は、物理量検出装置20を主通路22に取り付けた状態で、主通路22の内壁から主通路22の通路中心に向かって突出する。そして、正面121と背面122が主通路22の中心軸に沿って平行に配置され、計測部113の幅狭な側面123、124のうち計測部113の長手方向一方側の側面123が主通路22の上流側に対向配置され、計測部113の短手方向他方側の側面124が主通路22の下流側に対向配置される。物理量検出装置20を主通路22に取り付けた状態で、計測部113の先端部を下面125とする。
計測部113は、側面123に副通路入口131が設けられ、側面124に第1出口132及び第2出口133が設けられている。副通路入口131と第1出口132及び第2出口133は、フランジ111から主通路22の中心方向に向かって延びる計測部113の先端部に設けられている。したがって、主通路22の内壁面から離れた中央部に近い部分の気体を副通路に取り込むことができる。このため、物理量検出装置20は、主通路22の内壁面から離れた部分の気体の流量を測定することができ、熱などの影響による計測精度の低下を抑制できる。
物理量検出装置20は、計測部113が主通路22の外壁から中央に向かう軸に沿って長く伸びる形状を成しているが、側面123、124の幅は、図2Bおよび図2Dに示すように、狭い形状を成している。これにより、物理量検出装置20は、被計測気体2に対しては流体抵抗を小さい値に抑えることができる。
物理量検出装置20は、図2Bに示すように、計測部113に、温度検出部である吸気温度センサ321と湿度センサ322が設けられている。吸気温度センサ321は、側面123の副通路入口131近傍に一端が開口し、他端が計測部113の正面121と背面122の両方に開口する温度検出通路Cの通路途中に配置されている。
本実施形態の物理量検出装置20によれば、吸気温度センサ321は、計測部113の上流側に配置されるので、吸気温度センサ321に対して、上流から真っ直ぐ流れてくる被計測気体2を直接当てることができる。したがって、吸気温度センサ321の放熱性を向上させることができる。
物理量検出装置20の計測部113は、主通路22に設けられた取り付け孔から内部に挿入され、物理量検出装置20のフランジ111が主通路22に当接され、ねじで主通路22に固定される。フランジ111は、所定の板厚からなる平面視略矩形状を有しており、図2E及び図2Fに示すように、対角線上の角部には固定穴部141が対をなして設けられている。固定穴部141は、フランジ111を貫通する貫通孔142を有している。
フランジ111は、固定穴部141の貫通孔142に、不図示の固定ネジが挿通されて主通路22のネジ穴に螺入されることにより主通路22に固定される。
コネクタ112は、図2Eに示すように、その内部に4本の外部端子147と補正用端子148が設けられている。外部端子147は、物理量検出装置20の計測結果である流量や温度などの物理量を出力するための端子および物理量検出装置20が動作するための直流電力を供給するための電源端子である。
補正用端子148は、生産された物理量検出装置20の計測を行い、それぞれの物理量検出装置20に関する補正値を求めて、物理量検出装置20内部のメモリに補正値を記憶するのに使用する端子であり、その後の物理量検出装置20の計測動作では上述のメモリに記憶された補正値を表す補正データが使用され、この補正用端子148は使用されない。
従って、外部端子147と他の外部機器との接続において、補正用端子148が邪魔にならないように、補正用端子148は、外部端子147とは異なる形状をしている。この実施例では外部端子147より補正用端子148が短い形状をしており、外部端子147に接続される外部機器の接続端子がコネクタ112に挿入されても、接続の障害にならないようになっている。
図2Gは、図2AのIIG−IIG線断面図、図2Hは、図2AのIIH−IIH線断面図、図3は、ハウジングの正面図、図4は、カバーの背面図である。なお、以下の説明では、フランジ111から計測部113が延びる方向である計測部113の長手方向をZ軸、計測部113の副通路入口131から第1出口132に向かって延びる方向である計測部113の短手方向をX軸、計測部113の正面121から背面122に向かう方向である計測部113の厚さ方向をY軸と称する場合がある。
ハウジング100には、副通路134を形成するための副通路溝150と、回路基板300を収容するための回路室135が設けられている。回路室135と副通路溝150は、計測部113の正面に凹設されている。回路室135は、主通路22において被計測気体2の流れ方向上流側の位置となるX軸方向一方側(側面123側)の領域に設けられている。そして、副通路溝150は、回路室135よりも計測部113のZ軸方向先端側(下面125側)の領域と、回路室135よりも主通路22における被計測気体2の流れ方向下流側の位置となるX軸方向他方側(側面124側)の領域に亘って設けられている。
副通路溝150は、カバー200によって覆われることにより副通路134を形成する。副通路溝150は、第1副通路溝151と、第1副通路溝151の途中で分岐する第2副通路溝152とを有している。第1副通路溝151は、計測部113の一方側の側面123に開口する副通路入口131と、計測部113の他方側の側面124に開口する第1出口132との間に亘って、計測部113のX軸方向に沿って延在するように形成されている。第1副通路溝151は、主通路22内を流れる被計測気体2を副通路入口131から取り込み、その取り込んだ被計測気体2を第1出口132から主通路22に戻す第1副通路Aをカバー200との協働により形成する。第1副通路Aは、副通路入口131から主通路22内における被計測気体2の流れ方向に沿って延在し、第1出口132までつながる流路を有する。
第2副通路溝152は、第1副通路溝151の途中位置で分岐して計測部113の基端部側(フランジ側)に向かって屈曲され、計測部113のZ軸方向に沿って延在する。そして、計測部113の基端部で計測部113のX軸方向他方側(側面124側)に向かって折れ曲がり、計測部113の先端部に向かってUターンし、再び計測部113のZ軸方向に沿って延在する。そして、第1出口132の手前で計測部113のX軸方向他方側(側面124側)に向かって屈曲され、計測部113の側面124に開口する第2出口133に連続するように設けられている。第2出口133は、主通路22における被計測気体2の流れ方向下流側に向かって対向配置される。第2出口133は、第1出口132とほぼ同等若しくは若干大きい開口面積を有しており、第1出口132よりも計測部113の長手方向基端部側に隣接した位置に形成されている。
第2副通路溝152は、第1副通路Aから分岐されて流れ込んだ被計測気体2を通過させて第2出口133から主通路22に戻す第2副通路Bをカバー200との協働により形成する。第2副通路Bは、計測部113のZ軸方向に沿って往復する流路を有する。つまり、第2副通路Bは、第1副通路Aの途中で分岐して、計測部113の基端部側(第1副通路Aから離れる方向)に向かって延在する往通路部B1と、計測部113の基端部側(離反通路部の端部)で折り返されてUターンし、計測部113の先端部側(第1副通路Aに接近する方向)に向かって延在する復通路部B2を有している。復通路部B2は、副通路入口131よりも主通路22内における被計測気体2の流れ方向下流側の位置において被計測気体2の流れ方向下流側に向かって開口する第2出口133につながる。
第2副通路Bは、往通路部B1の途中位置に流量センサ(流量検出部)311が配置されている。第2副通路Bは、計測部113の長手方向に沿って延在して往復するように通路が形成されているので、通路長さをより長く確保することができ、主通路内に脈動が生じた場合に、流量センサ311への影響を小さくすることができる。
流量センサ311は、チップパッケージ310内に設けられている。チップパッケージは、流量センサ311とLSIを樹脂でモールドした構成を有している。チップパッケージ310は、パッケージ本体の基端部が回路室135内の回路基板300に固定され、先端部が第2副通路溝152に突出して配置されており、先端部に流量センサ311が設けられている。流量センサ311は、第2副通路Bの往通路部B1に露出するようにチップパッケージ310に支持されている。流量センサ311は、第2副通路溝152の溝底面152aとの間に所定の間隔を有して対向して配置されており、第2副通路Bを通過する被計測気体の流量を測定する。
回路基板300には、チップパッケージ310、圧力センサ320、吸気温度センサ321、湿度センサ322等の回路部品が実装されている。回路室135には、外部端子147の端部が突出して設けられており、回路基板300のボンディングパッド300との間がボンディングワイヤ331を介して接続されている。
ハウジング100には、第2副通路Bを通過する被計測気体の除電を行うための除電プレート340が設けられている。除電プレート340は、第2副通路溝152の溝底面152aの一部を構成するように、第2副通路溝152に露出して設けられている。除電プレート340は、本実施形態では、第2副通路Bの往通路部B1においてチップパッケージ310よりも被計測気体の流れ方向上流側である第1副通路A側の位置から、チップパッケージ310の流量センサ311に対向する位置を通過して、チップパッケージ310よりも被計測気体の流れ方向下流側である第2出口133側の位置までの間に亘って延びるように設けられている。
除電プレート340は、接続端部341(図5Aを参照)を有しており、ボンディングワイヤ331によって回路基板300のグランドに電気的に接続されており、第2副通路Bを通過する被計測気体の除電を行う。従って、被計測気体に含まれている異物が帯電によってチップパッケージ310や流量センサ311に付着するのを防ぐことができる。
カバー200は、ハウジング100の正面121に取り付けられ、計測部113の回路室135と副通路溝150を覆う平板形状を有している。カバー200は、図4に示すように、背面201にリブ211〜217が設けられている。リブ211〜217は、計測部113との接着部分に沿って形成されている。図3に示すように、計測部113には、正面121に凹溝261〜268が設けられており、リブ271〜278が挿入されるようになっている。カバー200は、計測部113の凹溝261〜268にリブ271〜278を挿入した状態で接着剤により接着される。
次に、本発明の特徴の一つである被計測気体の圧力を検出する構造について説明する。
図5Aは、図3に示す構成の要部VAを拡大して示す図、図5Bは、図5AのVB−VB線断面図、図5Cは、図5AのVC−VC線断面図、図5Dは、図5Aの要部拡大図である。
物理量検出装置20は、被計測気体の圧力を検出する圧力センサ320を有している。
圧力センサ320は、回路室135に収容されている。圧力センサ320は、回路基板300に実装された状態で回路室135に配置されており、本実施形態では、2つの圧力センサ320が並んで配置されている。回路室135は、圧力導入通路170を介して第2副通路Bと接続されており、第2副通路B内の被計測気体の圧力を導入して、圧力センサ320によって被計測気体の圧力を検出するセンサ室として機能する。回路室135は、カバー200を取り付けることによって覆われ、圧力導入通路170以外に外部と連通する箇所がないように密閉される。
圧力導入通路170は、図5Aに示すように、第2副通路Bの通路途中に一端が開口し他端が回路室135に開口して第2副通路Bから回路室135に被計測気体の圧力を導入可能な構成を有する。圧力導入通路170は、計測部113に溝状に凹設されており、カバー200との協働により構成される。圧力導入通路170は、第2副通路Bの通路壁面からオフセットした位置に開口する導入口171と、導入口171から直線状に延びるスリッド状の直線部172と、直線部172に連続して複数回折れ曲がりながら回路室135につながるラビリンス状の屈曲部173とを有している。
導入口171は、第2副通路Bの被計測気体流れ方向においてチップパッケージ310よりも下流側の位置に設けられており、本実施形態では、第2副通路Bの往通路部B1から復通路部B2に折り返す折返し部に設けられている。折返し部では、第2副通路溝152の外周側の側壁面152bは、半円弧状にカーブしており、導入口171は、側壁面152bの半円弧状にカーブする部分でかつ復通路部B2の折返し部の頂部よりも復通路部B2側に位置する部分である曲がり部分に配置されている。導入口171は、図5Dに示すように、側壁面152bの曲がり部分から所定距離kだけカーブ外側にオフセットした位置に設けられている。所定距離kは、復通路部B2を通過する被計測気体が側壁面152bから剥離する剥離流Rを、側壁面152bと導入口171との間に発生させることができる距離が予め実験或いはシミュレーションによって求められて設定されている。
導入口171は、第2副通路Bの被計測気体流れ方向に所定間隔をおいて複数設けられており、本実施形態では、第1導入口1711と、第2導入口1712と、第3導入口1713の3つが設けられている。圧力導入通路170の直線部172は、第1導入口1711と、第2導入口1712と、第3導入口1713から互いに平行に延びる第1通路部1721、第2通路部1722、第3通路部1723を有している。
第1導入口1711と、第2導入口1712と、第3導入口1713と、第1通路部1721、第2通路部1722、第3通路部1723は、カバー200に当接される計測部113の面に凹設された浅底の溝形状(スリッド形状)を有しており、それぞれ溝深さhを有している。溝深さhは、図5B及び図5Cに示すように、第2副通路溝152の溝深さと比較して極端に浅く形成されている。第1通路部1721、第2通路部1722、第3通路部1723は、本実施形態では、幅Wが1.0mm、深さhが0.1mmの寸法形状を有している。
第1導入口1711は、図5Dに示すように、側壁面152bとの間に所定距離kを有する段差を介して、側壁面152bからカーブ外側に凹んだ位置に設けられている。そして、第1導入口1711に連続する第1通路部1721は、第2副通路Bを流れる被計測気体2の流れ方向との間の角度が90度以下となる向きに沿って延在するように設けられている。従って、側壁面152bに沿って流れてきた被計測気体2が第1導入口1711から第1通路部1721に一直線状に真っ直ぐ流れ込むのを防ぎ、側壁面152bと第1導入口1711との間の段差部分によって強い剥離流Rを発生させることができる。
圧力導入通路170の屈曲部173は、図5Aに示すように、第1通路部1721、第2通路部1722、第3通路部1723がそれぞれつながる略U字状のチャンバー部1731と、チャンバー部1731から回路室135まで円弧状に湾曲して延びる湾曲部1732とを有している。チャンバー部1731は、図5Aに示すように、第1通路部1721、第2通路部1722、第3通路部1723、または湾曲部1732を通過する被計測気体がその流れる向きを180度変換されるように逆さU字状を有しており、回路室135の開口と圧力導入通路170の導入口171とが直線的につながらないラビリンス状の構造となっている。また、チャンバー部1731は、図5Bに示すように、第2副通路溝152の溝底面152aとほぼ同じ深さを有しており、所定の室内空間を形成し、第2副通路Bから水が浸入してきた場合に、一時的に貯留できるようになっている。
湾曲部1732は、カバー200に当接される計測部113の面に凹設された溝形状を有しており、その溝深さは、第1通路部1721、第2通路部1722、第3通路部1723と同じ深さhに設定されている。湾曲部1732は、第2副通路Bの折返し部の外側に沿って延びる円弧形状を有している。
上記した圧力導入通路170は、第2副通路溝152の側壁面152bよりも所定距離kだけカーブ外側にオフセットした位置に第1導入口1711が設けられているので、第2副通路Bを通過する被計測気体2が側壁面152bから剥離する剥離流Rを、側壁面152bと第1導入口1711との間である第1導入口1711の手前に発生させることができる。したがって、第1導入口1711の手前に剥離流Rによる負圧環境を形成することができ、第1導入口1711に対する被計測気体の動圧の影響を低減でき、第2副通路Bから第1導入口1711に異物を伴う空気が流れ込むのを減少させることができる。したがって、圧力導入通路170及び回路室135への異物の侵入を防ぐとともに、通気確保による圧力の安定的な計測が可能になる。
特に、本実施形態では、第1導入口1711が第2副通路溝152の半円弧状にカーブする外側の側壁面152bでかつ復通路部B2側に折り返された曲がり部に配置されているので、より強力な剥離流Rを発生させることができる。したがって、剥離流Rによる影響をより顕在化させることができ、第1導入口1711が動圧の影響をより受けにくくすることができる。
また、上記した圧力導入通路170の構成によれば、導入口171が第2副通路Bの被計測気体流れ方向においてチップパッケージ310よりも下流側の位置に設けられているので、流量センサ311の静特性に影響を与えるのを防ぐことができる。したがって、流量センサ311の検出精度をより高くすることができる。
そして、圧力導入通路170は、導入口171から直線状に延びるスリッド状の直線部172と、直線部172に連続して複数回折れ曲がりながら回路室135につながるラビリンス状の屈曲部183とを有しており、回路室135の開口と圧力導入通路170の導入口171とが直線的につながらない構造となっている。したがって、被計測気体に含まれている異物が圧力導入通路170内に侵入して通過するのを困難にして、回路室135に異物が侵入するのを効果的に防ぐことができる。
図5Eは、導入口の作用を説明する図であり、第2副通路B内に水が浸入してきた状態を模式的に示す図である。
例えば、図5Eに示すように、第2副通路Bに水が浸入してきた場合に、第1導入口1711は、第1導入口1711の手前に剥離流Rによる負圧環境が形成され、第1導入口1711に向かう動圧影響が低減されているので、第1導入口1711から第1通路部1721に水が侵入するのを防ぐことができ、常に通気を確保することができる。したがって、圧力を安定的に計測できる。
第2導入口1712と第3導入口1713は、第1導入口1711と比較して、剥離流Rによる影響が小さく、被計測気体の動圧を受けるので、第2導入口1712と第3導入口1713から第2通路部1722と第3通路部1723にそれぞれ水が浸入する可能性がある。しかしながら、第2通路部1722と第3通路部1723には、チャンバー部1731と湾曲部1732とを有する屈曲部173が連続して設けられているので、回路室135まで水が浸入するのを防ぐことができる。
次に、第1実施形態の変形例について説明する。図6A〜図6Cは、第1実施形態の変形例1を説明する図、図7A〜図7Cは、第1実施形態の変形例2を説明する図である。
なお、上述の実施例と同様の構成要素には同一の符号を付することでその詳細な説明は省略する。
図6Aは、変形例1における物理量検出装置のハウジングの正面図、図6Bは、図6Aに示す構成の要部を拡大して示す図、図6Cは、図6BのVIC−VIC線断面図である。
上述の図5Aに示した実施例では、3つの導入口、すなわち、第1導入口1711、第2導入口1712及び第3導入口1713を備えている場合を例に説明したが、この構成に限定されるものではない。導入口171の手前に剥離流による負圧環境を形成することができ、導入口171に対する被計測気体の動圧の影響を低減でき、第2副通路Bから導入口171に異物を伴う空気が流れ込むのを減少させることができる構成であればよく、導入口の数は1つ以上であればよい。
変形例1は、図6A〜図6Bに示すように、第1導入口1714と第2導入口1715という2つの導入口を備えている。第1導入口1714と第2導入口1715は、曲がり部分の曲がり始め側と曲がり終わり側の位置に互いに離れて配置されている。第1導入口1714と第2導入口1715は、第2副通路溝152の側壁面152bよりも所定距離kだけカーブ外側にオフセットした位置に配置されている。そして、第1導入口1714と第2導入口1715には、それぞれ直線状の第1通路部1724と第2通路部1725が連続して設けられている。
変形例1の圧力導入通路170は、上述の実施例と同様に、第2副通路溝152の側壁面152bよりも所定距離kだけカーブ外側にオフセットした位置に第1導入口1714が設けられているので、第2副通路Bを通過する被計測気体が側壁面152bから剥離する剥離流を、側壁面152bと第1導入口1714との間である第1導入口1714の手前に発生させることができる。第1導入口1714の手前に剥離流による負圧環境を形成することができ、第1導入口1714に対する被計測気体の動圧の影響を低減でき、第2副通路Bから第1導入口1714に異物を伴う空気が流れ込むのを減少させることができる。したがって、圧力導入通路170及び回路室135への異物の侵入を防ぐとともに、通気確保による圧力の安定的な計測が可能になる。
変形例2は、図7A〜図7Bに示すように、第1導入口1716という1つの導入口171を備えている。第1導入口1716は、曲がり部分の曲がり始め側の位置に配置されている。第1導入口1716は、第2副通路溝152の側壁面152bよりも所定距離kだけカーブ外側にオフセットした位置に配置されている。そして、第1導入口1716には、直線状の第1通路部1726が連続して設けられている。
変形例2の圧力導入通路170は、上述の実施例と同様に、第2副通路溝152の側壁面152bよりも所定距離kだけカーブ外側にオフセットした位置に第1導入口1716が設けられているので、第2副通路Bを通過する被計測気体が側壁面152bから剥離する剥離流を、側壁面152bと第1導入口1716との間である第1導入口1716の手前に発生させることができる。したがって、第1導入口1716の手前に剥離流による負圧環境を形成することができ、第1導入口1716に対する被計測気体の動圧の影響を低減でき、第2副通路Bから第1導入口1716に異物を伴う空気が流れ込むのを減少させることができる。したがって、圧力導入通路170及び回路室135への異物の侵入を防ぐとともに、通気確保による圧力の安定的な計測が可能になる。
<第2実施形態>
次に、本発明の物理量検出装置20の第2実施形態について説明する。
図8Aは、第2実施形態における物理量検出装置のハウジングの正面図、図8Bは、図8Aに示す構成の要部VDを拡大して示す図、図8Cは、圧力導入口の作用を説明する図、図8Dは、図8BのVIIID−VIIID線断面図、図8Eは、図8BのVIIIE−VIIIE線断面図である。なお、上述の第1実施形態と同様の構成要素には同一の符号を付することでその詳細な説明は省略する。
本実施形態において特徴的なことは、圧力導入通路180をチップパッケージ310よりも第2副通路Bの上流側の位置でかつ第2副通路Bの直線部分に設けたことである。
圧力導入通路180は、図8A〜図8Dに示すように、第2副通路Bの通路途中に一端が開口し他端が回路室135に開口して第2副通路Bから回路室135に被計測気体の圧力を導入可能な構成を有する。圧力導入通路180は、計測部113に溝状に凹設されており、カバー200との協働により構成される。圧力導入通路180は、第2副通路Bの通路壁面からオフセットした位置に開口する導入口181と、導入口181から直線状に延びる直線部182と、直線部182に連続して複数回折れ曲がりながら回路室135にラビリンス状のつながる屈曲部183とを有している。
導入口181は、図8Aに示すように、第2副通路Bの被計測気体流れ方向においてチップパッケージ310よりも上流側の位置でかつ第2副通路Bの往通路部B1が有する直線部分に設けられている。第2副通路溝152の側壁面152bは、チップパッケージ310から第1副通路溝151側に向かって直線状に延びる直線部分を有しており、かかる直線部分に導入口181が配置されている。導入口181は、図8B及び図8Cに示すように、側壁面152bの直線部分から所定距離kだけ第2副通路溝152の溝幅方向外側にオフセットした位置に設けられている。所定距離kは、往通路部B1を通過する被計測気体2が側壁面152bから剥離する剥離流Rを、側壁面152bと導入口181との間に発生させることができる距離が予め実験或いはシミュレーションによって求められて設定されている。
圧力導入通路180の直線部182は、導入口181から第2副通路溝152の溝幅方向外側に向かって延びる形状を有している。導入口181と直線部182は、カバー200に当接される計測部113の面に凹設された浅底の溝形状(スリッド形状)を有しており、それぞれ溝深さhを有している。溝深さhは、図8D及び図8Eに示すように、第2副通路溝152の溝深さと比較して極端に浅く形成されている。直線部182は、本実施形態では、幅Wが1.0mm、深さhが0.1mmの寸法形状を有している。
導入口181は、図8Cに示すように、側壁面152bとの間に所定距離kを有する段差を介して、側壁面152bから第2副通路溝152の溝幅方向外側に凹んだ位置に設けられている。そして、導入口181に連続する直線部182は、第2副通路Bを流れる被計測気体2の流れ方向との間の角度が略90度となる向きに沿って延在するように設けられている。従って、側壁面152bに沿って流れてきた被計測気体2が導入口181から直線部182に向かって一直線状に真っ直ぐ流れ込むのを防ぎ、側壁面152bと導入口181との間の段差部分によって強い剥離流Rを発生させることができる。
圧力導入通路180の屈曲部183は、図8Eに示すように、直線部182から階段状に深くなるように形成されたハウジング100の段差面と、その段差面との間に所定の間隙を有して対向するカバー200の突起部との間に形成される。屈曲部183は、直線部182の端部で背面122側に向かって屈曲されてY軸方向に移行し、所定の深さ位置で側面123側に向かって屈曲されてX軸方向に移行するクランク形状を有しており、回路室135の開口と圧力導入通路180の導入口181とが直線的につながらない構造となっている。
圧力導入通路180は、第2副通路溝152の側壁面152bよりも所定距離kだけ溝幅方向外側にオフセットした位置に導入口181が設けられているので、図8Cに示すように、第2副通路Bを通過する被計測気体2が側壁面152bから剥離する剥離流Rを、側壁面152bと導入口181との間である導入口181の手前に発生させることができる。したがって、導入口181の手前に剥離流Rによる負圧環境を形成することができ、導入口181に対する被計測気体の動圧の影響を低減でき、第2副通路Bから導入口181に異物を伴う空気が流れ込むのを減少させることができる。したがって、圧力導入通路180及び回路室135への異物の侵入を防ぐとともに、通気確保による圧力の安定的な計測が可能になる。
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
2 被計測気体
20 物理量検出装置
135 回路室(センサ室)
170,180 圧力導入通路
171,181 導入口
172,182 直線部
173,183 屈曲部
310 チップパッケージ
311 流量センサ
320 圧力センサ
B 第2副通路
B1 往通路部
B2 復通路部

Claims (7)

  1. 被計測気体が流れる主通路に配置される筐体を備え、
    該筐体には、前記主通路を流れる前記被計測気体の一部を取り込む副通路と、前記被計測気体の圧力を検出する圧力センサが収容されたセンサ室と、前記副通路の通路途中に一端が開口し他端が前記センサ室に開口して前記副通路から前記センサ室に前記被計測気体の圧力を導入可能な圧力導入通路とが設けられており、
    該圧力導入通路は、前記副通路の側壁面から外側にオフセットした位置に導入口が配置されていることを特徴とする物理量検出装置。
  2. 前記副通路は、所定の軸方向に沿って軸方向一方側に向かって延在する往通路部と、該往通路部の端部でUターンして軸方向他方側に向かって延在する復通路部とを有しており、
    前記導入口は、前記副通路の前記往通路部から前記復通路部に折り返す折返し部において、半円弧状にカーブする外周側の側壁面でかつ前記折返し部の頂部よりも前記復通路部側に位置する曲がり部分に配置されていることを特徴とする請求項1に記載の物理量検出装置。
  3. 前記副通路には、前記被計測気体の流量を検出する流量センサが配置されており、
    前記導入口は、前記副通路の被計測気体流れ方向において前記流量センサよりも下流側の位置に設けられていることを特徴とする請求項2に記載の物理量検出装置。
  4. 前記流量センサは、前記副通路の前記往通路部に設けられていることを特徴とする請求項3に記載の物理量検出装置。
  5. 前記導入口は、前記副通路の被計測気体流れ方向に所定間隔をおいて複数設けられていることを特徴とする請求項1に記載の物理量検出装置。
  6. 前記圧力導入通路は、ラビリンス状の屈曲部を有することを特徴とする請求項1に記載の物理量検出装置。
  7. 前記副通路は、所定の軸方向に沿って延在する直線上の通路部を有しており、
    前記通路部には、前記被計測気体の流量を検出する流量センサが配置されており、
    前記導入口は、前記副通路の被計測気体流れ方向において前記流量センサよりも上流側の位置に設けられていることを特徴とする請求項1に記載の物理量検出装置。
JP2021511172A 2019-03-29 2020-02-07 物理量検出装置 Active JP7074928B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019068414 2019-03-29
JP2019068414 2019-03-29
PCT/JP2020/004732 WO2020202791A1 (ja) 2019-03-29 2020-02-07 物理量検出装置

Publications (2)

Publication Number Publication Date
JPWO2020202791A1 true JPWO2020202791A1 (ja) 2021-12-09
JP7074928B2 JP7074928B2 (ja) 2022-05-24

Family

ID=72668055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021511172A Active JP7074928B2 (ja) 2019-03-29 2020-02-07 物理量検出装置

Country Status (4)

Country Link
US (1) US11401899B2 (ja)
JP (1) JP7074928B2 (ja)
CN (1) CN113574352A (ja)
WO (1) WO2020202791A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD987685S1 (en) * 2020-09-21 2023-05-30 Econtrols, Llc Manifold sensor
WO2023073791A1 (ja) * 2021-10-26 2023-05-04 日立Astemo株式会社 空気流量計

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198955A (ja) * 2005-01-21 2006-08-03 Fujiwara Kogyo Kk 合わせガラス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265593A (en) * 1991-05-02 1993-11-30 Odland Rick M Balloon-tipped catheter ventilation system and method for using same having rhythmically inflated and deflated balloon
JP4073324B2 (ja) * 2003-01-24 2008-04-09 株式会社日立製作所 熱式流量測定装置
JP6035582B2 (ja) 2013-10-30 2016-11-30 株式会社デンソー 空気流量測定装置及びその製造方法
US10190898B2 (en) 2014-07-30 2019-01-29 Hitachi Automotive Systems, Ltd. Physical-quantity detection device
EP3176545B1 (en) * 2014-07-30 2020-09-16 Hitachi Automotive Systems, Ltd. Physical-quantity detection device
WO2016017301A1 (ja) 2014-07-30 2016-02-04 日立オートモティブシステムズ株式会社 物理量検出装置
US10371552B2 (en) 2014-12-08 2019-08-06 Hitachi Automotive Systems, Ltd. Physical quantity detection device
US11079262B2 (en) * 2015-01-30 2021-08-03 Hitachi Automotive Systems, Ltd. Physical quantity detection apparatus and electronic apparatus
JP6568593B2 (ja) * 2015-09-30 2019-08-28 日立オートモティブシステムズ株式会社 物理量検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198955A (ja) * 2005-01-21 2006-08-03 Fujiwara Kogyo Kk 合わせガラス

Also Published As

Publication number Publication date
JP7074928B2 (ja) 2022-05-24
US11401899B2 (en) 2022-08-02
WO2020202791A1 (ja) 2020-10-08
CN113574352A (zh) 2021-10-29
US20220074375A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6013983B2 (ja) 物理量測定装置
EP3199924A1 (en) Thermal flowmeter
JP7074928B2 (ja) 物理量検出装置
WO2020202722A1 (ja) 物理量検出装置
JP7265643B2 (ja) 流量測定装置
JP2021067510A (ja) 物理量検出装置
JP7091476B2 (ja) 物理量測定装置
JP6995020B2 (ja) 物理量検出装置
JP7049277B2 (ja) 物理量検出装置
JP6876018B2 (ja) 物理量検出装置
JP7062135B2 (ja) 物理量検出装置
WO2023100213A1 (ja) 物理量検出装置
JP2020034508A (ja) 物理量検出装置
CN113167620B (zh) 物理量测定装置
JP7350173B2 (ja) 流量測定装置
WO2022264498A1 (ja) 物理量検出装置
JPWO2019220715A1 (ja) 物理量検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150