JPWO2020189021A1 - Printing method, printed matter, and printing system - Google Patents
Printing method, printed matter, and printing system Download PDFInfo
- Publication number
- JPWO2020189021A1 JPWO2020189021A1 JP2021506211A JP2021506211A JPWO2020189021A1 JP WO2020189021 A1 JPWO2020189021 A1 JP WO2020189021A1 JP 2021506211 A JP2021506211 A JP 2021506211A JP 2021506211 A JP2021506211 A JP 2021506211A JP WO2020189021 A1 JPWO2020189021 A1 JP WO2020189021A1
- Authority
- JP
- Japan
- Prior art keywords
- layer
- white
- print layer
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 127
- 238000007639 printing Methods 0.000 title claims abstract description 105
- 239000000463 material Substances 0.000 claims abstract description 99
- 230000008569 process Effects 0.000 claims abstract description 72
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 238000000149 argon plasma sintering Methods 0.000 claims description 174
- 230000015572 biosynthetic process Effects 0.000 claims description 66
- 239000000758 substrate Substances 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 abstract description 17
- 230000002159 abnormal effect Effects 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 530
- 239000000976 ink Substances 0.000 description 124
- 230000007246 mechanism Effects 0.000 description 78
- 238000004364 calculation method Methods 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002591 computed tomography Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000010438 granite Substances 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M3/00—Printing processes to produce particular kinds of printed work, e.g. patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
Landscapes
- Printing Methods (AREA)
- Ink Jet (AREA)
Abstract
対象物の光学的質感を良好に再現するための印刷を高速且つ適切に行うことが可能な印刷方法及び印刷システムを提供する。また、印刷物中に形成された白色層(7)での光の異常伝播が抑えられた印刷物(1)を提供する。本発明では、対象物の表面の質感に関するデータに基づいて、基材(2)に多層構造の印刷層(5)を形成する印刷層形成処理を実施し、印刷層形成処理では、透明な透明層(8)と、白色流体により構成され、且つ印刷層(5)においてデータに応じた位置に配置される白色層(7)と、黒色流体により構成され、且つ印刷層(5)において白色層(7)が存在する領域で白色層(7)と基材(2)との間に配置される黒色層(9)と、を有する印刷層(5)を形成する。Provided are a printing method and a printing system capable of performing printing at high speed and appropriately in order to satisfactorily reproduce the optical texture of an object. Further, the present invention provides a printed matter (1) in which abnormal propagation of light in the white layer (7) formed in the printed matter is suppressed. In the present invention, a print layer forming process for forming a multi-layered printed layer (5) on the base material (2) is performed based on data on the texture of the surface of the object, and the print layer forming process is transparent and transparent. A layer (8), a white layer (7) composed of a white fluid and arranged at a position corresponding to data in the print layer (5), and a white layer composed of a black fluid and in the print layer (5). A print layer (5) having a black layer (9) arranged between the white layer (7) and the base material (2) in the region where (7) exists is formed.
Description
本発明は、印刷方法及び印刷システムに係り、特に、対象物の表面の質感を再現するための印刷方法及び印刷システムに関する。
また、本発明は、対象物の表面の質感が再現された印刷物にも関する。The present invention relates to a printing method and a printing system, and more particularly to a printing method and a printing system for reproducing the texture of the surface of an object.
The present invention also relates to a printed matter in which the texture of the surface of the object is reproduced.
近年、印刷技術の発展により、再現対象物(以下、単に「対象物」という)の質感の再現が可能となってきている。例えば、3次元プリント技術の開発により、対象物の質感(具体的には、厚み等)を良好に再現することができる。また、硬化性を有するクリアインク等を用いた印刷(以下、便宜的に「2.5次元プリント」という)の技術により、対象物の質感、特に、対象物の表面における光学的質感を良好に再現することができる。ここで、光学的質感としては、具体的には、光の内部散乱特性、及び、対象物の表面に露出している透明部分の奥行き感(換言すると、透明部分の厚み)等が該当する。 In recent years, with the development of printing technology, it has become possible to reproduce the texture of an object to be reproduced (hereinafter, simply referred to as "object"). For example, with the development of three-dimensional printing technology, the texture (specifically, thickness, etc.) of an object can be reproduced satisfactorily. In addition, the texture of the object, especially the optical texture on the surface of the object, is improved by the printing technology using clear ink having curability (hereinafter, referred to as "2.5-dimensional printing" for convenience). It can be reproduced. Here, the optical texture specifically corresponds to the internal scattering characteristics of light, the sense of depth of the transparent portion exposed on the surface of the object (in other words, the thickness of the transparent portion), and the like.
2.5次元プリントにおいて印刷物各部の光学的質感を調整するためには、当該各部における透明層(例えば、クリアインク層)の厚みを変化させる必要がある。透明層の厚みを場所毎に変えるには、各場所においてクリアインクの吐出及び硬化を厚みに応じて繰り返すことになる。このような手順での印刷は、印刷物の生成に長い時間を要してしまう。 In order to adjust the optical texture of each part of the printed matter in 2.5-dimensional printing, it is necessary to change the thickness of the transparent layer (for example, the clear ink layer) in each part. In order to change the thickness of the transparent layer for each place, ejection and curing of clear ink are repeated at each place according to the thickness. Printing with such a procedure takes a long time to generate printed matter.
上述した2.5次元プリントの問題を解決する方法としては、例えば、特許文献1に記載の技術が挙げられる。特許文献1に記載の技術(特に、特許文献1の実施例2に記載の技術)によれば、印刷物において透明層が一定の厚みを有し、且つ、透明層の上方又は下方にホワイトインクからなる層(以下、「白色層」ともいう。)が設けられる。この白色層は、印刷物中、光散乱が抑制される箇所(つまり、光の内部散乱が少ない部位)に設けられる。このように特許文献1に記載の技術を用いることで、透明層の厚みを場所に応じて変えることなく、白色層を形成するだけで光学的質感を調整することが可能となる。この結果、対象物の光学的質感を再現するための印刷がより高速に行われるようになる。 As a method for solving the above-mentioned 2.5-dimensional printing problem, for example, the technique described in
しかしながら、特許文献1に記載したように透明層の近傍に白色層を設けると、印刷物に入射した光が白色層を通じて異常に伝播する虞があり、例えば、白色層周囲に光が回り込む可能性がある。したがって、白色層を設ける場合には、その周辺での光の異常伝播を抑える必要がある。 However, if a white layer is provided in the vicinity of the transparent layer as described in
そこで、本発明は、上記の事情に鑑みてなされたものであり、以下に示す目的を解決することを課題とする。
具体的に説明すると、本発明は、上記従来技術の問題点を解決し、対象物の光学的質感を良好に再現するための印刷を高速且つ適切に行うことが可能な印刷方法及び印刷システムを提供することを目的とする。
また、本発明の他の目的は、印刷物中に形成された白色層での光の異常伝播が抑えられた印刷物を提供することである。Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to solve the following object.
Specifically, the present invention provides a printing method and a printing system capable of solving the problems of the above-mentioned prior art and performing printing at high speed and appropriately for reproducing the optical texture of an object well. The purpose is to provide.
Another object of the present invention is to provide a printed matter in which anomalous propagation of light in a white layer formed in the printed matter is suppressed.
上記の目的を達成するために、本発明の印刷方法は、対象物の表面の質感を再現する印刷方法であって、質感に関するデータに基づいて、基材に多層構造の印刷層を形成する印刷層形成処理を実施し、印刷層形成処理では、透明な透明層と、白色流体により構成され、且つ印刷層においてデータに応じた位置に配置される白色層と、黒色流体により構成され、且つ印刷層において白色層が存在する領域で白色層と基材との間に配置される黒色層と、を有する印刷層を形成することを特徴とする。 In order to achieve the above object, the printing method of the present invention is a printing method that reproduces the texture of the surface of an object, and prints to form a multi-layered printing layer on a substrate based on data on the texture. A layer forming process is carried out, and in the print layer forming process, a transparent transparent layer, a white layer composed of a white fluid and arranged at a position corresponding to data in the print layer, and a black fluid are composed and printed. It is characterized by forming a print layer having a black layer arranged between the white layer and the base material in a region where the white layer exists in the layer.
上述した本発明の印刷方法によれば、印刷層において白色層が存在する領域で白色層と基材との間に黒色層を配置する。この黒色層が白色層周囲への光の異常伝播を抑制することにより、対象物の光学的質感を良好に再現するための印刷を高速且つ適切に行うことが可能となる。 According to the printing method of the present invention described above, the black layer is arranged between the white layer and the base material in the region where the white layer exists in the printing layer. By suppressing the abnormal propagation of light around the white layer, the black layer makes it possible to perform printing at high speed and appropriately in order to satisfactorily reproduce the optical texture of the object.
また、印刷層形成処理では、厚みが均一である白色媒体と白色媒体に重ねられた内部散乱部材とを有する基材を用意し、内部散乱部材の表面上に印刷層を形成するとよい。
上記の構成であれば、印刷によって対象物の質感を再現する際に、内部散乱部材の光散乱特性を利用することができる。Further, in the print layer forming process, it is preferable to prepare a base material having a white medium having a uniform thickness and an internal scattering member superimposed on the white medium, and form a print layer on the surface of the internal scattering member.
With the above configuration, the light scattering characteristics of the internal scattering member can be utilized when reproducing the texture of the object by printing.
また、印刷層形成処理では、厚みが均一である内部散乱部材の表面上に印刷層を形成するとよい。
上記の構成であれば、内部散乱部材の厚みが均一であるので、内部散乱部材の各部分における光散乱特性も略均一となる。この場合には、内部散乱部材の光散乱特性が部分間で異なる場合と比較して、所望の光散乱特性を再現し得る印刷層の形成条件(具体的には層構成等)を設定するための計算がより容易になり、より高速に実施される。また、部位毎に厚みが異なるような印刷プロセスに代えて、均一厚みの内部散乱部材を重ねることにすれば、質感再現の処理がより容易になる。Further, in the print layer forming process, it is preferable to form a print layer on the surface of the internal scattering member having a uniform thickness.
With the above configuration, since the thickness of the internal scattering member is uniform, the light scattering characteristics in each portion of the internal scattering member are also substantially uniform. In this case, in order to set the formation conditions (specifically, the layer configuration, etc.) of the printed layer capable of reproducing the desired light scattering characteristics as compared with the case where the light scattering characteristics of the internal scattering member differ between parts. Is easier to calculate and faster. Further, if the internal scattering members having a uniform thickness are stacked instead of the printing process in which the thickness differs for each part, the texture reproduction process becomes easier.
また、印刷層形成処理では、厚みが均一である透明層を有する印刷層を形成するとよい。
上記の構成によれば、透明層の厚みを場所に応じて変える場合と比較して、印刷層をより容易に形成することができ、且つ印刷層の形成速度をより高速化することが可能となる。Further, in the print layer forming process, it is preferable to form a print layer having a transparent layer having a uniform thickness.
According to the above configuration, the print layer can be formed more easily and the print layer formation speed can be further increased as compared with the case where the thickness of the transparent layer is changed depending on the location. Become.
また、印刷層形成処理では、透明層と基材との間に配置される白色層を有する印刷層を形成するとよい。
上記の構成によれば、透明層の下層に白色層が存在するので、透明層の下層からの光反射がより明瞭に視認されるようになる。これにより、より薄い透明層であっても対象物の光学的質感(厳密には、対象物が有する透明部分の奥行き感)を良好に再現することができる。この結果、透明層の形成時には透明層の厚みをより薄くすることができるため、印刷層の形成速度を高速化することが可能となる。Further, in the print layer forming process, it is preferable to form a print layer having a white layer arranged between the transparent layer and the base material.
According to the above configuration, since the white layer exists under the transparent layer, the light reflection from the lower layer of the transparent layer can be visually recognized more clearly. This makes it possible to satisfactorily reproduce the optical texture of the object (strictly speaking, the sense of depth of the transparent portion of the object) even with a thinner transparent layer. As a result, when the transparent layer is formed, the thickness of the transparent layer can be made thinner, so that the formation speed of the print layer can be increased.
また、印刷層形成処理では、透明層と隣接する白色層を有する印刷層を形成するとよい。
上記の構成によれば、白色層を形成することで、光散乱の制御がより容易になる。これにより、透明層の厚みを薄くしても対象物の光学的質感が良好に再現されるという効果が、より効果的に発揮されるようになる。Further, in the print layer forming process, it is preferable to form a print layer having a white layer adjacent to the transparent layer.
According to the above configuration, the formation of the white layer makes it easier to control light scattering. As a result, the effect that the optical texture of the object is well reproduced even if the thickness of the transparent layer is reduced can be more effectively exhibited.
また、印刷層形成処理では、白色層と隣接する黒色層を有する印刷層を形成するとよい。
上記の構成によれば、黒色層によって白色層周辺へ光の異常伝播を抑える効果が、より効果的に発揮されるようになる。Further, in the print layer forming process, it is preferable to form a print layer having a black layer adjacent to the white layer.
According to the above configuration, the effect of suppressing the abnormal propagation of light to the periphery of the white layer by the black layer can be more effectively exhibited.
また、印刷層形成処理では、カラー流体により構成されたカラー層と、カラー層と透明層との間でカラー層と隣接する白色層と、を有する印刷層を形成するとよい。
上記の場合には、印刷層においてカラー層を有する部分では、カラー層と透明層の間に白色層が介在しているので、対象物の表面色を良好に再現することが可能となる。Further, in the print layer forming process, it is preferable to form a print layer having a color layer composed of a color fluid and a white layer adjacent to the color layer between the color layer and the transparent layer.
In the above case, in the portion of the print layer having the color layer, since the white layer is interposed between the color layer and the transparent layer, it is possible to satisfactorily reproduce the surface color of the object.
また、印刷層形成処理では、対象物の表面にて露出している透明部分の厚みに関する厚みデータ、及び、対象物の表面への入射光に対する対象物の光散乱特性に関する光散乱特性データに基づいて設定された形成条件に従い、基材に印刷層を像様に形成するとよい。
上記の構成では、対象物の質感に関するデータ(具体的には、厚みデータ及び光散乱特性データ)に基づいて印刷層の形成条件を設定する。この形成条件に従って印刷層を形成すれば、対象物の光学的質感を良好に再現することが可能となる。Further, in the print layer forming process, the thickness data regarding the thickness of the transparent portion exposed on the surface of the object and the light scattering characteristic data regarding the light scattering characteristic of the object with respect to the incident light on the surface of the object are used. It is preferable to form the printed layer on the base material in the form of an image according to the formation conditions set in the above.
In the above configuration, the formation conditions of the print layer are set based on the data regarding the texture of the object (specifically, the thickness data and the light scattering characteristic data). If the print layer is formed according to this formation condition, it is possible to satisfactorily reproduce the optical texture of the object.
また、印刷層形成処理では、基材の表面の各領域に対して設定された形成条件に従って像様に配置される白色層を有する印刷層を形成するとよい。
上記の構成では、形成条件に従って印刷層を形成する際、白色層を像様(イメージワイズ)に配置することができる。この結果、対象物の光学的質感(特に、透明部分の奥行き感)が良好に再現されるようになる。Further, in the print layer forming process, it is preferable to form a print layer having a white layer arranged in an image according to the formation conditions set for each region of the surface of the base material.
In the above configuration, when the print layer is formed according to the formation conditions, the white layer can be arranged in an image-like manner. As a result, the optical texture of the object (particularly, the sense of depth of the transparent portion) can be reproduced well.
また、前述した課題を解決するため、本発明の印刷物は、基材と、対象物の表面の質感に関するデータに基づいて基材に形成された多層構造の印刷層と、を有し、印刷層は、透明な透明層と、白色流体により構成され、且つ印刷層においてデータに応じた位置に配置された白色層と、黒色流体により構成され、且つ印刷層において白色層が存在する領域で白色層と基材との間に配置された黒色層と、を備えることを特徴とする。
上記のように構成された本発明の印刷物であれば、その中に形成された白色層周囲への光の異常伝播が抑えられるようになる。Further, in order to solve the above-mentioned problems, the printed matter of the present invention has a base material and a multi-layered printed layer formed on the base material based on data on the texture of the surface of the object, and is a printed layer. Is composed of a transparent transparent layer, a white layer composed of a white fluid and arranged at a position corresponding to data in the print layer, and a white layer in a region composed of a black fluid and having a white layer in the print layer. It is characterized by comprising a black layer disposed between the substrate and the substrate.
With the printed matter of the present invention configured as described above, the abnormal propagation of light around the white layer formed therein can be suppressed.
また、前述した課題を解決するため、本発明の印刷システムは、対象物の表面の質感を再現する印刷システムであって、基材に多層構造の印刷層を形成する印刷層形成装置と、質感に関するデータに基づいて、印刷層を印刷層形成装置に形成させる印刷制御装置と、を有し、印刷制御装置は、印刷層形成装置に、透明な透明層と、白色流体により構成され、且つ印刷層においてデータに応じた位置に配置される白色層と、黒色流体により構成され、且つ印刷層において白色層が存在する領域で白色層と基材との間に配置される黒色層と、を有する印刷層を形成させることを特徴とする。
上記のように構成された本発明の印刷システムを用いることにより、対象物の光学的質感を良好に再現するための印刷を、高速且つ適切に行うことが可能となる。Further, in order to solve the above-mentioned problems, the printing system of the present invention is a printing system that reproduces the texture of the surface of an object, and is a printing layer forming apparatus that forms a printing layer having a multilayer structure on a base material and a texture. The print control device comprises a print control device for forming a print layer on the print layer forming device based on the data relating to the above, and the print control device is composed of a transparent transparent layer and a white fluid on the print layer forming device, and prints. It has a white layer arranged at a position corresponding to data in the layer, and a black layer composed of a black fluid and arranged between the white layer and the substrate in a region where the white layer exists in the print layer. It is characterized by forming a print layer.
By using the printing system of the present invention configured as described above, it is possible to perform printing at high speed and appropriately in order to satisfactorily reproduce the optical texture of the object.
本発明によれば、対象物の光学的質感を良好に再現するための印刷を高速且つ適切に行うことが可能となる。
また、本発明によれば、印刷物中に形成された白色層周囲への光の異常伝播が抑えられた印刷物を提供することが可能である。According to the present invention, it is possible to perform printing at high speed and appropriately in order to satisfactorily reproduce the optical texture of an object.
Further, according to the present invention, it is possible to provide a printed matter in which abnormal propagation of light to the periphery of a white layer formed in the printed matter is suppressed.
本発明の一実施形態(以下、「本実施形態」と言う。)に係る印刷方法、印刷物及び印刷システムについて、添付の図面を適宜参照しながら、以下に詳細に説明する。
なお、以下に説明する実施形態は、本発明の理解を容易にするために挙げた一例に過ぎず、本発明を限定するものではない。すなわち、本発明は、その趣旨を逸脱しない限りにおいて、以下に説明する実施形態から変更又は改良され得る。また、当然ながら、本発明には、その等価物が含まれる。A printing method, a printed matter, and a printing system according to an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail below with reference to the accompanying drawings as appropriate.
It should be noted that the embodiments described below are merely examples for facilitating the understanding of the present invention, and do not limit the present invention. That is, the present invention may be modified or improved from the embodiments described below as long as it does not deviate from the gist thereof. Further, as a matter of course, the present invention includes the equivalent thereof.
また、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
また、本明細書では、特に断る場合を除き、後述する印刷層の積層方向を上下方向とし、基材により近い側を「下側」とし、基材からより離れている側を「上側」とすることとする。Further, in the present specification, the numerical range represented by using "~" means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.
Further, in the present specification, unless otherwise specified, the stacking direction of the print layer described later is the vertical direction, the side closer to the base material is referred to as "lower side", and the side farther from the base material is referred to as "upper side". I decided to.
<本実施形態の概要>
先ず、本実施形態の概要について説明する。
本実施形態に係る印刷方法及び印刷システムは、対象物の表面の質感を再現した印刷物を生成するために利用される。ここで、「対象物」とは、質感再現の対象となる部材である。対象物の一例としては、表面の質感(厳密には、光学的質感)が部位に応じて異なる材料が挙げられ、具体的には、花崗岩及び大理石等の岩石、石、木材、髪の毛、骨、皮膚(肌)、歯、コットン及びシルクなどの天然素材が挙げられる。<Outline of this embodiment>
First, the outline of the present embodiment will be described.
The printing method and printing system according to the present embodiment are used to generate a printed matter that reproduces the texture of the surface of the object. Here, the "object" is a member that is the target of texture reproduction. An example of an object is a material whose surface texture (strictly speaking, optical texture) differs depending on the part, and specifically, rocks such as granite and marble, stones, wood, hair, bones, etc. Examples include natural materials such as skin (skin), teeth, cotton and silk.
なお、以下では、図1に示した花崗岩Tを対象物とするケースを例に挙げて説明する。ただし、本実施形態は、当然ながら、他の材料を対象物とするケースにも適用可能である。 In the following, a case where the granite T shown in FIG. 1 is the object will be described as an example. However, the present embodiment is, of course, applicable to the case where other materials are the objects.
また、本実施形態において、「質感」とは、例えば光散乱特性及び奥行き感である。奥行き感は、対象物の表面にて露出している透明部分(例えば、図1に示す花崗岩Tの表面に現れる石英Tc)の厚みである。ここで、透明部分の厚みとは、対象物の表面から、透明部分とそれに隣接する部分(具体的には、透明部分の直下にある有色部分)との界面までの長さである。 Further, in the present embodiment, the "texture" is, for example, a light scattering characteristic and a sense of depth. The sense of depth is the thickness of the transparent portion (for example, quartz Tc appearing on the surface of the granite T shown in FIG. 1) exposed on the surface of the object. Here, the thickness of the transparent portion is the length from the surface of the object to the interface between the transparent portion and the portion adjacent to the transparent portion (specifically, the colored portion immediately below the transparent portion).
また、光散乱特性は、光の内部散乱特性(表面下散乱とも言う。)のことである。内部散乱は、光が物体に対して照射された際に、図2に示すように、その物体内部で光が反射及び散乱を繰り返すことで、物体表面における光の入射位置から離れた位置から光が出射することである。また、光の内部散乱特性は、光の入射位置から出射位置までの距離(図2に示した距離d)、及び出射位置における光の強度に基づいて特定される。 The light scattering characteristic is an internal scattering characteristic of light (also referred to as subsurface scattering). Internal scattering means that when light is applied to an object, as shown in FIG. 2, the light repeatedly reflects and scatters inside the object, so that the light is emitted from a position distant from the incident position of the light on the surface of the object. Is emitted. Further, the internal scattering characteristic of light is specified based on the distance from the incident position of light to the emission position (distance d shown in FIG. 2) and the intensity of light at the emission position.
本実施形態では、上述した対象物の表面の質感を再現するために、インクからなる印刷層を基材に形成する質感再現印刷を実施する。この質感再現印刷により、図3に示した印刷物1が生成される。印刷物1の表面(視認される側の面)は、対象物の表面の色、模様及び質感が再現されている。 In the present embodiment, in order to reproduce the texture of the surface of the object described above, texture reproduction printing is performed in which a print layer made of ink is formed on a substrate. By this texture reproduction printing, the printed
<本実施形態で生成される印刷物について>
次に、図3を参照しながら、本実施形態で生成される印刷物1について説明する。なお、図3では、印刷物1の構成を模式的に図示しており、図示の都合上、各部分の厚み及びサイズ等が実際の内容と異なっている。<About the printed matter generated in this embodiment>
Next, the printed
印刷物1は、図3に示した基材2と、基材2の表面(印刷面)に形成された印刷層5と、によって構成されている。また、質感再現印刷に用いられる基材2は、質感再現印刷用の基材2である。 The printed
質感再現用の基材2は、白色媒体3である白色紙の上に薄板状の内部散乱部材4を積層させて構成される積層体である。ここで、内部散乱部材4は、半透明(例えば半濁色又は乳半色)の光透過性部材であり、全光線透過率と散乱光線透過率との差が0%〜10%となる部材である。内部散乱部材4の具体例としては、乳半色又は白色のアクリル板、塩ビ材又はPET(ポリエチレンテレフタラート)材等、紫外線硬化性インクを用いたインクジェット印刷に利用される基材が挙げられる。なお、内部散乱部材4としては、全光線透過率が10%〜80%以下であり、且つ、透過光線透過率が10%〜80%である部材がより好ましい。また、内部散乱部材4については、Haze値が1〜90%であることが好ましく、より好ましくはHaze値が30〜60%であると良い。
なお、本実施形態において、内部散乱部材4の各部分の厚みは均一であるが、これに限定されず、内部散乱部材4の各部分の厚みが均一ではなく変化してもよい。The
In the present embodiment, the thickness of each portion of the
白色媒体3である白色紙は、印刷物1の最下層を構成する。白色媒体3は、内部散乱部材4と密着しており、例えば内部散乱部材4の表面上に接着している。ただし、白色媒体3は、内部散乱部材4に接着している場合に限定されず、内部散乱部材4に接していればよい。また、白色媒体3については、印刷物1の中で最も光の反射率が高く、反射率が90%以上となるように設定されていると好ましい。また、白色媒体3は、白色紙に限定されず、白色のシート、フィルム、板材及び繊維体(布)、並びにプラスチック基材(例えば、アクリル材、PET(ポリエチレンテレフタラート)材、塩ビ材)等を代用することが可能である。
なお、質感再現用の基材2は、白色媒体3及び内部散乱部材4を有する基材に限定されず、例えば、内部散乱部材4単体であってもよく、あるいは、白色媒体3及び内部散乱部材4以外の部材を有するものであってもよい。また、本実施形態において、白色媒体3の各部分の厚みは均一であるが、これに限定されず、白色媒体3の各部分の厚みが均一ではなく変化してもよい。The white paper, which is the
The
印刷層5は、印刷面である基材2の表面に着弾(付着)したインクの層を積層させた多層構造からなる。また、印刷層5は、対象物の表面の質感に関するデータ(具体的には、後述の厚みデータ及び光散乱特性データ)に基づいて基材2の印刷面上に形成される。 The
本実施形態において用いられるインクは、カラー流体であるYMC(イエロー、マゼンタ、及びシアン)3色のカラーインク、黒色流体であるブラック(K)インク、白色流体であるホワイトインク、及び、クリアインクである。カラーインクは、有色の顔料又は染料を含有し、カラー印刷に用いられる一般的なインクである。ブラックインクは、カーボンブラックを高濃度にて含有する黒色のインクである。ホワイトインクは、白色の顔料又は染料を含有し、例えば下地印刷等に使用される白色のインクである。クリアインクは、光(具体的には、紫外線)を受けることで硬化する紫外線硬化型の流体である。なお、本発明において印刷層5を形成するために用いられるクリアインクは、光の照射により硬化可能な透明流体であればよい。また、照射光としては、紫外線、赤外線、及び可視光線等が挙げられる。 The inks used in this embodiment are YMC (yellow, magenta, and cyan) three-color ink, which is a color fluid, black (K) ink, which is a black fluid, white ink, which is a white fluid, and clear ink. be. The color ink contains a colored pigment or dye and is a general ink used for color printing. The black ink is a black ink containing carbon black at a high concentration. The white ink contains a white pigment or dye and is a white ink used for, for example, underprinting. Clear ink is an ultraviolet curable fluid that cures when it receives light (specifically, ultraviolet rays). The clear ink used to form the
また、本実施形態では、印刷面における印刷層5の形成範囲を複数の単位領域に区画し、印刷層5が図3に示すように各単位領域の位置に応じて像様(イメージワイズ)に形成される。これにより、印刷物1にて再現される質感が、印刷物1の各部分に応じて変化したものとなる。換言すると、印刷物1の各部分での質感は、印刷層5中、当該各部分における構造(層構造)に応じて定まることになる。 Further, in the present embodiment, the formation range of the
ここで、印刷面における印刷層5の形成範囲を区画する際の単位である単位領域は、微小な方形領域であり、対象物の光散乱特性を定義する際に設定される分割領域である。より具体的に説明すると、単位領域は、例えば、カメラ等を用いて光散乱特性を計測する際に、対象物の表面をカメラで撮影した際の解像度(画素)と対応するサイズに設定された領域、あるいは、そのサイズを平均化した、より広いサイズの領域である。 Here, the unit region, which is a unit for partitioning the formation range of the
印刷層5について詳しく説明すると、図3に示すように、印刷層5は、その全域(つまり、印刷面全体)に亘って透明層8を有する。透明層8は、基材2に着弾したクリアインクを硬化させて構成されるインク層であり、最も光が伝播し易く、質感に及ぼす影響が大きい層である。この透明層8は、対象物の表面にて露出している透明部分の奥行き感を再現する目的で形成される。そのため、印刷物1のうち、透明部分と対応する部位1aでは、図3に示すように透明層8が印刷層5の最表層に配置される。 To explain the
なお、透明層8の形成については、クリアインクによって構成する場合に限らず、例えば、透明なアクリル板又は塩ビの板等を透明層8として配置する場合でもよい。 The formation of the
透明層8について補足しておくと、本実施形態において、透明層8は、前述したように、印刷層5の全体(換言すると、全ての単位領域)に亘って形成される。そして、透明層8の各部分は、図3に示すように、印刷物1の厚み方向(上下方向)において略同じ位置に在る。また、透明層8の各部分の厚みは、図3に示すように均一である。ただし、これに限定されるものではなく、透明層8の各部分の厚みが均一でなく変化してもよい。また、印刷物1の厚み方向における透明層8の各部分の位置(上下位置)が部分間で異なってもよい。 As a supplement to the
他方、印刷物1のうち、対象物の透明部分とは異なる部分(すなわち、対象物の有色部分)と対応する部位1bでは、図3に示すように、カラー層6が印刷層5の最表層に配置される。カラー層6は、YMC3色のカラーインクによって構成されるインク層である。 On the other hand, in the
また、本実施形態では、ホワイトインクによって構成された白色層7が印刷層5内に配置される。この白色層7は、印刷層5において、対象物の表面の質感に関するデータ(具体的には、後述の厚みデータ及び光散乱特性データ)に応じた位置に配置される。詳しく説明すると、上記のデータに基づいて印刷層5の形成条件が設定され、当該形成条件に従って印刷層5が形成される結果、印刷層5において白色層7が像様(イメージワイズ)に配置される。 Further, in the present embodiment, the
図3を参照しながらより詳細に説明すると、印刷物1のうち、透明部分と対応する部位1aでは、透明層8と基材2との間に白色層7が配置され、本実施形態では透明層8の直下にて白色層7が透明層8と隣接する。このように透明層8の直下に白色層7が設けられることで、透明層8の下層からの光反射がより明瞭に視認されるようになる。これにより、例えば、比較的厚みを有する透明部分の奥行き感を再現するにあたり、透明層8の厚みを比較的薄くしても、白色層7によって上記の奥行き感が良好に再現される。 Explaining in more detail with reference to FIG. 3, in the printed
他方、印刷物1のうち、有色部分と対応する部位1bでは、図3に示すように、カラー層6と透明層8との間に白色層7が配置され、本実施形態ではカラー層6の直下にて白色層7がカラー層6と隣接する。このようにカラー層6の直下に白色層7が設けられていることで、カラー層6の上方から入射された光が、カラー層6を透過した後に白色層7にて反射する。これにより、カラー層6を通った光は、散乱及び吸収されることなく、効率的に反射することで視認者にとって比較的鮮明に見えるようになる。これにより、有色部分と対応する部位1bでは、例えば、当該に入射された光が内部散乱によって入射位置から離れた位置で反射する際に、入射位置と反射位置との距離が然程離れない光散乱特性が再現される。 On the other hand, in the
さらに、本実施形態では、ブラック(K)インクによって構成された黒色層9が印刷層5内に配置される。この黒色層9は、図3に示すように、印刷層5において白色層7が存在する領域で白色層7と基材2との間に配置される。詳しく説明すると、印刷層5を視認側から見た際に、黒色層9は、白色層7が配置された場所と同じ場所に、白色層7の外縁と黒色層9の外縁とが一致するように配置される(つまり、本実施形態では白色層7と黒色層9とが完全に重なる)。 Further, in the present embodiment, the
図3を参照しながらより詳細に説明すると、印刷物1の、透明部分と対応する部位1a及び有色部分と対応する部位1bのいずれにおいても、白色層7と基材2との間に黒色層9が配置され、本実施形態では白色層7の直下にて黒色層9が白色層7と隣接する。特に、有色部分と対応する部位1bでは、図3に示すように、透明層8の直下位置に黒色層9がさらに設けられており、黒色層9が透明層8と隣接する。 Explaining in more detail with reference to FIG. 3, in both the portion 1a corresponding to the transparent portion and the
本実施形態では、以上のように白色層7の下方に黒色層9が配置されていることにより、白色層7にて反射された光が当該白色層7の周囲に向かって広がる(拡散する)際に、その光を黒色層9が吸収する。この結果、白色層7周辺への光の異常伝播が抑制されるようになる。かかる効果は、白色層7の直下位置にて黒色層9が白色層7と隣接すると、より効果的に発揮される。 In the present embodiment, since the
なお、前述したように、本実施形態では、白色層7と黒色層9とが完全に重なっており、換言すると、印刷層5を視認側から見た際に、黒色層9の全面が白色層7によって覆い隠されている。これにより、黒色層9を視認者によって気付かれないようにすることが可能となる。 As described above, in the present embodiment, the
ちなみに、印刷層5を視認側から見た際に、黒色層9の全面が白色層7によって覆い隠されていればよく、例えば、黒色層9の平面サイズが、その直上位置にある白色層7の平面サイズよりも小さくなっていてもよい。ただし、白色層7周辺への光の異常伝播を抑える観点では、黒色層9の平面サイズと白色層7の平面サイズとが揃っていて黒色層9及び白色層7が完全に重なっている方が、より好ましい。 Incidentally, when the
<本実施形態に係る印刷システムの構成>
次に、本実施形態に係る印刷システム10の構成について説明する。印刷システム10は、対象物の表面の質感を再現する設備であり、厳密には、当該質感を再現した印刷物1を生成する。印刷システム10は、図4に示すように、印刷層形成装置20、厚みデータ取得装置30、光散乱特性データ取得装置40及び印刷制御装置50を主要構成機器として有する。以下、印刷システム10の各構成機器について個別に説明する。<Structure of printing system according to this embodiment>
Next, the configuration of the
(印刷層形成装置)
印刷層形成装置20は、基材2の印刷面(すなわち、内部散乱部材4の上側の表面)に向けて流体としてのインクを吐出して、印刷面上に多層構造の印刷層5を形成する装置である。本実施形態において、印刷層形成装置20は、例えば、インクジェットプリンタによって構成される。(Print layer forming device)
The print
具体的に説明すると、印刷層形成装置20は、各種のインクを基材2の印刷面(厳密には、印刷面において印刷層5が形成される範囲)の各単位領域に向けて順次吐出する。各単位領域では、着弾したインクのドットがインク層を形成し、各インク種類のインク層が複数重ねられる。これにより、印刷面上に多層構造の印刷層5が形成される。 Specifically, the print
印刷層形成装置20は、図4及び図5に示すように、移動機構21と吐出機構22と硬化機構23と制御機構24とを有する。移動機構21は、印刷層形成装置20内における移動経路21Rに沿って基材2を移動させる。移動機構21は、図5に図示のように駆動ローラによって構成されてもよく、あるいは駆動ベルトによって構成されてもよい。 As shown in FIGS. 4 and 5, the print
なお、移動機構21は、印刷速度をより高速化する観点から、基材2を順方向にのみ移動させるワンウェイ搬送型の移動機構である。ただし、これに限定されるものではなく、基材2を移動経路21Rに沿って一定距離だけ下流側に移動させた後に同じ距離だけ上流側に逆走させ、その後に再度下流側に移動させる可逆搬送型の移動機構であってもよい。 The moving
吐出機構22は、ピエゾ素子の駆動によって各種のインクを吐出する記録ヘッドによって構成されている。この吐出機構22は、その下面が基材2の印刷面と対向している間に、図5に示すように印刷面に向けて各種のインクを吐出する。より詳しく説明すると、吐出機構22は、基材2の移動方向と交差する走査方向に移動可能である。また、吐出機構22の下面は、図6に示すように、インク種類別にノズル列が形成されたノズル面22Sとなっている。なお、ノズル面22Sには、走査方向の一端側から順に、ホワイトインク吐出用のノズル列Nw、イエローインク吐出用のノズル列Ny、マゼンタインク吐出用のノズル列Nm、シアンインク吐出用のノズル列Nc、ブラックインク吐出用のノズル列Nk、及びクリアインク吐出用のノズル列Nhがそれぞれ1列ずつ設けられている。ただし、各種インクを吐出するノズル列の本数及び配置位置等は、任意に設定することができ、図6に図示した構成以外の構成であってもよい。 The
そして、ノズル面22Sが基材2の印刷面と対向している間、吐出機構22は、シャトルスキャン方式により、不図示のキャリッジによって印刷面の直上位置にて走査方向に移動しながら、印刷面中の各単位領域に向けて、当該各単位領域に対応する種類のインクを吐出する。各種のインクは、吐出先の単位領域に着弾してドットを形成する。この結果、基材2の表面上には、カラー層6、白色層7、透明層8及び黒色層9が各単位領域の位置に応じてイメージワイズ(像様)に配置された印刷層5が形成される。 Then, while the
なお、吐出機構22からインクを吐出する方式としては、ピエゾ素子駆動方式に限定されない。例えば、ヒーター等の発熱体によってインクを加熱することで発生する気泡の圧力によってインク滴を飛ばすサーマルジェット方式をはじめ、各種の吐出方式を利用することができる。また、本実施形態では、吐出機構22がシリアルタイプのヘッドによって構成され、シャトルスキャン方式にてインクを吐出するものであるが、これに限定されるものではない。例えば、吐出機構22が、フルラインタイプのヘッドによって構成されたものであり、シングルパス方式にてインクを吐出するものであってもよい。また、本実施形態では、各種インクのノズル列すべてが同一のノズル面22Sに形成されているが、これに限定されるものではない。例えば、吐出機構22が、複数の記録ヘッドからなり、各記録ヘッドが互いに異なる種類のインクを吐出する構成でもよい。 The method of ejecting ink from the
硬化機構23は、基材2の印刷面上に着弾したクリアインクのドットに光(厳密には紫外線)を照射してクリアインクのドットを硬化させる。硬化機構23は、例えばメタルハライドランプ、高圧水銀ランプ、及び紫外線LED(Light Emitting Diode)等によって構成されており、本実施形態では基材2の移動方向において吐出機構22よりも下流側に配置されている。 The
なお、本実施形態では、基材2の移動方向において吐出機構22と硬化機構23とが互いに離間して配置されている。ただし、これに限定されるものではなく、吐出機構22と硬化機構23とが共通のキャリッジ(不図示)に搭載され、吐出機構22と硬化機構23とが一体的に走査方向に移動する構成であってもよい。このような構成では、硬化機構23が吐出機構22の脇位置に配置され、一回の走査動作において吐出機構22がクリアインクを吐出した直後に、硬化機構23がそのクリアインク(厳密には、印刷面上に着弾したクリアインクのドット)に向けて紫外線を照射すると、好ましい。 In this embodiment, the
制御機構24は、印刷層形成装置20に内蔵されたコントローラであり、不図示の駆動回路を介して移動機構21、吐出機構22及び硬化機構23の各々を制御する。より詳しく説明すると、制御機構24は、印刷制御装置50から送られてくる印刷データを受信する。印刷データとは、印刷層5の形成条件を示すデータである。印刷データについては、後に詳しく説明する。 The
印刷データの受信直後に、例えば、印刷層形成装置20の基材導入口(不図示)に所定の基材2が手差し方式で挿入されると、制御機構24は、この基材2をピックアップして移動経路21Rに沿って断続的に移動させるように移動機構21を制御する。 Immediately after receiving the print data, for example, when the
次に、制御機構24は、吐出機構22のノズル面22Sと基材2の印刷面とが対向している間に、印刷データに従って吐出機構22を制御して、印刷面の各単位領域に向けて吐出機構22からインクを吐出させる。この際、各単位領域に着弾するインクの種類、量及び密度(ドットの密度)等は、印刷データが示す形成条件に応じて決められている。 Next, the
また、制御機構24は、移動機構21による基材2の移動動作と、吐出機構22の走査動作とを交互に繰り返し、且つ各走査動作においてインクを吐出させるノズルを制御する。これにより、印刷面中の同じ単位領域にインクのドットを重ねて形成することができ、例えば、同じ種類のインクのドットを重ねることにより、そのインクからなるインク層の厚みを調整することが可能となる。また、ある種類のインクのドットの上に、別の種類のインクのドットを重ねることにより、前述の多層構造が形成されることになる。 Further, the
なお、多層構造における各インク層の積層順序については、前述した通りである。例えば、対象物の透明部分と対応する部位1aでは、透明層8が最表層として配置される。他方、対象物の有色部分と対応する部位1bでは、カラー層6が最表層として配置される。 The stacking order of each ink layer in the multilayer structure is as described above. For example, in the portion 1a corresponding to the transparent portion of the object, the
また、制御機構24は、吐出機構22にインクを吐出させるのと併行して、硬化機構23を制御して紫外線を照射させる。これにより、クリアインクのドットが存在する単位領域では、当該クリアインクのドットが硬化されて透明層8が形成されるようになる。 Further, the
そして、印刷データが示す形成条件に従って制御機構24が移動機構21、吐出機構22及び硬化機構23を制御すると、インク層の積層数、各インク層の種類及び厚みが単位領域毎に調整される。換言すると、印刷層5の各部分が当該各部分の位置に応じて像様(イメージワイズ)に形成される。この結果、印刷層5の表面(視認側の表面)にて対象物の表面の質感が再現される。 Then, when the
そして、印刷面に印刷層5が形成された基材2、すなわち印刷物1は、移動機構21によって印刷層形成装置20の排出口まで移動し、排出口から印刷層形成装置20の外に排出される。 Then, the
また、本実施形態に係る印刷層形成装置20は、図7に示したサンプルパターンSP1〜SP5を基材2に形成することが可能である。各サンプルパターンSP1〜SP5は、単色且つ一層のみのインク層からなり、後述する光散乱特性データ取得装置40がインク種類別の光散乱特性データを取得する上で必要な印刷画像として形成される。 Further, the print
サンプルパターンSP1〜SP5について説明すると、サンプルパターンSP1〜SP5は、図7に示すように、YMCK4色のインク及びホワイトインクの各々について、ドットの密度を段階的に変更させて形成される。ここで、ドットの密度とは、単位面積におけるドットの占有率を意味し、換言するとパターン濃度(濃淡)である。なお、ドットの密度は、ドットのサイズ、及び単位面積におけるドット数によって決まる。 Explaining the sample patterns SP1 to SP5, as shown in FIG. 7, the sample patterns SP1 to SP5 are formed by gradually changing the density of dots for each of the YMCK4 color ink and the white ink. Here, the dot density means the occupancy rate of dots in a unit area, in other words, the pattern density (shading). The dot density is determined by the dot size and the number of dots in a unit area.
印刷層形成装置20が各サンプルパターンSP1〜SP5を基材2に形成する場合、制御機構24は、サンプルパターン形成用の印刷データを印刷制御装置50から受信する。サンプルパターン形成用の印刷データには、各サンプルパターンSP1〜SP5の形成条件(具体的には、各サンプルパターンSP1〜SP5の位置、使用インクの種類、及びドットの密度等)が規定されている。制御機構24は、サンプルパターン形成用の印刷データを受信すると、そのデータに従って移動機構21、吐出機構22及び硬化機構23を制御する。これにより、各色のインクについて、各サンプルパターンSP1〜SP5がドットの密度を段階的に変化させて基材2に形成する。なお、サンプルパターン形成に用いられる基材2は、質感再現用の基材2であってもよく、質感再現用の基材2とは異なる基材2(例えば、白色紙)であってもよい。 When the print
(厚みデータ取得装置)
厚みデータ取得装置30は、対象物の表面にて露出している透明部分の厚みに関する厚みデータを取得する装置である。本実施形態に係る厚みデータ取得装置30は、X線CT(Computed Tomography)計測装置によって構成されており、X線CTスキャンによって対象物の断層画像を取得し、断層画像をレンダリング処理して透明部分を3次元化することで透明部分の厚みを計測する(例えば、『中野司,中島善人,中村光一,池田進,“X線CTによる岩石内部構造の観察・解析方法”,地質学雑誌,第106巻,第5号,pp.363-378,May 2000』参照)。(Thickness data acquisition device)
The thickness
また、本実施形態では、対象物の表面を複数の単位表面領域に区画し、厚みデータ取得装置30が単位表面領域毎に厚みを測定し、単位表面領域毎の厚みを示す厚みデータを取得することになっている。ここで、単位表面領域とは、対象物の表面を、基材2の印刷面(厳密には、印刷面における印刷層5の形成範囲)を複数の単位領域に区画する要領と同様の要領にて区画した場合の単位である。 Further, in the present embodiment, the surface of the object is divided into a plurality of unit surface regions, the thickness
図8を参照しながら分かり易く説明すると、基材2の印刷面(図8中、記号2Aにて示す)、及び対象物の表面(図8中、記号TAにて示す)の双方が矩形形状である。それぞれを複数の微小領域に区画したとき、印刷面を構成する各微小領域が前述の単位領域(図8中、記号2Bにて示す)であり、対象物の表面を構成する各微小領域が単位表面領域(図8中、記号TBにて示す)である。
なお、図8では、図示の都合上、印刷面を構成する単位領域の個数、及び、対象物の表面を構成する単位表面領域の個数は、実際の個数よりも少なく図示されている。Explaining in an easy-to-understand manner with reference to FIG. 8, both the printed surface of the base material 2 (indicated by the
In FIG. 8, for convenience of illustration, the number of unit regions constituting the printed surface and the number of unit surface regions constituting the surface of the object are shown to be smaller than the actual number.
また、対象物の表面中の各単位表面領域は、印刷面中、当該各単位表面領域の配置位置と同じ位置に配置された単位領域と対応付けられる。例えば、図8中、丸枠で囲まれた単位表面領域と単位領域とが互いに対応している。 Further, each unit surface area on the surface of the object is associated with a unit area arranged at the same position as the arrangement position of each unit surface area on the printed surface. For example, in FIG. 8, the unit surface area surrounded by a circle frame and the unit area correspond to each other.
(光散乱特性データ取得装置)
光散乱特性データ取得装置40は、光散乱特性に関するデータである光散乱特性データを取得する。本実施形態では、光の散乱特性が変調伝達関数(Modulated Transfer Function;以下、MTFと言う。)及び双方向散乱面反射率分布関数(Bidirectional Scattering Surface Reflectance Distribution Funcition;以下、BSSRDFと言う。)にて表され、光散乱特性データ取得装置40は、これらの関数にて表された光散乱特性を示す光散乱特性データを取得する。また、本実施形態に係る光散乱特性データ取得装置40は、互いに波長が異なる複数種類の光、具体的にはR(赤)、G(緑)及びB(青)の各色の光について光散乱特性データを取得する。(Light scattering characteristic data acquisition device)
The light scattering characteristic
光散乱特性を示すデータの取得方法について大まかに説明すると、MTFにて表される光散乱特性については、例えば、図9に示す矩形波チャートLPを用いて測定対象の光散乱特性を測定することで取得される。矩形波チャートLPは、図9に示すように、ガラス板等の透明基板に所定間隔で形成された複数の矩形状パターンLPxからなる測定用チャートである。光散乱特性を測定する際には、測定対象と矩形波チャートLPとを密着させて、光を矩形波チャートLP側から入射させて、測定対象の反射光を測定する。このとき、矩形波チャートLPの透過光が測定対象内部で散乱する結果、矩形状パターンLPxのエッジ部分がぼやけ、やや暗く測定される。定性的に言えば、このぼやけ具合いが測定対象の光散乱特性を示している。また、このぼやけ具合い、すなわち測定対象の光散乱特性を定量的に評価する手法としては、当該光散乱特性を示すMTFを計算する方法が利用できる。 The method of acquiring data showing the light scattering characteristics will be roughly described. For the light scattering characteristics represented by MTF, for example, the light scattering characteristics to be measured are measured using the rectangular wave chart LP shown in FIG. Obtained at. As shown in FIG. 9, the rectangular wave chart LP is a measurement chart composed of a plurality of rectangular patterns LPx formed on a transparent substrate such as a glass plate at predetermined intervals. When measuring the light scattering characteristics, the measurement target and the square wave chart LP are brought into close contact with each other, and the light is incident from the square wave chart LP side to measure the reflected light of the measurement target. At this time, as a result of the transmitted light of the rectangular wave chart LP being scattered inside the measurement target, the edge portion of the rectangular pattern LPx is blurred and measured slightly dark. Qualitatively speaking, this degree of blurring indicates the light scattering characteristics of the object to be measured. Further, as a method for quantitatively evaluating the degree of blurring, that is, the light scattering characteristic of the measurement target, a method of calculating the MTF showing the light scattering characteristic can be used.
なお、MTFの計算方法の一例としては、特開2012−205124号公報に記載された方法が挙げられるが、同公報に記載された方法に限定されず、光散乱特性を示すMTFを他の方法にて求めてもよい。 As an example of the method for calculating the MTF, the method described in Japanese Patent Application Laid-Open No. 2012-205124 can be mentioned, but the method is not limited to the method described in the same publication, and an MTF exhibiting light scattering characteristics can be used as another method. You may ask at.
BSSRDFにて表される光散乱特性については、測定対象への照射方向における入射光の強度と、観察方向における測定対象の反射光の強度とを、それぞれ照射方向及び観察方向を変化させて測定することで得られる。なお、BSSRDFにて示される光散乱特性データを取得する方法については、公知の方法が利用可能である(例えば、『Cuccia DJ,
Bevilacqua F, Durkin AJ, Tromberg BJ (2005) Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett 30(11):1354-1356.』参照)。また、特開2017−020816号公報に記載された測定装置を用いて、BSSRDFの光散乱特性を測定してもよい。Regarding the light scattering characteristics represented by BSSRDF, the intensity of the incident light in the irradiation direction to the measurement target and the intensity of the reflected light of the measurement target in the observation direction are measured by changing the irradiation direction and the observation direction, respectively. It can be obtained by. As a method for acquiring the light scattering characteristic data shown by BSSRDF, a known method can be used (for example, "Cuccia DJ,"
Bevilacqua F, Durkin AJ, Tromberg BJ (2005) Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett 30 (11): 1354-1356. ”). Further, the light scattering characteristic of BSSRDF may be measured by using the measuring device described in JP-A-2017-020816.
以上のように、光散乱特性データ取得装置40は、RGB3色の各々の光を用いて測定対象の光散乱特性を測定することで、図10に示すような測定対象の光散乱特性データを取得することができる。図10は、測定した測定対象の光散乱特性を示すMTFを光の色毎に示す図である。図10の横軸は、空間周波数を示しており、図10の縦軸は、反射光の強度(入射光の強度に対する比)を示している。 As described above, the light scattering characteristic
なお、本実施形態では、光散乱特性をMTF又はBSSRDFにて表し、その測定結果を示すデータを光散乱特性データ取得装置40によって取得することとしたが、これに限定されるものではない。例えば、光散乱特性を点広がり関数(Point Spread Function;PSF)にて表し、その測定結果を示すデータを取得してもよい。 In the present embodiment, the light scattering characteristic is represented by MTF or BSSRDF, and the data showing the measurement result is acquired by the light scattering characteristic
そして、本実施形態に係る光散乱特性データ取得装置40は、種々の部材を測定対象として光散乱特性を測定し、その光散乱特性データを取得する。
具体的に説明すると、光散乱特性データ取得装置40は、第一に、質感再現の対象物に対して光散乱特性の測定を行う。これにより、光散乱特性データ取得装置40は、対象物の表面への入射光に対する光散乱特性に関するデータ(以下、第一光散乱特性データとも言う。)を取得する。なお、本実施形態では、対象物の表面が前述したように複数の単位表面領域に区画され、光散乱特性データ取得装置40は、単位表面領域毎の光散乱特性を示す第一光散乱特性データを取得する。Then, the light scattering characteristic
Specifically, the light scattering characteristic
第二に、光散乱特性データ取得装置40は、印刷層5を構成する各種インクについて、当該各種インクの光散乱特性に関するデータ(以下、第二光散乱特性データとも言う。)を取得する。具体的に説明すると、前述したように、印刷層形成装置20がYMC3色のカラーインク、ブラック(K)インク、及びホワイトインクの各々について、ドットの密度を段階的に変更させて複数のサンプルパターンSP1〜SP5を形成する(図7参照)。光散乱特性データ取得装置40は、各サンプルパターンSP1〜SP5を対象として光散乱特性の測定を行う。これにより、光散乱特性データ取得装置40は、インク種類別の第二光散乱特性データを、ドットの密度を変えて当該密度毎に取得することになる。 Secondly, the light scattering characteristic
第三に、印刷層形成装置20は、質感再現用の基材2を構成する複数種類の内部散乱部材4の各々を対象として光散乱特性の測定を行う。これにより、印刷層形成装置20は、各種類の内部散乱部材4の光散乱特性に関するデータ(以下、第三光散乱特性データとも言う。)を取得する。ここで、互いに異なる内部散乱部材4の間では、内部散乱性能(光散乱特性)に応じて変化するパラメータが異なっており、例えば、Haze値が異なっていることとする。換言すると、使用する内部散乱部材4の種類を変えてHaze値が変わることで、印刷物1の光散乱特性を変えることができる。 Third, the print
(印刷制御装置)
印刷制御装置50は、対象物の質感に関するデータ(具体的には、前述の厚みデータ及び光散乱特性データ)に基づいて、印刷層5を印刷層形成装置20に形成させる装置である。本実施形態において、印刷制御装置50は、例えば、印刷層形成装置20に接続されたホストコンピュータ(以下、単に「コンピュータ」と言う。)によって構成されている。(Print control device)
The
印刷制御装置50をなすコンピュータには、CPU(Central Processing Unit)等のプロセッサと、ROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリと、が搭載されており、当該メモリには質感再現用のアプリケーションプログラム及びプリンタドライバ等のプログラムが記憶されている。そして、印刷制御装置50は、上記のプロセッサが質感再現用のアプリケーションプログラム及びプリンタドライバを実行することで、対象物の表面の質感を再現するための質感再現用の印刷データを作成する。 The computer forming the
質感再現用の印刷データについて説明すると、当該印刷データは、前述したように、印刷層5の形成条件を示すデータである。ここで、形成条件とは、カラー層6の有無等を含む層構成、各インク層の厚み、各インク層におけるドットの密度(濃度)、及び、質感再現用の基材2が有する内部散乱部材4の種類等のパラメータの組み合わせである。形成条件は、上述したパラメータの各々を変えることで複数決めることができ、その中で印刷層形成時に実際に採用されるものは、再現対象となる質感に応じて選定される。 Explaining the print data for texture reproduction, the print data is data showing the formation conditions of the
なお、印刷層5の形成条件については、上記のパラメータのうち、少なくとも一つに関する条件であればよく、上記のパラメータ以外のパラメータに関する条件が含まれてもよい。 The conditions for forming the
また、本実施形態では、基材2の印刷面における印刷層形成範囲が複数の単位領域に区画され、印刷層5の形成時に実際に採用される形成条件が、単位領域毎に設定されることになっている。 Further, in the present embodiment, the print layer formation range on the print surface of the
そして、印刷制御装置50は、単位領域毎に設定された形成条件を示す印刷データを作成し、当該印刷データを印刷層形成装置20に向けて送信する。印刷層形成装置20では、制御機構24が印刷データを受信し、印刷データに従って印刷層形成装置20各部を制御する。これにより、印刷層形成装置20が基材2の印刷面上に印刷層5を形成する。このとき、印刷層形成装置20は、印刷層5の各部分を、当該各部分と対応する単位領域に対して設定された形成条件に従って形成する。これにより、印刷層5の各部分が当該各部分の位置に応じて像様(イメージワイズ)に形成される。 Then, the
なお、質感再現用の印刷データの作成手順については、次の「印刷物生成手順について」の項で詳細に説明することとする。 The procedure for creating print data for texture reproduction will be described in detail in the next section "Procedure for generating printed matter".
<印刷物生成手順について>
次に、本発明の印刷方法によって印刷物1を生成する手順として、前述した質感再現印刷の流れを説明する。
質感再現印刷に用いられる印刷方法は、対象物の表面の質感を再現するための印刷方法である。また、質感再現印刷は、図11に示すように、厚みデータ取得処理S001、サンプルパターン印刷処理S002、光散乱特性データ取得処理S003、光散乱特性推定処理S004、形成条件設定処理S005、印刷データ送信処理S006、及び印刷層形成処理S007によって構成されている。以下、各処理について個別に説明することとする。<Procedure for generating printed matter>
Next, the flow of the texture reproduction printing described above will be described as a procedure for generating the printed
The printing method used for texture reproduction printing is a printing method for reproducing the texture of the surface of an object. Further, as shown in FIG. 11, for texture reproduction printing, thickness data acquisition processing S001, sample pattern printing processing S002, light scattering characteristic data acquisition processing S003, light scattering characteristic estimation processing S004, formation condition setting processing S005, and print data transmission. It is composed of a process S006 and a print layer forming process S007. Hereinafter, each process will be described individually.
(厚みデータ取得処理)
厚みデータ取得処理は、厚みデータ取得装置30が、対象物の表面にて露出している透明部分の厚みに関する厚みデータを取得する処理である。より詳しく説明すると、対象物の表面を複数の単位表面領域に区画し、厚みデータ取得装置30が透明部分の厚みを単位表面領域毎に測定する。なお、当然ながら、透明部分に該当しない単位表面領域での厚みは0となる。
そして、すべての単位表面領域について厚みの測定が終了した時点で、厚みデータ取得装置30は、単位表面領域毎の厚みを示す厚みデータを取得する。また、厚みデータ取得装置30は、取得した厚みデータを印刷制御装置50に送信する。(Thickness data acquisition process)
The thickness data acquisition process is a process in which the thickness
Then, when the measurement of the thickness of all the unit surface regions is completed, the thickness
(サンプルパターン印刷処理)
サンプルパターン印刷処理は、印刷層形成装置20により、基材2の印刷面に前述のサンプルパターンSP1〜SP5を形成する処理である。より詳しく説明すると、印刷制御装置50がサンプルパターン形成用の印刷データを印刷層形成装置20に送信し、印刷層形成装置20の制御機構24が当該印刷データを受信する。なお、サンプルパターン形成用の印刷データは、予め作成されていて、印刷制御装置50内のメモリに記憶されている。(Sample pattern printing process)
The sample pattern printing process is a process of forming the above-mentioned sample patterns SP1 to SP5 on the printed surface of the
制御機構24は、サンプルパターン形成用の印刷データに従って移動機構21、吐出機構22及び硬化機構23を制御する。これにより、基材2の印刷面には、YMCK及びホワイトの5色のインクの各々について、ドット密度(濃度)を段階的に変化させてサンプルパターンSP1〜SP5が印刷される(図7参照)。なお、各サンプルパターンSP1〜SP5は、ドット密度(濃度)が異なる複数のパターン片によって構成されている。ここで、各サンプルパターンSP1〜SP5を構成するパターン片の数、及び各パターン片におけるドット密度(濃度)については、自由に設定することが可能であるが、図7に示す例では、パターン片の数を4個とし、各パターン片における濃度を25%、50%、75%及び100%としている。 The
(光散乱特性データ取得処理)
光散乱特性データ取得処理は、光散乱特性データ取得装置40が前述した第一光散乱特性データ、第二光散乱特性データ及び第三光散乱特性データを取得する処理である。より詳しく説明すると、先ず、対象物の表面を複数の単位表面領域に区画し、光散乱特性データ取得装置40が対象物の表面への入射光に対する対象物の光散乱特性(内部散乱特性)を単位表面領域毎に測定する。これにより、光散乱特性データ取得装置40は、対象物の単位表面領域毎の光散乱特性を示す第一光散乱特性データを取得する。(Light scattering characteristic data acquisition processing)
The light scattering characteristic data acquisition process is a process in which the light scattering characteristic
次に、光散乱特性データ取得装置40は、前述のサンプルパターン印刷処理にて基材2に印刷された各サンプルパターンSP1〜SP5を対象として光散乱特性(内部散乱特性)を測定する。このとき、光散乱特性データ取得装置40は、各サンプルパターンSP1〜SP5を構成する複数のパターン片の各々の光散乱特性を測定する。つまり、光散乱特性データ取得装置40は、各サンプルパターンSP1〜SP5について、そのドット密度(濃度)を変えて、ドット密度毎に光散乱特性を測定する。これにより、光散乱特性データ取得装置40は、インクの種類別に、ドット密度(濃度)毎の光散乱特性を示す第二光散乱特性データを取得する。 Next, the light scattering characteristic
次に、光散乱特性データ取得装置40は、質感再現用の基材2が有する内部散乱部材4の光散乱特性(内部散乱特性)を測定する。このとき、複数種類の内部散乱部材4が用意されていれば、光散乱特性データ取得装置40は、各種類の内部散乱部材4について内部散乱特性を測定する。これにより、光散乱特性データ取得装置40は、内部散乱部材4の種類毎に、内部散乱部材4の光散乱特性を示す第三光散乱特性データを取得する。 Next, the light scattering characteristic
そして、光散乱特性データ取得装置40は、取得した第一光散乱特性データ、第二光散乱特性データ及び第三光散乱特性データを印刷制御装置50に向けて送信する。なお、本実施形態において、各光散乱特性データは、MTF又はBSSRDFにて表された光散乱特性を示すデータとなっている。 Then, the light scattering characteristic
(光散乱特性推定処理)
光散乱特性推定処理は、印刷制御装置50が、インク種類別の第二光散乱特性データ及び第三光散乱特性データに基づいて、印刷層5の形成条件に応じた印刷物1の光散乱特性を推定する処理である。ここで、「印刷層5の形成条件に応じた印刷物1の光散乱特性」とは、ある形成条件の下で印刷層5を仮に形成した場合に生成される印刷物1の光散乱特性である。(Light scattering characteristic estimation processing)
In the light scattering characteristic estimation process, the
また、本実施形態では、前述したように、印刷層5の形成条件が単位領域毎に設定されることになっており、これに合わせて、光散乱特性推定処理においても、印刷物1の光散乱特性を単位領域毎に推定することになっている。 Further, in the present embodiment, as described above, the formation conditions of the printed
光散乱特性推定処理について詳しく説明すると、本処理の開始に際して、印刷層5の形成条件が複数用意される。具体的には、印刷層5におけるインク層の積層数、各インク層を構成するインクの種類、各インク層の厚み、各インク層におけるドット密度(濃度)、及び質感再現用の基材2に用いられる内部散乱部材4の種類に関して、複数の組み合わせが用意される。 Explaining the light scattering characteristic estimation process in detail, a plurality of conditions for forming the
その後、印刷制御装置50は、図12に図示の流れに従って光散乱特性推定処理を実施する。図12を参照しながら光散乱特性推定処理の流れを説明すると、印刷制御装置50は、先ず、印刷層5の形成条件に関する複数の組み合わせを設定する(S011)。このステップS011では、上述した形成条件の内容、具体的には、印刷層5を構成するインク層の積層数、各インク層を構成するインクの種類、各インク層の厚み、各インク層におけるドット密度、及び内部散乱部材4の種類の各々をパラメータとし、想定され得る各パラメータの組み合わせを特定する。 After that, the
なお、本実施形態では、形成条件に関する内容(パラメータ)のうち、透明層8の厚みについては、厚みデータ取得処理にて取得した厚みデータに基づいて特定し、すべての単位領域の間で透明層8の厚みが同一であることとする。 In the present embodiment, among the contents (parameters) relating to the formation conditions, the thickness of the
次に、印刷制御装置50は、ステップS011で設定した形成条件に関する複数の組み合わせの各々について、その組み合わせに係る形成条件の下で再現される光散乱特性を推定する(S012)。ここで、光散乱特性をBSSRDFにて表す場合には、光散乱特性としてのBSSRDF特性を推定するために、ステップS011で設定した条件の組み合わせと、ドット密度毎に取得したインク種類別の第二光散乱特性データと、内部散乱部材4の種類毎に取得した第三光散乱特性データとを用いて光散乱マトリクス計算を行うことになる。 Next, the
光散乱マトリクス計算は、多層構造に入射された光(入射光)の、各層での反射及び透過についてのマトリクス演算である。このマトリクス演算は、入射光が多層構造を抜けるまで、あるいは入射光が多層構造の各層で透過及び反射を繰り返して多層構造の最表面から出射されるまで実施される。なお、層数が多い多層構造については、光量が十分に減衰した時点、あるいは所定数以上の層を光が通過した時点でマトリクス演算が終了する。 The light scattering matrix calculation is a matrix calculation for reflection and transmission of light (incident light) incident on a multilayer structure in each layer. This matrix calculation is performed until the incident light passes through the multilayer structure, or the incident light is repeatedly transmitted and reflected in each layer of the multilayer structure until it is emitted from the outermost surface of the multilayer structure. For a multilayer structure having a large number of layers, the matrix calculation ends when the amount of light is sufficiently attenuated or when light passes through a predetermined number or more of layers.
光散乱マトリクス計算について詳しく説明すると、多層構造中のある層(図13〜図16に示した層M)におけるBSSRDF特性は、下記の4パターンに分類される。
パターン1:図13に示すように、層Mの上方から光Ixが入射されて、層Mの上方に向かって光Iyが進行する(すなわち、反射)。
パターン2:図14に示すように、層Mの上方から光Ixが入射されて、層Mの下方に向かって光Iyが進行する(すなわち、透過)。
パターン3:図15に示すように、層Mの下方から光Ixが入射されて、層Mの上方に向かって光Iyが進行する(すなわち、透過)。
パターン4:図16に示すように、層Mの下方から光Ixが入射されて、層Mの下方に向かって光Iyが進行する(すなわち、反射)。Explaining the light scattering matrix calculation in detail, the BSSRDF characteristics in a certain layer (layer M shown in FIGS. 13 to 16) in the multilayer structure are classified into the following four patterns.
Pattern 1: As shown in FIG. 13, light Ix is incident from above the layer M, and light Iy travels toward the top of the layer M (that is, reflection).
Pattern 2: As shown in FIG. 14, light Ix is incident from above the layer M, and light Iy travels toward the bottom of the layer M (that is, transmission).
Pattern 3: As shown in FIG. 15, light Ix is incident from below the layer M, and light Iy advances (that is, transmitted) toward the upper side of the layer M.
Pattern 4: As shown in FIG. 16, light Ix is incident from below the layer M, and light Iy travels toward the bottom of the layer M (that is, reflection).
上記4つのパターンの各々には、対応する演算マトリクスRが設定されている。演算マトリクスRは、図17に示す演算式(例えば、行列式)であり、入射側の光散乱ベクトルに対して、該当するパターンの演算マトリクスRを乗じることで、層Mで光散乱を受けた後の光散乱ベクトル(すなわち、出射側の光散乱ベクトル)を演算することができる。 A corresponding arithmetic matrix R is set for each of the above four patterns. The arithmetic matrix R is an arithmetic formula (for example, a determinant) shown in FIG. 17, and the light scattering vector on the incident side is multiplied by the arithmetic matrix R of the corresponding pattern to receive light scattering in the layer M. The later light scattering vector (that is, the light scattering vector on the emitting side) can be calculated.
なお、図17中の各変数の定義は、以下の通りである。
I:光散乱ベクトル,f:演算関数
θi(iは1〜nの自然数):i番目の入射角度(ベクトル)
Φi(iは1〜nの自然数):i番目の出射角度(ベクトル)
xk(kは1〜nの自然数):k番目の入射位置
yk(kは1〜nの自然数):k番目の出射位置
を示しており、xk(kは1〜nの自然数)がk番目の入射位置を示しており、ykがk番目の出射位置を示している。
なお、仮に吸収がないと仮定した場合、演算マトリクスRにおいて同列に並ぶ全要素をすべて足すと、エネルギー保存則により1となる。The definition of each variable in FIG. 17 is as follows.
I: Light scattering vector, f: Arithmetic function θi (i is a natural number from 1 to n): i-th incident angle (vector)
Φi (i is a natural number from 1 to n): i-th emission angle (vector)
xx (k is a natural number from 1 to n): kth incident position yk (k is a natural number from 1 to n): indicates the kth emission position, and xx (k is a natural number from 1 to n) is the kth. Indicates the incident position of, and yk indicates the kth emission position.
Assuming that there is no absorption, if all the elements arranged in the same row in the arithmetic matrix R are added, it becomes 1 according to the law of conservation of energy.
ここで、上記4パターンの各々と対応する演算マトリクスRを、それぞれRAm、RBm、RCm、RDmと表記すると、入射側の光散乱ベクトルIiと反射側の光散乱ベクトルIrとの関係は、下記の関係式F1にて表される。ちなみに、各演算マトリクスに付された添え字mは、層の順番を表しており、最も上方(視認側)に位置する層には「1」が付与され、その直下に位置する層には「2」が付与され、それよりも下方の層には、「3」以降の連番が付与される。
関係式F1: Ir= RA1*Ii
+RC1*RA2*RB1*Ii
+RC1*RA2*RD1*RA2*RB1*Ii
+・・・・・・・Here, when the arithmetic matrix R corresponding to each of the above four patterns is expressed as RA m , RB m , RC m , and RD m , respectively, the relationship between the light scattering vector Ii on the incident side and the light scattering vector Ir on the reflection side. Is expressed by the following relational expression F1. By the way, the subscript m attached to each calculation matrix indicates the order of the layers, "1" is given to the layer located at the uppermost point (visual side), and "1" is given to the layer located immediately below it. 2 ”is given, and serial numbers after“ 3 ”are given to the layers below it.
Relational expression F1: Ir = RA 1 * Ii
+ RC 1 * RA 2 * RB 1 * Ii
+ RC 1 * RA 2 * RD 1 * RA 2 * RB 1 * Ii
+ ・ ・ ・ ・ ・ ・ ・ ・
以上までに説明してきた光散乱マトリクス計算において、ステップS011で設定した条件の組み合わせと、ドット密度毎に取得したインク種類別の第二光散乱特性データと、内部散乱部材4の種類毎に取得した第三光散乱特性データと、を適用する。この結果、各単位領域の光散乱特性(具体的には、BSSRDF特性)が演算される。ここで、演算結果としてのBSSRDF特性は、各形成条件の下で形成される印刷層5と、当該印刷層5が形成される基材2の内部散乱部材4と、を含む印刷物1全体の光散乱特性である。換言すれば、光散乱マトリクス計算から求められるBSSRDF特性は、最終生成物である印刷物1の各部分に関する光散乱特性の推定結果である。 In the light scattering matrix calculation described above, the combination of the conditions set in step S011, the second light scattering characteristic data for each ink type acquired for each dot density, and the second light scattering characteristic data for each type of the
以上までに光散乱特性としてBSSRDF特性を演算して推定することを説明してきたが、これに限定されるものではない。例えば、光散乱特性をMTFにて表す場合には、光散乱特性としてのMTF特性を推定することになる。MTF特性を推定するためには、ステップS011で設定した条件の組み合わせと、ドット密度毎に取得したインク種類別の第二光散乱特性データと、内部散乱部材4の種類毎に取得した第三光散乱特性データとを用いて光散乱解析計算を行うことになる。 Although it has been described above that the BSSRDF characteristic is calculated and estimated as the light scattering characteristic, the present invention is not limited to this. For example, when the light scattering characteristic is expressed by MTF, the MTF characteristic as the light scattering characteristic is estimated. In order to estimate the MTF characteristics, the combination of the conditions set in step S011, the second light scattering characteristic data for each ink type acquired for each dot density, and the third light acquired for each type of the
光散乱解析計算は、積層構造に入射された光(入射光)について、当該積層構造に関する反射のMTF特性を、各層に関する反射及び透過の各々のMTF特性から求める計算である。例えば、下地層をp層とし、p層よりも上方にある層数をn(nは自然数)とした場合、n個の層とp層からなる積層構造に関する反射のMTF特性は、下記の式(1)にて記述される。
式(1)において、Riは、i層の反射のMTF特性であり、Tiは、i層の透過のMTF特性である。In the formula (1), R i is the MTF characteristic of the reflection of the i-layer, T i is the MTF characteristic of the transmission of the i layer.
ここで、n番目の層とp層からなる2層の積層構造を考えると、上記の式(1)は、下記式(1−1)となる。
上式から分かるように、n番目の層とp層のMTF特性が得られれば、2層の積層構造に関する反射のMTF特性を記述することができる。
Here, considering the laminated structure of two layers consisting of the nth layer and the p layer, the above formula (1) becomes the following formula (1-1).
As can be seen from the above equation, if the MTF characteristics of the nth layer and the p layer are obtained, the MTF characteristics of the reflection related to the laminated structure of the two layers can be described.
また、n番目の層とn−1番目の層とp層からなる3層の積層構造を考えると、上記の式(1)は、下記式(1−2)となる。
上式から分かるように、n−1番目の層、n番目の層及びp層のそれぞれについてMTF特性が得られれば、3層の積層構造に関する反射のMTF特性を記述することができる。
Further, considering the laminated structure of three layers including the nth layer, the n-1st layer and the p layer, the above formula (1) becomes the following formula (1-2).
As can be seen from the above equation, if the MTF characteristics are obtained for each of the n-1st layer, the nth layer and the p layer, the MTF characteristics of the reflection regarding the laminated structure of the three layers can be described.
以上の点を踏まえると、n個の層とp層とを有する積層構造に関する反射のMTF特性(すなわち、式(1)にて記述されるMTF特性)は、結局のところ、1〜n番目の層及びp層の各々のMTF特性が得られれば記述し得ることになる。 Based on the above points, the MTF characteristic of reflection (that is, the MTF characteristic described by the equation (1)) relating to the laminated structure having n layers and the p layer is, after all, the 1st to nth. If the MTF characteristics of each of the layer and the p layer can be obtained, it can be described.
以上までに説明してきた光散乱解析計算において、ステップS011で単位領域毎に特定した条件内容と、ドット密度毎に取得したインク種類別の第二光散乱特性データと、内部散乱部材4の種類毎に取得した第三光散乱特性データと、を適用する。この結果、各単位領域の光散乱特性(具体的には、MTF特性)が計算される。ここで、計算結果としてのMTF特性は、光散乱マトリクス計算と同様、最終生成物である印刷物1の各部分に関する光散乱特性の推定結果である。
なお、上述した光散乱解析計算の具体例としては、例えば、『Kubelka P (1954) New contributions to the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers. J Opt Soc Am 44(4):330-335.』に記載の計算が挙げられる。In the light scattering analysis calculation described above, the condition contents specified for each unit area in step S011, the second light scattering characteristic data for each ink type acquired for each dot density, and each type of the
As a specific example of the above-mentioned light scattering analysis calculation, for example, "Kubelka P (1954) New contributions to the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers. J Opt Soc Am 44 (4): 330. -335. ”.
そして、光散乱特性推定処理では、複数設定された形成条件に関する組み合わせのすべてについて、上記一連の工程、すなわち図12のステップS011及びステップS012が繰り返される(S013)。これにより、各組み合わせに係る形成条件の下で印刷層5を形成した場合に生成される印刷物1の光散乱特性が、組み合わせを変えて推定されるようになる。そして、形成条件に関する組み合わせと、その組み合わせに係る条件の下で再現される光散乱特性の推定結果との対応関係がルックアップテーブル(LUT)としてデータ化され、後に実施される形成条件設定処理にて参照される。 Then, in the light scattering characteristic estimation process, the above series of steps, that is, steps S011 and S012 in FIG. 12 are repeated for all the combinations related to the plurality of set formation conditions (S013). As a result, the light scattering characteristics of the printed
(形成条件設定処理)
形成条件設定処理は、上述の光散乱特性推定処理で設定された形成条件に関する複数の組み合わせの中から、対象物の表面の質感を再現する上で最適な組み合わせを一つ選定し、選定された組み合わせに係る形成条件を、印刷層5の形成時に実際に採用される形成条件として設定する処理である。また、本実施形態では、形成条件設定処理において、印刷層5の形成時に採用される形成条件を単位領域毎に設定することになっている。(Formation condition setting process)
The formation condition setting process was selected by selecting one of the optimum combinations for reproducing the texture of the surface of the object from a plurality of combinations related to the formation conditions set in the above-mentioned light scattering characteristic estimation process. This is a process of setting the formation conditions related to the combination as the formation conditions actually adopted when the
形成条件設定処理について詳しく説明すると、形成条件設定処理では、取得済みの第一光散乱特性データ及び厚みデータとを用いる。また、形成条件設定処理では、上述の光散乱特性推定処理にて特定された形成条件に関する組み合わせと、それぞれの組み合わせに係る形成条件の下で再現される光散乱特性の推定結果との対応関係(より厳密には、対応関係を示すルックアップテーブル)を参照する。 The formation condition setting process will be described in detail. In the formation condition setting process, the acquired first light scattering characteristic data and the thickness data are used. Further, in the formation condition setting process, the correspondence between the combinations related to the formation conditions specified in the above-mentioned light scattering characteristic estimation process and the estimation results of the light scattering characteristics reproduced under the formation conditions related to each combination ( More precisely, it refers to a lookup table (look-up table showing correspondence).
形成条件設定処理は、図18に示す流れに沿って実施される。具体的に説明すると、先ず、対象物の表面における一つの単位表面領域について、第一光散乱特性データが示す光散乱特性を特定する(S021)。次に、ステップS021で特定した光散乱特性と、上記のルックアップテーブルに示される光散乱特性の散乱結果とを比較する(S022)。 The formation condition setting process is carried out according to the flow shown in FIG. Specifically, first, the light scattering characteristic indicated by the first light scattering characteristic data is specified for one unit surface region on the surface of the object (S021). Next, the light scattering characteristics specified in step S021 are compared with the scattering results of the light scattering characteristics shown in the above lookup table (S022).
その後、ルックアップテーブル中、ステップS021で特定した光散乱特性と最も近い光散乱特性の推定結果(すなわち、ステップS021で特定した光散乱特性との誤差が最小化となる光散乱特性の推定結果)を特定し、特定した光散乱特性の推定結果を再現し得る条件の組み合わせを上記のルックアップテーブルから判定する(S023)。この結果、一つの単位表面領域と対応する単位領域について、当該単位表面領域の質感を再現するのに最適な条件の組み合わせが選定される。具体的には、層構成、透明層8を除く各インク層の厚み、各インク層におけるドット密度、及び使用する基材2が有する内部散乱部材4の種類が選定される。 After that, in the lookup table, the estimation result of the light scattering characteristic closest to the light scattering characteristic specified in step S021 (that is, the estimation result of the light scattering characteristic that minimizes the error from the light scattering characteristic specified in step S021). Is specified, and a combination of conditions that can reproduce the estimation result of the specified light scattering characteristic is determined from the above lookup table (S023). As a result, for one unit surface area and the corresponding unit area, the optimum combination of conditions for reproducing the texture of the unit surface area is selected. Specifically, the layer structure, the thickness of each ink layer excluding the
上述したステップS021〜S023は、対象物の表面における複数の単位表面領域のすべてについて実施されるまで繰り返される(S024)。また、厚みデータが示す各単位表面領域の厚みに基づき、各単位領域における透明層8の厚みを決める(S025)。この際、各単位領域における透明層8の厚みについては、すべての単位領域の間で同一の厚みが設定される。透明層8の厚みが決まると、当該厚みを達成するのに必要なクリアインクの吐出回数(打滴回数)が割り出される。 The steps S021 to S023 described above are repeated until all of the plurality of unit surface regions on the surface of the object are performed (S024). Further, the thickness of the
以上までの一連のステップS021〜S025が完了すると、対象物の質感を再現する上で好適な条件の組み合わせが単位領域毎に選定され、選定された組み合わせに係る形成条件が、印刷層5の形成時に採用される形成条件として単位領域毎に設定される。 When the series of steps S021 to S025 up to the above are completed, a combination of conditions suitable for reproducing the texture of the object is selected for each unit area, and the formation conditions related to the selected combination are the formation of the
(印刷データ送信処理)
印刷データ送信処理は、印刷制御装置50が、形成条件設定処理にて単位領域毎に設定した形成条件を示す印刷データを作成し、当該印刷データを印刷層形成装置20に向けて送信する処理である。(Print data transmission process)
The print data transmission process is a process in which the
(印刷層形成処理)
印刷層形成処理は、印刷層形成装置20が印刷データに応じて質感再現用の基材2に多層構造の印刷層5を形成(印刷)する処理である。ここで、印刷データは、印刷制御装置50が対象物の質感に関するデータ(具体的には、厚みデータ及び光散乱特性データ)に基づいて作成したものである。かかる点から考えると、印刷層形成処理は、対象物の質感に関するデータに基づいて多層構造の印刷層5を質感再現用の基材2に形成する処理であると言える。(Print layer formation process)
The print layer forming process is a process in which the print
また、本実施形態において、印刷層形成処理では、透明層8と白色層7と黒色層9とを有する印刷層5を形成する。
印刷層形成処理について詳細に説明すると、本処理では、先ず、質感再現用の基材2(すなわち、厚みが均一である白色媒体3と、その上に重ねられた内部散乱部材4とを有する基材2)を用意し、印刷層形成装置20にセットする。より詳しく説明すると、印刷制御装置50から送られてきた印刷データが示す種類の内部散乱部材4を有する基材2をセットする。また、本実施形態では、内部散乱部材4の各部分の厚みが均一である。したがって、本実施形態において、印刷層形成処理では、厚みが均一である内部散乱部材4の表面上に印刷層5を形成することになる。Further, in the present embodiment, in the print layer forming process, the
The print layer forming process will be described in detail. In this process, first, a group having a
基材2のセットが完了した後には、印刷層形成装置20の制御機構24が、印刷データに従って移動機構21、吐出機構22及び硬化機構23を制御する。具体的に説明すると、制御機構24は、セットされた基材2を移動機構21に搬送させる。 After the setting of the
また、制御機構24は、印刷データが示す形成条件に従って印刷層5が基材2に形成されるように印刷層形成装置20の各部を制御する。この際、印刷層5の各部分を、当該各部分と対応する単位領域に対して設定された形成条件に従って形成するように、制御機構24が印刷層形成装置20の各部を制御する。これにより、印刷層5の各部分が当該各部分の位置に応じて像様(イメージワイズ)に形成されるようになる。 Further, the
より具体的に説明すると、本実施形態では、印刷層5の全域に亘って、厚みが均一である透明層8を形成する。本実施形態では、透明層8の直下に位置するインク層(例えば、白色層7及び黒色層9)が硬化する前にクリアインクを当該インク層の上に着弾させ、着弾したクリアインクのドットに紫外線を照射してドットを硬化させることで透明層8を形成する。ただし、これに限定されるものではなく、基材2の上に白色層7及び黒色層9を形成した後に、その直上位置に均一な厚みを有するアクリル板又は塩ビ板(以下、アクリル板等)を配置することで透明層8を形成してもよい。この場合、アクリル板等の直下位置にクリアインクの層を一層形成しておき、その層の上にアクリル板等を重ねた後でクリアインクに光を照射して当該クリアインクの層を硬化させるとよい。あるいは、アクリル板等の下面にクリアインク又はプライマー等を塗布しておき、その直下に位置するインク層(白色層7及び黒色層9)の上に重ねた後に硬化させてアクリル板等をインク層に密着させてもよい。 More specifically, in the present embodiment, the
また、対象物の表面において透明部分に該当する単位表面領域と対応する単位領域には、透明層8と質感再現用の基材2との間で透明層8と隣接する白色層7が配置される。つまり、上記の単位領域では、透明層8を形成する前にホワイトインクによって白色層7が形成され、その直後に、白色層7に重ねて透明層8が形成される。 Further, in the unit surface region corresponding to the transparent portion on the surface of the object and the unit region corresponding to the transparent portion, the
他方、対象物の表面において有色部分に該当する単位表面領域と対応する単位領域には、印刷層5の最表層をなすカラー層6が形成され、且つ、カラー層6と透明層8との間でカラー層6と隣接する白色層7が配置される。つまり、上記の単位領域では、透明層8を形成した後にホワイトインクによって白色層7が形成され、その直後に、白色層7に重ねてカラー層6が形成される。 On the other hand, a
また、各単位領域において、白色層7は、当該各単位領域に対して設定された形成条件(具体的には、単位領域毎に設定されたドット密度及び厚み等)に従って形成される。この結果、印刷層5の各部分には、当該各部分の位置に応じて白色層7が像様(イメージワイズ)に配置されることになる。 Further, in each unit region, the
また、印刷層5において白色層7が存在する領域(つまり、白色層7が形成される単位領域)には、白色層7と質感再現用の基材2との間で白色層7と隣接する黒色層9が配置される。つまり、白色層7が形成される単位領域では、ブラック(K)インクによって黒色層9が形成され、その直後に黒色層9に重ねて白色層7が形成される。 Further, in the region where the
なお、白色層7が形成される単位領域であり、且つ、有色部分に該当する単位表面領域と対応する単位領域においては、透明層8と質感再現用の基材2との間で透明層8と隣接する黒色層9がさらに配置される。つまり、上記の単位領域では、ブラック(K)インクによって黒色層9が形成された直後に透明層8が形成され、透明層8の直上で黒色層9が再び形成される。 In the unit region where the
以上の要領にて印刷層形成処理が実施され、本処理の終了時点で最終生成物である印刷物1が生成される。生成された印刷物1の表面(視認側の表面)は、対象物の表面の質感を良好に再現したものとなっている。 The print layer forming process is carried out in the above manner, and the printed
<本実施形態の有効性について>
以上までに説明してきたように、本実施形態では、質感再現印刷を高速且つ適切に行うことが可能である。また、本実施形態では、印刷層5において白色層7周辺への光の異常伝播が抑えられた印刷物1を提供することが可能である。これらの点において、本実施形態は、従来技術として例示した特許文献1に記載された技術よりも有効である。<About the effectiveness of this embodiment>
As described above, in the present embodiment, it is possible to perform texture reproduction printing at high speed and appropriately. Further, in the present embodiment, it is possible to provide the printed
より具体的に説明すると、「発明が解決しようとする課題」の項で説明したように、特許文献1に記載の技術では、印刷物において透明層の厚みを一定とし、さらに、透明層の下方(より厳密には直下位置)に白色層を配置する。白色層は、印刷物中、光散乱が抑制される箇所(つまり、光の内部散乱が少ない部位)に設けられる。これにより、透明層の厚みを場所に応じて変えることなく、白色層を設けるだけで光学的質感を調整することができるので、質感再現印刷がより高速に行われるようになる。 More specifically, as described in the section "Problems to be Solved by the Invention", in the technique described in
しかしながら、印刷物に対して入射した光が白色層を通じて異常に伝播する虞があり、特に、特許文献1に記載の技術のように透明層の近傍に白色層を設けると、光の異常伝播が顕著となる。 However, there is a possibility that the light incident on the printed matter propagates abnormally through the white layer, and in particular, when the white layer is provided in the vicinity of the transparent layer as in the technique described in
これに対して、本実施形態では、印刷層5において白色層7の下方に黒色層9が配置される。これにより、白色層7にて反射された光が当該白色層7の周囲に向かって広がる(拡散する)際に、その光を黒色層9が吸収する。この結果、白色層7周辺への光の異常伝播が抑制されるようになる。 On the other hand, in the present embodiment, the
以上のように、本実施形態では、白色層7を形成することの利点を生かしつつ、白色層7周辺への光の異常伝播を抑制することができるため、質感再現印刷が高速且つ適切に行われるようになる。 As described above, in the present embodiment, since it is possible to suppress the abnormal propagation of light to the periphery of the
なお、上記の効果は、印刷層5において白色層7の下方に黒色層9が配置されることで奏され、その限りにおいては、白色層7と黒色層9の間に別の層(例えば、透明層8)が配置されてもよい。ただし、白色層7の直下位置にて黒色層9が白色層7と隣接する場合には、上記の効果がより際立って発揮されることになる。 The above effect is achieved by arranging the
<その他の実施形態>
以上までに本発明の印刷方法、印刷物及び印刷システムについて一例を挙げて説明してきたが、上述の実施形態は、あくまでも一例に過ぎず、他の例も考えられる。<Other embodiments>
Although the printing method, printed matter, and printing system of the present invention have been described above by way of example, the above-described embodiment is merely an example, and other examples are also conceivable.
具体的に説明すると、上記の実施形態では、図3に示す多層構造を有する印刷層5、より詳しくはカラー層6、白色層7、透明層8及び黒色層9を有する印刷層5を形成することとしたが、これらの層以外のインク層が新たに追加されてもよい。 More specifically, in the above embodiment, the
また、上記の実施形態では、印刷層5において白色層7が存在する領域(単位領域)では、黒色層9が白色層7の下方に配置されることとした。ただし、これに限定されるものではなく、白色層7が存在する領域であっても、例えば、白色層7におけるドット密度(濃度)が比較的低い領域、より具体的には白色層7での光の透過率が所定値(例えば10%)を上回る領域については、黒色層9が配置されなくてもよい。つまり、白色層7が存在する領域のうち、白色層7での光の透過率が所定値以下に抑えられる領域にのみ、黒色層9を配置してもよい。 Further, in the above embodiment, in the region (unit region) where the
また、上記の実施形態では、印刷層5において、白色層7の直下位置に黒色層9が白色層7と隣接するように配置されることとしたが、これに限定されるものではない。前述したように、白色層7と黒色層9との間に別のインク層、例えば透明層8が介在してもよい。また、図19に示すように、内部散乱部材4の直上位置及び直下位置の少なくとも一方(図19は、内部散乱部材4の直上位置及び直下位置の双方)に黒色層9が配置されてもよい。例えば、内部散乱部材4の直下に黒色層9を設ける場合には、白色媒体3の上に黒色層9を形成した後、その直上位置に内部散乱部材4を重ねて、内部散乱部材4の下面に塗布されたプライマー等にて白色媒体3と密着させるとよい。 Further, in the above embodiment, in the
また、上記の実施形態では、印刷物1を生成するために印刷層5を形成する装置(すなわち、印刷層形成装置20)が、プリンタ等のデジタル印刷方式の印刷装置であることとしたが、これに限定されるものではない。印刷層形成装置20は、アナログ印刷方式の印刷装置、例えばオフセット印刷機であってもよい。つまり、本発明は、デジタル印刷技術だけでなく、アナログ印刷技術にも適用可能である。 Further, in the above embodiment, the apparatus for forming the
1 印刷物
1a 透明部分と対応する部位
1b 有色部分と対応する部位
2 基材
3 白色媒体
4 内部散乱部材
5 印刷層
6 カラー層
7 白色層
8 透明層
9 黒色層
10 印刷システム
20 印刷層形成装置
21 移動機構
21R 移動経路
22 吐出機構
22S ノズル面
23 硬化機構
24 制御機構
30 厚みデータ取得装置
40 光散乱特性データ取得装置
50 印刷制御装置
Ix,Iy 光
LP 矩形波チャート
LPx 矩形状パターン
M 層
Nc,Ng,Nh,Nk,Nm,Nw,Ny ノズル列
R 演算マトリクス
SP1,SP2,SP3,SP4,SP5 サンプルパターン
T 花崗岩
Tc 石英1 Printed matter 1a Part corresponding to the
Claims (12)
前記質感に関するデータに基づいて、基材に多層構造の印刷層を形成する印刷層形成処理を実施し、
前記印刷層形成処理では、
透明な透明層と、
白色流体により構成され、且つ前記印刷層において前記データに応じた位置に配置される白色層と、
黒色流体により構成され、且つ前記印刷層において前記白色層が存在する領域で前記白色層と前記基材との間に配置される黒色層と、
を有する前記印刷層を形成することを特徴とする印刷方法。A printing method that reproduces the texture of the surface of an object.
Based on the data on the texture, a print layer forming process for forming a multi-layered print layer on the base material was performed.
In the print layer forming process,
With a transparent transparent layer,
A white layer composed of a white fluid and arranged at a position corresponding to the data in the print layer, and a white layer.
A black layer composed of a black fluid and arranged between the white layer and the base material in a region where the white layer exists in the printed layer.
A printing method comprising forming the printing layer having the above.
前記印刷層は、
透明な透明層と、
白色流体により構成され、且つ前記印刷層において前記データに応じた位置に配置された白色層と、
黒色流体により構成され、且つ前記印刷層において前記白色層が存在する領域で前記白色層と前記基材との間に配置された黒色層と、を備えることを特徴とする印刷物。It has a base material and a multi-layered printed layer formed on the base material based on data on the texture of the surface of the object.
The print layer is
With a transparent transparent layer,
A white layer composed of a white fluid and arranged at a position corresponding to the data in the print layer, and a white layer.
A printed matter which is composed of a black fluid and includes a black layer arranged between the white layer and the base material in a region where the white layer exists in the printed layer.
基材に多層構造の印刷層を形成する印刷層形成装置と、
前記質感に関するデータに基づいて、前記印刷層を前記印刷層形成装置に形成させる印刷制御装置と、を有し、
前記印刷制御装置は、前記印刷層形成装置に、
透明な透明層と、
白色流体により構成され、且つ前記印刷層において前記データに応じた位置に配置される白色層と、
黒色流体により構成され、且つ前記印刷層において前記白色層が存在する領域で前記白色層と前記基材との間に配置される黒色層と、
を有する前記印刷層を形成させることを特徴とする印刷システム。A printing system that reproduces the texture of the surface of an object.
A print layer forming apparatus that forms a multi-layered print layer on a substrate,
It has a print control device for forming the print layer in the print layer forming device based on the data regarding the texture.
The print control device is attached to the print layer forming device.
With a transparent transparent layer,
A white layer composed of a white fluid and arranged at a position corresponding to the data in the print layer, and a white layer.
A black layer composed of a black fluid and arranged between the white layer and the base material in a region where the white layer exists in the printed layer.
A printing system characterized by forming the printing layer having the above.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019050002 | 2019-03-18 | ||
JP2019050002 | 2019-03-18 | ||
PCT/JP2020/002736 WO2020189021A1 (en) | 2019-03-18 | 2020-01-27 | Printing method, printed object, and printing system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020189021A1 true JPWO2020189021A1 (en) | 2021-12-23 |
JP7185760B2 JP7185760B2 (en) | 2022-12-07 |
Family
ID=72519820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021506211A Active JP7185760B2 (en) | 2019-03-18 | 2020-01-27 | Printing method and printing system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7185760B2 (en) |
WO (1) | WO2020189021A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06241995A (en) * | 1993-02-19 | 1994-09-02 | Toyota Motor Corp | Method for designing paint film giving feeling of depth |
US20040091680A1 (en) * | 2001-01-19 | 2004-05-13 | Hill Roland G. | Partial printing of a substrate with edge sealed printed portions |
JP2007182074A (en) * | 1996-10-24 | 2007-07-19 | Contra Vision Ltd | Method for forming durable image on substrate |
JP2009233978A (en) * | 2008-03-26 | 2009-10-15 | Fujifilm Corp | Inkjet recording method and inkjet recording device |
JP2018043520A (en) * | 2016-09-02 | 2018-03-22 | キヤノンファインテックニスカ株式会社 | Recording medium, recorded matter, and method for producing recorded matter |
-
2020
- 2020-01-27 WO PCT/JP2020/002736 patent/WO2020189021A1/en active Application Filing
- 2020-01-27 JP JP2021506211A patent/JP7185760B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06241995A (en) * | 1993-02-19 | 1994-09-02 | Toyota Motor Corp | Method for designing paint film giving feeling of depth |
JP2007182074A (en) * | 1996-10-24 | 2007-07-19 | Contra Vision Ltd | Method for forming durable image on substrate |
US20040091680A1 (en) * | 2001-01-19 | 2004-05-13 | Hill Roland G. | Partial printing of a substrate with edge sealed printed portions |
JP2009233978A (en) * | 2008-03-26 | 2009-10-15 | Fujifilm Corp | Inkjet recording method and inkjet recording device |
JP2018043520A (en) * | 2016-09-02 | 2018-03-22 | キヤノンファインテックニスカ株式会社 | Recording medium, recorded matter, and method for producing recorded matter |
Also Published As
Publication number | Publication date |
---|---|
JP7185760B2 (en) | 2022-12-07 |
WO2020189021A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8851609B2 (en) | Inkjet recording apparatus | |
CN102815094B (en) | Printing apparatus and printing method | |
JP5112360B2 (en) | Inkjet printer and printing method | |
JP5421323B2 (en) | Inkjet recording apparatus and image forming method | |
JP6437278B2 (en) | Printing method | |
US11872824B2 (en) | Printed matter forming method and printed matter forming system | |
US11716437B2 (en) | Converting texture information of object into ink amount information, using values of an MTF as internal scattering and color signal information, to reproduce the object and its texture on a medium | |
JP5764997B2 (en) | Printing apparatus, printing method, and program | |
JP6040820B2 (en) | How to add gloss control table | |
JP5790117B2 (en) | Printing apparatus, printing method, and program | |
JP2018069707A (en) | Inkjet printer and inkjet printing method | |
CN102785476A (en) | Printing apparatus and printing method | |
JP6375643B2 (en) | Image forming apparatus and image forming method | |
JP5838573B2 (en) | Printing apparatus, printing method, and program | |
JP5845692B2 (en) | Printing apparatus and printing method | |
WO2020189021A1 (en) | Printing method, printed object, and printing system | |
JP6699941B2 (en) | Modeling apparatus and modeling method | |
JP5845691B2 (en) | Printing apparatus and printing method | |
JP5835878B2 (en) | Inkjet printer | |
US20120268538A1 (en) | Printing apparatus, printing method, and program | |
JP2013123806A (en) | Liquid ejection device, liquid ejection method, and printed matter | |
JP5397089B2 (en) | Image recording method and drawing apparatus | |
JP2006305960A (en) | Method of checking effect of density correction of image, and printer | |
JP2013099930A (en) | Image forming apparatus and image forming method | |
JP2013103381A (en) | Printing apparatus and printing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7185760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |