JPWO2020185553A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020185553A5
JPWO2020185553A5 JP2021555035A JP2021555035A JPWO2020185553A5 JP WO2020185553 A5 JPWO2020185553 A5 JP WO2020185553A5 JP 2021555035 A JP2021555035 A JP 2021555035A JP 2021555035 A JP2021555035 A JP 2021555035A JP WO2020185553 A5 JPWO2020185553 A5 JP WO2020185553A5
Authority
JP
Japan
Prior art keywords
build
build material
increasing
loading density
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021555035A
Other languages
Japanese (ja)
Other versions
JP2022525122A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/021378 external-priority patent/WO2020185553A1/en
Publication of JP2022525122A publication Critical patent/JP2022525122A/en
Publication of JPWO2020185553A5 publication Critical patent/JPWO2020185553A5/ja
Pending legal-status Critical Current

Links

Claims (15)

3次元物体の製造方法であって、
粉末材料と結合剤材料の混合組成物を含むビルド材料をビルド表面へ供給する段階と、
前記ビルド表面に供給される前記ビルド材料の粉末装填密度を増大させる段階と、
前記ビルド材料へ選択的に照射して前記ビルド材料の一部の物理状態を変化させる段階、
を有する方法。
A method of manufacturing a three-dimensional object, comprising:
providing a build material comprising a mixed composition of powder material and binder material to the build surface;
increasing the powder loading density of the build material delivered to the build surface;
selectively irradiating the build material to change the physical state of a portion of the build material;
How to have
請求項1に記載の方法であって、前記ビルド材料を前記ビルド表面へ供給する段階は、前記ビルド材料を混合前スラリーとして供給する段階を含む、方法。 2. The method of claim 1, wherein applying the build material to the build surface comprises applying the build material as a pre-mix slurry. 請求項1に記載の方法であって、複数の材料層を順次生成する段階と、前記複数の材料層を放射して物体を生成する段階を有する方法。 2. The method of claim 1, comprising sequentially producing a plurality of material layers and irradiating said plurality of material layers to produce an object. 請求項3に記載の方法であって、前記ビルド材料を選択的に放射する段階は、前記物体が流体の貫流を可能にする構造を有する放射パターンで前記ビルド材料を放射する段階を含む、方法。 4. The method of claim 3, wherein selectively irradiating the build material comprises irradiating the build material in a radiation pattern in which the object has a structure that allows fluid flow therethrough. . 請求項2に記載の方法であって、前記ビルド材料を前記ビルド表面へ供給する段階は、
前記ビルド材料をビルド材料のバットまで低下させる段階と、
前記ビルド表面をビルド材料の前記バットから離れるように段階的に移動させる段階、
を含む方法。
3. The method of claim 2, wherein applying the build material to the build surface comprises:
lowering the build material to a batt of build material;
stepping the build surface away from the vat of build material;
method including.
請求項2に記載の方法であって、前記ビルド材料を前記ビルド表面へ供給する段階は、
前記ビルド表面上に材料の層を供給する段階と、
前記ビルド表面を像生成システムから離れる方向に段階的に移動させる段階、
を含む方法。
3. The method of claim 2, wherein applying the build material to the build surface comprises:
applying a layer of material onto the build surface;
stepping the build surface away from the imaging system;
method including.
請求項6に記載の方法であって、ドクターブレードを用いて前記ビルド表面上に供給される前記ビルド材料の条件を調節する段階を有する、方法。 7. The method of claim 6, comprising adjusting the condition of the build material dispensed onto the build surface using a doctor blade. 請求項6に記載の方法であって、膜を用いて前記ビルド表面上に供給される前記ビルド材料の条件を調節する段階を有する、方法。 7. The method of claim 6, comprising using a membrane to condition the build material delivered onto the build surface. 請求項8に記載の方法であって、層生成中に前記膜を剛性表面で安定化させる段階を有する、方法。 9. The method of claim 8, comprising stabilizing the membrane on a rigid surface during layer formation. 請求項4に記載の方法であって、前記ビルド材料の粉末装填密度を増大させる段階は、前記ビルド表面全体に流体を流す段階を含む、方法。 5. The method of claim 4, wherein increasing the powder loading density of the build material comprises flowing a fluid over the build surface. 請求項10に記載の方法であって、前記ビルド材料の粉末装填密度を増大させる段階は、ビルド中の前記物体を貫くように流体を流す段階を含む、方法。 11. The method of claim 10, wherein increasing the powder loading density of the build material comprises flowing a fluid through the object being built. 請求項2に記載の方法であって、前記ビルド材料の粉末装填密度を増大させる段階は、超音波撹拌を用いて前記粉末材料を密集化する段階を含む、方法。 3. The method of claim 2, wherein increasing the powder loading density of the build material comprises densifying the powder material using ultrasonic agitation. 請求項2に記載の方法であって、前記ビルド材料の粉末装填密度を増大させる段階は、前記結合剤材料の少なくとも1つの成分の少なくとも一部を揮発させる段階を含む、方法。 3. The method of claim 2, wherein increasing the powder loading density of the build material comprises volatilizing at least a portion of at least one component of the binder material. 請求項13に記載の方法であって、前記少なくとも1つの成分は揮発性有機溶媒である、方法。 14. The method of claim 13, wherein said at least one component is a volatile organic solvent. 請求項3に記載の方法であって、前記ビルド材料の粉末装填密度を増大させる段階は、所与の層からある量の結合剤を除去することで前記層が有孔性構造を有するようにする段階を含む、方法。
4. The method of claim 3, wherein increasing the powder loading density of the build material includes removing an amount of binder from a given layer such that the layer has a porous structure. a method comprising:
JP2021555035A 2019-03-12 2020-03-06 Methods and equipment for the digital production of objects with working micropixellation and dynamic density control Pending JP2022525122A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962817431P 2019-03-12 2019-03-12
US62/817,431 2019-03-12
PCT/US2020/021378 WO2020185553A1 (en) 2019-03-12 2020-03-06 Method and apparatus for digital fabrication of objects using actuated micropixelation and dynamic density control

Publications (2)

Publication Number Publication Date
JP2022525122A JP2022525122A (en) 2022-05-11
JPWO2020185553A5 true JPWO2020185553A5 (en) 2023-03-02

Family

ID=72426752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021555035A Pending JP2022525122A (en) 2019-03-12 2020-03-06 Methods and equipment for the digital production of objects with working micropixellation and dynamic density control

Country Status (10)

Country Link
US (3) US20220227050A1 (en)
EP (1) EP3938179A4 (en)
JP (1) JP2022525122A (en)
KR (1) KR20210137160A (en)
CN (1) CN113795370B (en)
CA (1) CA3133213A1 (en)
IL (1) IL286313A (en)
MX (1) MX2021011017A (en)
SG (1) SG11202109981PA (en)
WO (1) WO2020185553A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100724A (en) * 2020-10-08 2023-07-05 트리오 랩스 인코포레이티드 Digital fabrication method and apparatus and structure made using the same
EP3981528A1 (en) * 2020-10-08 2022-04-13 Hewlett-Packard Development Company, L.P. Air-permeable platforms for additive manufacturing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
WO2023220463A1 (en) * 2022-05-13 2023-11-16 Quadratic 3D, Inc. Methods of forming an object in a volume of a photohardenable composition
US20230415414A1 (en) * 2022-06-23 2023-12-28 Lumileds Llc 3d printing using a micro led array
WO2024065381A1 (en) * 2022-09-29 2024-04-04 Jade Bird Display (shanghai) Limited Microthree-dimensional printing device
CN115891150A (en) * 2022-11-07 2023-04-04 吉林大学 3D printing device and method for bionic pixelation heterogeneous material based on micro-fluidic principle

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697043A (en) * 1996-05-23 1997-12-09 Battelle Memorial Institute Method of freeform fabrication by selective gelation of powder suspensions
US6596224B1 (en) 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
CA2372410C (en) * 2002-02-19 2006-07-11 Jiaren Jiang Slurry composition and process for producing ceramic moulds
US6966960B2 (en) * 2003-05-07 2005-11-22 Hewlett-Packard Development Company, L.P. Fusible water-soluble films for fabricating three-dimensional objects
JP5018076B2 (en) * 2006-12-22 2012-09-05 ソニー株式会社 Stereolithography apparatus and stereolithography method
US9561622B2 (en) * 2008-05-05 2017-02-07 Georgia Tech Research Corporation Systems and methods for fabricating three-dimensional objects
WO2010043275A1 (en) * 2008-10-17 2010-04-22 Huntsman Advanced Materials (Switzerland) Gmbh Improvements for rapid prototyping apparatus
US8477403B2 (en) * 2011-08-24 2013-07-02 Palo Alto Research Center Incorporated Variable length imaging apparatus using electronically registered and stitched single-pass imaging systems
US8872875B2 (en) * 2011-08-24 2014-10-28 Palo Alto Research Center Incorporated Single-pass imaging system with anamorphic optical system
EP3086921B1 (en) * 2013-12-23 2019-07-31 The Exone Company Methods and systems for three-dimensional printing utilizing a jetted-particle binder fluid
WO2015113408A1 (en) * 2014-01-28 2015-08-06 上海普利生机电科技有限公司 Light-curing type 3d printing device and image exposure system thereof
JP6390108B2 (en) * 2014-02-07 2018-09-19 セイコーエプソン株式会社 Sintered modeling material, sintered modeling method, sintered model and sintered modeling apparatus
TWI678274B (en) * 2014-04-30 2019-12-01 荷蘭商荷蘭Tno自然科學組織公司 Method and production line for making tangible products by layerwise manufacturing
WO2015180022A1 (en) * 2014-05-26 2015-12-03 中国科学院自动化研究所 3d printing system
US10875153B2 (en) * 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
KR20170133506A (en) * 2015-04-07 2017-12-05 트리오 랩스 인코포레이티드 Method and apparatus for freeform construction of objects with improved resolution background
JP6751252B2 (en) * 2015-10-15 2020-09-02 セイコーエプソン株式会社 Three-dimensional model manufacturing method and three-dimensional model manufacturing apparatus
EP3178586A1 (en) * 2015-12-10 2017-06-14 Canon Kabushiki Kaisha Method and apparatus for producing powder and method for manufacturing shaped object
WO2017114659A1 (en) * 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
WO2017132664A1 (en) * 2016-01-28 2017-08-03 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
SG10201913834YA (en) * 2016-02-26 2020-03-30 Trio Labs Inc Method and apparatus for solid freeform fabrication of objects utilizing in situ infusion
US10717230B2 (en) * 2016-06-16 2020-07-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering
US10614923B2 (en) * 2016-07-19 2020-04-07 Battelle Energy Alliance, Llc Methods of forming structures and fissile fuel materials by additive manufacturing
US10611694B2 (en) * 2016-09-15 2020-04-07 Board Of Regents, The University Of Texas System Systems and methods for additive manufacturing of ceramics
EP3541551A4 (en) * 2016-12-14 2020-07-15 Desktop Metal, Inc. Material systems for additive manufacturing
US11548094B2 (en) * 2017-02-15 2023-01-10 General Electric Company System and methods for fabricating a component with laser array
WO2018156141A1 (en) * 2017-02-24 2018-08-30 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing a pharmaceutical tablet
US20180304357A1 (en) 2017-04-21 2018-10-25 Desktop Metal, Inc. Thermal energy delivery in multi-directional binder jetting for additive manufacturing
US20210183287A1 (en) * 2017-08-02 2021-06-17 Trio Labs, Inc. Solid freeform fabrication utilizing in situ infusion and imaging
US20190168299A1 (en) * 2017-12-05 2019-06-06 Kennametal Inc. Additive manufacturing techniques and applications thereof
US11312075B2 (en) * 2018-10-23 2022-04-26 Texas Instruments Incorporated Optical engine for three-dimensional printing
US11453165B2 (en) * 2019-02-05 2022-09-27 Silicon Light Machines Corporation Stacked PLV driver architecture for a microelectromechanical system spatial light modulator

Similar Documents

Publication Publication Date Title
US20210362409A1 (en) Method and device for 3d printing using temperature-controlled processing
JPWO2020185553A5 (en)
US11858216B2 (en) Method and apparatus for solid freeform fabrication of objects utilizing in situ infusion
EP2714354B1 (en) Method for producing a moulded body and device
EP3083207B1 (en) 3d printing method with rapid drying step
DE102011117005B4 (en) Process for producing a ceramic shaped body
EP1324842A1 (en) Method for producing a part using a deposition technique
CN107073677A (en) Print chemical and mechanical grinding cushion
DE102004035369A1 (en) Production of paper machine materials
TWI753191B (en) Apparatuses and methods for producing a high-resolution image
Chun et al. Capillary pressure and saturation of pore-controlled granules for powder bed binder jetting
EP3642039B1 (en) Container for use in stereolithographic systems
EP3360659B1 (en) Method for additive manufacture with continuous layer application
EP3747634B1 (en) Method for producing at least one component in 3d printing and 3d printer
EP3538348B1 (en) Method and device for producing 3d shaped articles, including dip coating step
US20220388237A1 (en) Arrangement and method for generating a layer of a particulate building material in a 3d printer
CN106715094A (en) Assembly and use of a geometrically compact powder layer
WO2022022763A1 (en) Method for producing a 3d shaped article, and device using a sieve plate
DE2239905B1 (en) Device for the production of ceramic shear shell molds
TWI353349B (en) Forming method and forming apparatus for manufactu
KR102644165B1 (en) 3d printing of ceramics using selective reaction hardening
JP7483729B2 (en) Device for manufacturing components by additive manufacturing
WO2008063150A2 (en) Permeation controlled concurrent consolidation process
EP3921159A1 (en) Apparatus for producing components by way of additive manufacturing processes
TW202235258A (en) Multi-layer composites with varied layer thicknesses, and related methods