JPWO2020183193A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020183193A5
JPWO2020183193A5 JP2021554664A JP2021554664A JPWO2020183193A5 JP WO2020183193 A5 JPWO2020183193 A5 JP WO2020183193A5 JP 2021554664 A JP2021554664 A JP 2021554664A JP 2021554664 A JP2021554664 A JP 2021554664A JP WO2020183193 A5 JPWO2020183193 A5 JP WO2020183193A5
Authority
JP
Japan
Prior art keywords
catalyst
metal
mol
modifier
silica support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021554664A
Other languages
Japanese (ja)
Other versions
JP2022526236A (en
Publication date
Priority claimed from GBGB1903455.2A external-priority patent/GB201903455D0/en
Application filed filed Critical
Publication of JP2022526236A publication Critical patent/JP2022526236A/en
Publication of JPWO2020183193A5 publication Critical patent/JPWO2020183193A5/ja
Pending legal-status Critical Current

Links

Claims (30)

触媒を生成するための方法であって、
a)か焼されていない金属修飾された多孔質シリカ担体を提供するステップであって、修飾剤金属は、ホウ素、マグネシウム、アルミニウム、ジルコニウム、ハフニウム及びチタンの1つ若しくは複数から選択され、前記修飾剤金属は、単核若しくは複核の修飾剤金属部分中に存在するステップと;
b)前記修飾されたシリカ担体から溶媒又は液体キャリアを任意選択で除去するステップと;
c)前記修飾されたシリカ担体を任意選択で乾燥させるステップと;
d)前記か焼されていない金属修飾されたシリカ担体を触媒金属で処理して、前記金属修飾されたシリカ担体上への前記触媒金属の吸着をもたらすステップと;
e)ステップd)の含浸されたシリカ担体をか焼するステップと
を含む、方法。
A method for producing a catalyst, comprising:
a) providing an uncalcined metal-modified porous silica support, wherein the modifier metal is selected from one or more of boron, magnesium, aluminum, zirconium, hafnium and titanium; the agent metal is present in a mononuclear or binuclear modifier metal moiety;
b) optionally removing solvent or liquid carrier from said modified silica support;
c) optionally drying the modified silica support;
d) treating the uncalcined metal-modified silica support with a catalytic metal, resulting in adsorption of the catalytic metal onto the metal-modified silica support;
e) calcining the impregnated silica support of step d).
か焼されていない触媒中間体であって、修飾剤金属で修飾されたか焼されていない多孔質シリカ担体を含み、ここで、前記修飾剤金属は、ホウ素、マグネシウム、アルミニウム、ジルコニウム、ハフニウム及びチタンの1つ若しくは複数から選択され、ここで、前記修飾剤金属は、前記か焼されていない修飾されたシリカ担体上に吸着された単核若しくは複核の修飾剤金属部分及び触媒金属中に存在する、か焼されていない触媒中間体。 An uncalcined catalytic intermediate comprising an uncalcined porous silica support modified with modifier metals, wherein said modifier metals are boron, magnesium, aluminum, zirconium, hafnium and titanium wherein said modifier metal is present in mononuclear or binuclear modifier metal moieties and catalyst metals adsorbed on said uncalcined modified silica support , the uncalcined catalytic intermediate. 触媒を生成する方法であって、
a)単離されたシラノール基を有する多孔質シリカ担体を提供するステップと;
b)修飾剤金属が前記単離されたシラノール基との反応によって前記シリカ担体の表面上へと吸着されるように、前記多孔質シリカ担体を単核若しくは複核の修飾剤金属化合物で処理するステップであって、前記吸着された修飾剤金属原子は、か焼の前、好ましくは後に隣接する修飾剤金属原子とのそのオリゴマー化を実質的に防止するように互いに十分に離間しており、より好ましくは、その隣接する修飾剤金属原子とのその二量体化若しくは三量体化を実質的に防止するように互いに十分に離間しており、ここで、前記修飾剤金属は、ホウ素、マグネシウム、アルミニウム、ジルコニウム、ハフニウム及びチタンから選択されるステップと;
c)修飾されたシリカ担体から溶媒又は液体キャリアを任意選択で除去するステップと;
d)前記修飾されたシリカ担体を任意選択で乾燥させるステップと;
e)か焼されていない修飾されたシリカ担体を触媒金属で処理して、前記修飾されたシリカ担体上への前記触媒金属の吸着をもたらすステップと;
f)ステップe)の含浸されたシリカ担体をか焼するステップとを含む、方法。
A method of producing a catalyst, comprising:
a) providing a porous silica support having isolated silanol groups;
b) treating the porous silica support with a mononuclear or multinuclear modifier metal compound such that the modifier metal is adsorbed onto the surface of the silica support by reaction with the isolated silanol groups; wherein the adsorbed modifier metal atoms are sufficiently spaced from each other to substantially prevent their oligomerization with adjacent modifier metal atoms before, preferably after calcination, and Preferably, they are sufficiently spaced from each other to substantially prevent their dimerization or trimerization with their adjacent modifier metal atoms, wherein said modifier metals are boron, magnesium , aluminum, zirconium, hafnium and titanium;
c) optionally removing the solvent or liquid carrier from the modified silica support;
d) optionally drying the modified silica support;
e) treating an uncalcined modified silica support with a catalytic metal to result in adsorption of said catalytic metal onto said modified silica support;
f) calcining the impregnated silica support of step e).
修飾剤金属で修飾された前記多孔質シリカ担体が、修飾剤金属酸化物-シリカの共ゲル担体である、請求項1に記載の方法。 The method of claim 1, wherein the modifier metal modified porous silica support is a modifier metal oxide-silica co-gel support. 多孔質修飾剤金属酸化物-シリカの共ゲル担体を含む、請求項2に記載のか焼されていない触媒中間体。 3. The uncalcined catalytic intermediate of claim 2, comprising a porous modifier metal oxide-silica cogel support. 前記か焼されていない中間体が、か焼されてきた、請求項2又は5に記載の中間体を含む触媒。 6. A catalyst comprising the intermediate of claim 2 or 5, wherein said uncalcined intermediate has been calcined. 前記か焼ステップが、少なくとも450℃、より好ましくは、少なくとも475℃、最も好ましくは、少なくとも500℃、特に、少なくとも600℃、より特に、700℃超の温度にて行われ、且つ/又は典型的には、前記か焼温度が、400~1000℃、より典型的には、500~900℃、最も典型的には、600~850℃の範囲である、請求項1、3、4又は6のいずれか一項に記載の方法又は触媒。 Said calcination step is carried out at a temperature of at least 450°C, more preferably at least 475°C, most preferably at least 500°C, especially at least 600°C, more especially above 700°C and/or typically wherein the calcination temperature ranges from 400 to 1000°C, more typically from 500 to 900°C, most typically from 600 to 850°C. A method or catalyst according to any one of the preceding claims. 前記シリカ担体が、ヒドロゲル又はキセロゲル、より好ましくは、キセロゲルである、請求項1~のいずれか一項に記載の方法又は触媒又は触媒中間体。 Process or catalyst or catalyst intermediate according to any one of the preceding claims, wherein said silica support is a hydrogel or xerogel , more preferably a xerogel. 前記修飾剤金属が、前記シリカ担体表面上に吸着され、典型的には、前記シリカ担体表面上へと化学吸着又は物理吸着され、より典型的には、その上に化学吸着されている吸着質である、請求項1~3又は6~のいずれか一項に記載の方法又は触媒又は触媒中間体。 the modifier metal is adsorbed onto the silica support surface, typically chemisorbed or physisorbed onto the silica support surface, more typically an adsorbate chemisorbed thereon; The process or catalyst or catalyst intermediate according to any one of claims 1-3 or 6-8 , wherein 前記修飾剤金属が、ジルコニウム、ハフニウム又はチタン、典型的には、チタンから選択される、請求項1~のいずれか一項に記載の方法又は触媒又は触媒中間体。 Process or catalyst or catalyst intermediate according to any one of the preceding claims, wherein said modifier metal is selected from zirconium, hafnium or titanium , typically titanium. 前記触媒金属が、典型的には、セシウム、カリウム又はルビジウム、より典型的には、セシウムから選択されるアルカリ金属である、請求項1~10のいずれか一項に記載の方法又は触媒又は触媒中間体。 Process or catalyst or catalyst according to any one of the preceding claims, wherein said catalytic metal is typically an alkali metal selected from cesium, potassium or rubidium , more typically cesium Intermediate. 前記シリカ担体が、nm当たり<5個の金属原子のレベルで前記修飾剤金属を含む、請求項1~11のいずれか一項に記載の方法又は触媒又は触媒中間体。 12. The method or catalyst or catalyst intermediate of any one of claims 1 to 11 , wherein said silica support comprises said modifier metal at a level of <5 metal atoms per nm2 . 触媒金属か焼の前又は後の前記担体上の前記修飾剤金属の少なくとも25%が、単核若しくは複核の修飾剤金属部分の形態で存在する、請求項1~12のいずれか一項に記載の方法又は触媒又は触媒中間体。 13. Any one of claims 1 to 12 , wherein at least 25% of the modifier metal on the support before or after catalytic metal calcination is present in the form of mononuclear or binuclear modifier metal moieties. process or catalyst or catalyst intermediate of 吸着され又は共ゲル化された修飾剤金属カチオンが、それに続く処理ステップ、例えば、触媒金属の含浸及び/又はか焼の間のそのオリゴマー化、より好ましくは、その隣接する修飾剤金属カチオンとの二量体化、三量体化又はオリゴマー化を実質的に防止するように互いに十分に離間している、請求項1~13のいずれか一項に記載の方法又は触媒又は触媒中間体。 Adsorbed or co-gelled modifier metal cations are used in subsequent processing steps, such as impregnation of the catalyst metal and/or its oligomerization during calcination, more preferably with its adjacent modifier metal cations. 14. The process or catalyst or catalyst intermediate of any one of claims 1-13 , which are sufficiently separated from each other to substantially prevent dimerization, trimerization or oligomerization. 前記シリカ担体が、nm当たり<2.5個の基のレベルで単離されたシラノール基(-SiOH)を含む、請求項1~14のいずれか一項に記載の方法又は触媒又は触媒中間体。 15. The process or catalyst or catalytic intermediate of any one of claims 1 to 14 , wherein said silica support comprises isolated silanol groups (-SiOH) at a level of <2.5 groups per nm2 . body. 前記担体が、nm当たり>0.025個及び<2.5個の基のレベルで、より好ましくは、0.05~1.5個のレベルで、最も好ましくは、nm当たり0.1~1.0個の部分のレベルで前記修飾剤金属部分を含む、請求項1~15のいずれか一項に記載の方法又は触媒又は触媒中間体。 said carriers at a level of >0.025 and <2.5 groups per nm2 , more preferably at a level of 0.05 to 1.5, most preferably 0.1 per nm2 ; 16. The method or catalyst or catalyst intermediate of any one of claims 1 to 15 , comprising said modifier metal moieties at a level of ∼1.0 moieties. 前記修飾されたシリカ担体のシリカ成分が典型的には、前記修飾された担体の80~99.9重量%、より典型的には、85~99.8重量%、最も典型的には、その90~99.7重量%を形成し得る、請求項1~16のいずれか一項に記載の方法又は触媒又は触媒中間体。 The silica component of the modified silica support is typically 80-99.9% by weight of the modified support, more typically 85-99.8% by weight, most typically Process or catalyst or catalyst intermediate according to any one of claims 1 to 16 , capable of forming 90-99.7% by weight. 前記シリカ担体が、2~1000nm、より好ましくは、3~500nm、最も好ましくは、5~250nmの平均孔径を有する、請求項1~17のいずれか一項に記載の方法又は触媒又は触媒中間体。 Process or catalyst or catalyst intermediate according to any one of the preceding claims, wherein said silica support has an average pore size of 2-1000 nm, more preferably 3-500 nm, most preferably 5-250 nm. . 前記触媒金属が、前記触媒の前記修飾されたシリカ担体表面上に吸着された吸着質であり、典型的には、前記吸着質が、前記修飾されたシリカ担体表面上へと化学吸着又は物理吸着されてもよく、より典型的には、その上に化学吸着されている、請求項1~18のいずれか一項に記載の方法又は触媒又は触媒中間体。 The catalytic metal is an adsorbate adsorbed onto the modified silica support surface of the catalyst, and typically the adsorbate is chemisorbed or physisorbed onto the modified silica support surface. The process or catalyst or catalyst intermediate according to any one of claims 1 to 18 , which may be, more typically chemisorbed thereon. 前記触媒金属、例えば、セシウムが、前記触媒中の少なくとも1mol/100(ケイ素+修飾剤金属)mol、より好ましくは、少なくとも1.5mol/100(ケイ素+修飾剤金属)mol、最も好ましくは、少なくとも2mol/100(ケイ素+修飾剤金属)molのレベルで触媒中に存在し得、且つ/又は、触媒金属のレベルが、10mol/100(ケイ素+修飾剤金属)molまで、より好ましくは、前記触媒中の7.5mol/100(ケイ素+修飾剤金属)molまで、最も好ましくは、5mol/100(ケイ素+修飾剤金属)molまでであり得る、請求項1~19のいずれか一項に記載の方法又は触媒又は触媒中間体。 The catalyst metal, e.g. cesium, is at least 1 mol/100 (silicon + modifier metal) mol, more preferably at least 1.5 mol/100 (silicon + modifier metal) mol, most preferably at least can be present in the catalyst at a level of 2 mol/100 (silicon + modifier metal) mol and/or the level of catalytic metal is up to 10 mol/100 (silicon + modifier metal) mol, more preferably said catalyst 20. According to any one of claims 1 to 19 , up to 7.5 mol/100 (silicon + modifier metal) mol, most preferably up to 5 mol/100 (silicon + modifier metal) mol in Process or catalyst or catalyst intermediate. 前記触媒中の前記触媒金属:修飾剤金属のモル比が、少なくとも1.4若しくは1.5:1であり、且つ/又は好ましくは、1.4~5:1、例えば、1.5~4:1、特に、1.5~3.6:1の範囲であり、典型的には、これに関しては、前記触媒金属が、セシウムである、請求項1~20のいずれか一項に記載の方法又は触媒又は触媒中間体。 The molar ratio of said catalyst metal:modifier metal in said catalyst is at least 1.4 or 1.5:1 and/or preferably between 1.4 and 5:1, such as between 1.5 and 4 :1, in particular in the range 1.5 to 3.6:1, typically for which said catalytic metal is cesium . Process or catalyst or catalyst intermediate. 前記触媒金属が、0.5~7.0mol/mol修飾剤金属、より好ましくは、1.0~6.0mol/mol、最も好ましくは、1.5~5.0mol/mol修飾剤金属の範囲で存在する、請求項1~21のいずれか一項に記載の方法又は触媒又は触媒中間体。 said catalyst metal ranges from 0.5 to 7.0 mol/mol modifier metal, more preferably from 1.0 to 6.0 mol/mol, most preferably from 1.5 to 5.0 mol/mol modifier metal A process or catalyst or catalytic intermediate according to any one of claims 1 to 21 , which is present in 前記触媒中の触媒金属のレベルが、前記触媒中の1~10mol/100(ケイ素+修飾剤金属)mol、より好ましくは、2~8mol/100(ケイ素+修飾剤金属)mol、最も好ましくは、2.5~6mol/100(ケイ素+修飾剤金属)molの範囲内である、請求項1~22のいずれか一項に記載の方法又は触媒又は触媒中間体。 The level of catalytic metal in said catalyst is from 1 to 10 mol/100 (silicon + modifier metal) mol in said catalyst, more preferably from 2 to 8 mol/100 (silicon + modifier metal) mol, most preferably 23. The process or catalyst or catalyst intermediate of any one of claims 1 to 22 in the range of 2.5-6 mol/100 (silicon + modifier metal) mol. 修飾剤金属のレベルが、0.067×10-2~7.3×10-2mol/molシリカ、より好ましくは、0.13×10-2~5.7×10-2mol/molシリカ、最も好ましくは、0.2×10-2~3.5×10-2mol/molシリカである、請求項1~23のいずれか一項に記載の方法又は触媒又は触媒中間体。 Modifier metal levels between 0.067×10 −2 and 7.3×10 −2 mol/mol silica, more preferably between 0.13×10 −2 and 5.7×10 −2 mol/mol silica , most preferably 0.2×10 −2 to 3.5 ×10 −2 mol/mol silica. 触媒粒子の平均細孔容積が、0.1cm/g未満であり得るが、一般に、流体、例えば、水の取込みによって測定すると、0.1~5cm/gの範囲内である、請求項1~24のいずれか一項に記載の方法又は触媒又は触媒中間体。 Claim that the average pore volume of the catalyst particles can be less than 0.1 cm 3 /g, but is generally in the range of 0.1 to 5 cm 3 /g as measured by fluid, e.g. water, uptake. 25. Process or catalyst or catalyst intermediate according to any one of claims 1 to 24 . 請求項1~25のいずれか一項に記載の方法によって得ることができる触媒。 A catalyst obtainable by the process according to any one of claims 1-25 . エチレン性不飽和カルボン酸若しくはエステル、典型的には、α、βエチレン性不飽和カルボン酸若しくはエステルを生成する方法であって、触媒の存在下で、及び任意選択でアルコールの存在下で、ホルムアルデヒド又はその適切な源とカルボン酸若しくはエステルとを接触させるステップを含み、ここで、前記触媒は、請求項6~26のいずれか一項に記載されている、方法。 A method of producing an ethylenically unsaturated carboxylic acid or ester, typically an α,β ethylenically unsaturated carboxylic acid or ester, comprising forming formaldehyde in the presence of a catalyst and optionally in the presence of an alcohol. or a suitable source thereof and a carboxylic acid or ester, wherein said catalyst is as claimed in any one of claims 6-26 . エチレン性不飽和酸若しくはエステルを調製する方法であって、請求項6~26のいずれか一項に記載されている触媒の存在下で、及び任意選択でアルカノールの存在下で、式R-CH-COORのアルカン酸若しくはエステルと、下記で定義するような式(I)のホルムアルデヒド又はホルムアルデヒドの適切な源
Figure 2020183193000001

(式中、R5は、メチルであり、R6は、Hであり;
Xは、Oであり;
mは、1であり;
nは、1~20の任意の値である)、又はこれらの任意の混合物とを接触させることを含み;
式中、R1は、水素、又は1~12個、より適切には、1~8個、最も適切には、1~4個の炭素原子を有するアルキル基であり、R3はまた、独立に、水素、又は1~12個、より適切には、1~8個、最も適切には、1~4個の炭素原子を有するアルキル基であり得る、方法。
A process for preparing an ethylenically unsaturated acid or ester, in the presence of a catalyst according to any one of claims 6 to 26 and optionally in the presence of an alkanol, of formula R 1 - an alkanoic acid or ester of CH 2 —COOR 3 and formaldehyde or a suitable source of formaldehyde of formula (I) as defined below
Figure 2020183193000001

(wherein R5 is methyl and R6 is H;
X is O;
m is 1;
n is any value from 1 to 20), or any mixture thereof;
wherein R1 is hydrogen or an alkyl group having 1 to 12, more suitably 1 to 8, most suitably 1 to 4 carbon atoms, and R3 is also independently It can be hydrogen or an alkyl group having 1 to 12, more suitably 1 to 8 and most suitably 1 to 4 carbon atoms.
前記カルボン酸若しくはエステル又はそれぞれ式R-CH-COORのエステル若しくは酸が、プロピオン酸メチル又はプロピオン酸であり、典型的には、任意選択のアルカノールが、メタノールであり、エチレン性不飽和カルボン酸若しくはエステルが、メタクリル酸メチル又はメタクリル酸である、請求項27又は28に記載の方法。 Said carboxylic acid or ester or respectively ester or acid of formula R 1 -CH 2 -COOR 3 is methyl propionate or propionic acid, typically the optional alkanol is methanol and ethylenically unsaturated 29. A method according to claim 27 or 28 , wherein the carboxylic acid or ester is methyl methacrylate or methacrylic acid. 前記部分が、前記シリカ担体の表面に亘り均一に分布している、請求項1~29のいずれか一項に記載の方法又は触媒又は触媒中間体。 30. The method or catalyst or catalyst intermediate of any one of claims 1 to 29 , wherein said moieties are uniformly distributed over the surface of said silica support.
JP2021554664A 2019-03-13 2020-03-13 Methods for the formation of catalysts, catalysts from them, and methods for the formation of ethylenically unsaturated carboxylic acids or esters. Pending JP2022526236A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1903455.2A GB201903455D0 (en) 2019-03-13 2019-03-13 A process for the protection of a catalyst, a catalyst therefrom and a process for production of ethylenically unsaturated carboxlyic acids or esters
GB1903455.2 2019-03-13
PCT/GB2020/050644 WO2020183193A1 (en) 2019-03-13 2020-03-13 A process for the production of a catalyst, a catalyst therefrom and a process for production of ethylenically unsaturated carboxylic acids or esters

Publications (2)

Publication Number Publication Date
JP2022526236A JP2022526236A (en) 2022-05-24
JPWO2020183193A5 true JPWO2020183193A5 (en) 2023-03-20

Family

ID=66380370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021554664A Pending JP2022526236A (en) 2019-03-13 2020-03-13 Methods for the formation of catalysts, catalysts from them, and methods for the formation of ethylenically unsaturated carboxylic acids or esters.

Country Status (12)

Country Link
US (1) US20220184593A1 (en)
EP (1) EP3938098A1 (en)
JP (1) JP2022526236A (en)
KR (1) KR20210134396A (en)
CN (1) CN113573807A (en)
BR (1) BR112021017250A2 (en)
CA (1) CA3132622C (en)
GB (1) GB201903455D0 (en)
MX (1) MX2021011035A (en)
SG (1) SG11202109324SA (en)
TW (1) TW202045253A (en)
WO (1) WO2020183193A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112023024810A2 (en) 2021-06-01 2024-02-15 Mitsubishi Chem Corp CATALYST, METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING UNSATURATED CARBOXYLIC ACID AND/OR UNSATURATED CARBOXYLIC ACID ESTERS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357451A (en) 1980-05-21 1982-11-02 Phillips Petroleum Company Chemical dehydroxylation of silica
US4308172A (en) 1980-05-21 1981-12-29 Phillips Petroleum Company Chemical dehydroxylation of silica
US5583085A (en) 1994-06-13 1996-12-10 W. R. Grace & Co.-Conn. Preparation of dehydroxylated supports
US5972823A (en) * 1994-08-03 1999-10-26 Exxon Chemical Patents Inc Supported ionic catalyst composition
GB9807498D0 (en) 1998-04-08 1998-06-10 Ici Plc Production of unsaturated acids therfore and catalysts therfor
US6887822B2 (en) 2001-09-25 2005-05-03 Pq Corporation Method for making silica supported, crush-resistant catalysts
BRPI0814023A2 (en) * 2007-07-05 2017-10-03 Grace Gmbh & Co Kg METHOD TO MANUFACTURE INORGANIC OXIDE SUPPORTED CATALYST
GB201011092D0 (en) * 2010-07-01 2010-08-18 Lucite Int Uk Ltd A catalyst system and a process for the production of ethylenically unsaturated carboxylic acids or esters
US9199910B2 (en) * 2012-06-04 2015-12-01 Rohm And Haas Company Process for production of methacrylic acid esters
GB201714756D0 (en) * 2017-09-13 2017-10-25 Lucite Int Uk Ltd A catalyst and a process for the production of ethylenicallly unsaturated carboxylic acids or esters

Similar Documents

Publication Publication Date Title
JP7384788B2 (en) Catalysts and processes for producing ethylenically unsaturated carboxylic acids or esters
JP6708727B2 (en) Method for producing silica-supported alkali metal catalysts
US10301250B2 (en) Nitrided mixed oxide catalyst system and a process for the production of ethylenically unsaturated carboxylic acids or esters
JPH10511302A (en) Aluminosilicate support for metathesis catalyst
CN106256429B (en) Aluminum fluoride catalyst with high specific surface area and application thereof
JP2007514543A (en) Zirconia-containing support for catalyst
JPWO2007083684A1 (en) Catalyst and method for producing olefin using the same
TW200930454A (en) Improved oxidation catalyst for maleic anhydride production
US20210387165A1 (en) Catalyst, method for preparing catalyst, and method for producing unsaturated carboxylic acid and/or unsaturated carboxylic acid ester
JPWO2020183193A5 (en)
CN111065618A (en) Process for producing aliphatic carboxylic acid ester
CN112930333A (en) Method for producing alcohol and catalyst for alcohol production
JP6571392B2 (en) Isomerization catalyst, linear olefin production method and compound production method
CN113573807A (en) Process for producing catalyst, catalyst produced therefrom and process for producing ethylenically unsaturated carboxylic acid or carboxylic acid ester
WO2002102508A2 (en) Regeneration of catalyst for use in production of lower aliphatic carboxylic acid ester and production of lower aliphatic carboxylic acid ester
RU2801149C2 (en) Catalyst, method for obtaining catalyst and method for producing unsaturated carboxylic acid and/or unsaturated carboxylic acid ether
JPWO2008099695A1 (en) Process for producing hydrocarbons by reduction of carbon monoxide
CN113631268A (en) Catalyst and process for producing ethylenically unsaturated carboxylic acids or esters
JP7472733B2 (en) Method for regenerating catalyst for alcohol production
JP5656708B2 (en) A method for recovering an active component from a catalyst for producing ethylene oxide after use, and a method for producing a catalyst using the recovered component.
JP2017197458A (en) Method for producing conjugated diene compound by dehydration of allyl-type unsaturated alcohol
TW202003425A (en) Method for producing p-xylene
RU2022104567A (en) CATALYST AND METHOD FOR PRODUCING ETHYLENELY UNSATURATED CARBOXYLIC ACIDS OR ESTERS
TW202010731A (en) A catalyst and a process for the production of ethylenically unsaturated carboxylic acids or esters
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide