JPWO2020183000A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020183000A5
JPWO2020183000A5 JP2021553803A JP2021553803A JPWO2020183000A5 JP WO2020183000 A5 JPWO2020183000 A5 JP WO2020183000A5 JP 2021553803 A JP2021553803 A JP 2021553803A JP 2021553803 A JP2021553803 A JP 2021553803A JP WO2020183000 A5 JPWO2020183000 A5 JP WO2020183000A5
Authority
JP
Japan
Prior art keywords
signals
space
acquired
weighting
central portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021553803A
Other languages
Japanese (ja)
Other versions
JP7446328B2 (en
JP2022524395A (en
Publication date
Priority claimed from EP19162915.3A external-priority patent/EP3709042A1/en
Application filed filed Critical
Publication of JP2022524395A publication Critical patent/JP2022524395A/en
Publication of JPWO2020183000A5 publication Critical patent/JPWO2020183000A5/ja
Priority to JP2024008655A priority Critical patent/JP2024056726A/en
Application granted granted Critical
Publication of JP7446328B2 publication Critical patent/JP7446328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (12)

MR装置の検査ボリューム内に配置される対象物のMR撮像の方法であって、
前記対象物を、RFパルス及びスイッチング磁場傾斜を有する撮像シーケンスにかけることによってMR信号を生成するステップと、
k空間の中心部分のオーバーサンプリングで3Dラジアル又はスパイラル収集方式を用いて前記MR信号を収集するステップと、
MR信号の収集中に前記対象物の動き誘導変位及び/又は変形を検出し、前記収集されるMR信号の各々を動き状態に割り当てるステップと、
前記k空間の中央部分において重み付けされる前記MR信号からMR画像を再構成するステップであって、より強い重み付けは、より頻繁な動き状態において収集されるMR信号に適用され、より弱い重み付けは、より頻繁でない動き状態において収集されるMR信号に適用されるステップと
を有する、方法。
A method of MR imaging of an object positioned within an examination volume of an MR apparatus, comprising:
generating MR signals by subjecting the object to an imaging sequence comprising RF pulses and switching magnetic field gradients;
acquiring the MR signals using a 3D radial or spiral acquisition scheme with oversampling of a central portion of k-space;
detecting motion-induced displacement and/or deformation of the object during acquisition of MR signals and assigning each of the acquired MR signals to a motion state;
reconstructing an MR image from the weighted MR signals in the central portion of k-space, wherein stronger weighting is applied to MR signals acquired in more frequent motion states, and weaker weighting is applied to applied to MR signals acquired in less frequent motion states.
各動き状態の前記発生頻度は、動き状態ごとの前記収集されるMR信号の数を反映するヒストグラムに基づいて決定される、請求項1に記載の方法。 2. The method of claim 1, wherein the frequency of occurrence of each motion state is determined based on a histogram reflecting the number of MR signals acquired per motion state. 前記k空間の中央部分におけるMR信号の重み付けは時間フレームごとに適応される、請求項1又は2に記載の方法。 3. Method according to claim 1 or 2, wherein the weighting of the MR signals in the central part of k-space is adapted every time frame. 前記3Dラジアル又はスパイラル取得スキームは、k空間において前記中央スライスから前記周辺スライスにおけるより低いラジアルサンプリング密度まで徐々に減少するラジアルサンプリング密度を含む、請求項1乃至3の何れか一項に記載の方法。 4. The method of any one of claims 1-3, wherein the 3D radial or spiral acquisition scheme comprises a radial sampling density that gradually decreases in k-space from the central slice to a lower radial sampling density in the peripheral slices. . 重み付け係数のより広い範囲は、前記k空間の中央部分における前記MR信号に適用され、より顕著でない重み付けは、前記k空間の周辺部分における前記MR信号に適用される、請求項1乃至4の何れか一項に記載の方法。 5. The method of claims 1-4, wherein a broader range of weighting factors is applied to the MR signals in the central portion of the k-space and less pronounced weighting is applied to the MR signals in the peripheral portions of the k-space. A method according to any one of paragraphs. 前記MR画像の再構成中に前記MR信号に適用される前記重み付けは、ユーザ特定ゲーティングパーセンテージから導出される、請求項1乃至5の何れか一項に記載の方法。 6. The method of any one of claims 1-5, wherein the weighting applied to the MR signals during reconstruction of the MR image is derived from a user-specific gating percentage. 前記MR信号は、異なる空間感度プロファイルを有するいくつかのRF受信コイルを介して並列に収集される、請求項1乃至6の何れか一項に記載の方法。 7. The method of any one of claims 1-6, wherein the MR signals are acquired in parallel via several RF receive coils with different spatial sensitivity profiles. 前記MR画像は、圧縮検知又はSENCEのような並列画像再構成アルゴリズムを使用して再構成される、請求項1乃至7の何れか一項に記載の方法。 8. A method according to any preceding claim, wherein the MR images are reconstructed using a parallel image reconstruction algorithm such as compressed sensing or SENCE. MR画像の時間シーケンスは、前記収集されるMR信号から再構成される、請求項1乃至8の何れか一項に記載の方法。 9. A method according to any preceding claim, wherein a time sequence of MR images is reconstructed from the acquired MR signals. 前記MR信号は、ラジアル又はスパイラルk空間プロファイルとして収集され、前記k空間プロファイルの回転角度は、連続するk空間プロファイルの収集中に黄金角方式に従ってインクリメントされる、請求項1乃至9の何れか一項に記載の方法。 10. The MR signal of any one of claims 1-9, wherein the MR signal is acquired as a radial or spiral k-space profile, and the rotation angle of the k-space profile is incremented according to the golden angle scheme during acquisition of successive k-space profiles. The method described in section. 検査ボリューム内に均一で安定した磁場B0を生成するための少なくとも1つの主磁石コイルと、前記検査ボリューム内の異なる空間方向にスイッチング磁場傾斜を生成するためのいくつかの傾斜コイルと、前記検査ボリューム内にRFパルスを生成するため、及び/又は前記検査ボリューム内に配置される対象物からMR信号を受信するための少なくとも1つのRFコイルと、RFパルス及びスイッチング磁場傾斜の時系列を制御するための制御ユニットと、前記受信されるMR信号からMR画像を再構成するための再構成ユニットとを有するMR装置であって、前記MR装置は、
前記対象物をRFパルス及びスイッチング磁場傾斜を有する撮像シーケンスにかけることによってMR信号を生成するステップと、
k空間の中心部分のオーバーサンプリングで3Dラジアル又はスパイラル収集方式を用いて前記MR信号を収集するステップと、
前記MR信号の収集中に前記対象物の動き誘導変位及び/又は変形を検出し、前記MR信号の各々を動き状態に割り当てるステップと、
前記k空間の中央部分において重み付けされる前記MR信号からMR画像を再構成するステップであって、より強い重み付けは、より頻繁な動き状態において収集されるMR信号に適用され、より弱い重み付けは、より頻繁でない動き状態において収集されるMR信号に適用される、ステップと
を実行するように構成される、MR装置。
At least one main magnet coil for generating a uniform and stable magnetic field B0 within an examination volume, several gradient coils for generating switching magnetic field gradients in different spatial directions within said examination volume, and said examination volume. at least one RF coil for generating RF pulses within and/or receiving MR signals from an object located within said examination volume, and for controlling the time sequence of RF pulses and switching magnetic field gradients and a reconstruction unit for reconstructing an MR image from the received MR signals, the MR apparatus comprising:
generating MR signals by subjecting the object to an imaging sequence comprising RF pulses and switching magnetic field gradients;
acquiring the MR signals using a 3D radial or spiral acquisition scheme with oversampling of a central portion of k-space;
detecting motion-induced displacement and/or deformation of the object during acquisition of the MR signals and assigning each of the MR signals to a motion state;
reconstructing an MR image from the weighted MR signals in the central portion of k-space, wherein stronger weighting is applied to MR signals acquired in more frequent motion states, and weaker weighting is applied to An MR apparatus configured to perform steps applied to MR signals acquired in less frequent motion states.
MR装置上で実行されるコンピュータプログラムであって、前記コンピュータプログラムは、
RFパルス及びスイッチング磁場傾斜を有する撮像シーケンスを生成するステップと、
k空間の中心部分のオーバーサンプリングで3Dラジアル又はスパイラル収集方式を用いて前記MR信号を収集するステップと、
前記MR信号の収集中に対象物からの動き誘導変位及び/又は変形を検出し、前記MR信号の各々を動き状態に割り当てるステップと、
前記k空間の中央部分において重み付けされる前記MR信号からMR画像を再構成するステップであって、より強い重み付けは、より頻繁な動き状態において収集されるMR信号に適用され、より弱い重み付けは、より頻繁でない動き状態において収集されるMR信号に適用される、ステップと
のための命令を有する、コンピュータプログラム。
A computer program executed on an MR apparatus, the computer program comprising:
generating an imaging sequence comprising RF pulses and switching magnetic field gradients;
acquiring the MR signals using a 3D radial or spiral acquisition scheme with oversampling of a central portion of k-space;
detecting motion-induced displacement and/or deformation from an object during acquisition of the MR signals and assigning each of the MR signals to a motion state;
reconstructing an MR image from the weighted MR signals in the central portion of k-space, wherein stronger weighting is applied to MR signals acquired in more frequent motion states, and weaker weighting is applied to A computer program having instructions for steps to be applied to MR signals acquired in less frequent motion states.
JP2021553803A 2019-03-14 2020-03-13 MR images using 3D radial or spiral acquisition with soft motion gating Active JP7446328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024008655A JP2024056726A (en) 2019-03-14 2024-01-24 MR Imaging Using 3D Radial or Spiral Acquisition with Soft Motion Gating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19162915.3A EP3709042A1 (en) 2019-03-14 2019-03-14 Mr imaging using a 3d radial or spiral acquisition with soft motion gating
EP19162915.3 2019-03-14
PCT/EP2020/056907 WO2020183000A1 (en) 2019-03-14 2020-03-13 Mr imaging using a 3d radial or spiral acquisition with soft motion gating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024008655A Division JP2024056726A (en) 2019-03-14 2024-01-24 MR Imaging Using 3D Radial or Spiral Acquisition with Soft Motion Gating

Publications (3)

Publication Number Publication Date
JP2022524395A JP2022524395A (en) 2022-05-02
JPWO2020183000A5 true JPWO2020183000A5 (en) 2023-03-17
JP7446328B2 JP7446328B2 (en) 2024-03-08

Family

ID=65817798

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021553803A Active JP7446328B2 (en) 2019-03-14 2020-03-13 MR images using 3D radial or spiral acquisition with soft motion gating
JP2024008655A Withdrawn JP2024056726A (en) 2019-03-14 2024-01-24 MR Imaging Using 3D Radial or Spiral Acquisition with Soft Motion Gating

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024008655A Withdrawn JP2024056726A (en) 2019-03-14 2024-01-24 MR Imaging Using 3D Radial or Spiral Acquisition with Soft Motion Gating

Country Status (5)

Country Link
US (1) US11852705B2 (en)
EP (2) EP3709042A1 (en)
JP (2) JP7446328B2 (en)
CN (1) CN113614558A (en)
WO (1) WO2020183000A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473413B2 (en) * 2020-07-17 2024-04-23 富士フイルムヘルスケア株式会社 Magnetic resonance imaging apparatus and control method thereof
EP4080233A1 (en) 2021-04-19 2022-10-26 Koninklijke Philips N.V. K-space sampling for accelerated stack-of-stars magnetic resonance imaging using compressed sense and ai
CN116499748B (en) * 2023-06-27 2023-08-29 昆明理工大学 Bearing fault diagnosis method and system based on improved SMOTE and classifier

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051903A (en) * 1989-08-14 1991-09-24 General Electric Company Method and apparatus for predicting values of a varying periodic phenomenon
GB9919821D0 (en) 1999-08-20 1999-10-27 Imperial College Phase ordering with automatic window selection (PAWS):A novel motion resistant technique for 3D coronary imaging
CA2473963A1 (en) 2003-07-14 2005-01-14 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging
US7860291B2 (en) 2007-06-12 2010-12-28 General Electric Co. Method and apparatus for correcting motion in multi-shot diffusion-weighted magnetic resonance imaging
CN101216942A (en) * 2008-01-14 2008-07-09 浙江大学 An increment type characteristic background modeling algorithm of self-adapting weight selection
US8699771B2 (en) 2009-11-19 2014-04-15 General Electric Company Method and apparatus for reducing motion-related imaging artifacts
US8427153B2 (en) 2010-01-15 2013-04-23 Beth Israel Deaconess Medical Center, Inc. Method for motion correction in magnetic resonance imaging using radio frequency coil arrays
US8306299B2 (en) 2011-03-25 2012-11-06 Wisconsin Alumni Research Foundation Method for reconstructing motion-compensated magnetic resonance images from non-Cartesian k-space data
US9103898B2 (en) 2011-04-18 2015-08-11 General Electric Company Motion correction in accelerated T1-weighted magnetic resonance imaging
CN102393508A (en) * 2011-09-30 2012-03-28 湖南大学 Nondestructive diagnosis of battery performance
WO2013159044A1 (en) 2012-04-19 2013-10-24 New York University System, method and computer-accessible medium for highly-accelerated dynamic magnetic resonance imaging using golden-angle radial samplng and compressed sensing
RU2015116879A (en) * 2012-10-02 2016-11-27 Конинклейке Филипс Н.В. SUPPORT SCANNING AT MR-RESISTANT METAL RESISTANCE
KR101447547B1 (en) * 2012-11-23 2014-10-06 삼성전자주식회사 Method for imaging magnetic resonance image and appratus using the same thereof
US9797974B2 (en) 2013-01-30 2017-10-24 The Board Of Trustees Of The Leland Stanford Junior University Nonrigid motion correction in 3D using autofocusing with localized linear translations
DE102013205830B4 (en) 2013-04-03 2024-05-29 Siemens Healthineers Ag Method and image data generation device for generating image data of a moving object, magnetic resonance system and computer program product
EP3077837A1 (en) 2013-12-02 2016-10-12 Koninklijke Philips N.V. Real-time adaptive physiology synchronization and gating for steady state mr sequences
JP2015128252A (en) 2013-12-27 2015-07-09 日本電信電話株式会社 Prediction image generating method, prediction image generating device, prediction image generating program, and recording medium
US9983283B2 (en) 2015-03-16 2018-05-29 Toshiba Medical Systems Corporation Accelerated MRI using radial strips and undersampling of k-space
DE102015107347A1 (en) * 2015-05-11 2016-11-17 Universitätsspital Basel A MAGNETIC RESONANCE TOMOGRAPHY PROCESS WITH ASYMMETRIC RADIAL ACQUISITION OF K-ROOM DATA
EP3308186B1 (en) * 2015-06-15 2022-02-02 Koninklijke Philips N.V. Mr imaging using a stack-of-stars acquisition
DE102016200293A1 (en) * 2016-01-13 2017-07-13 Siemens Healthcare Gmbh Determination of states of motion
US10420510B2 (en) 2016-04-22 2019-09-24 General Electric Company System and method for imaging a moving subject
CN106803865B (en) 2016-12-23 2019-10-22 中国科学院自动化研究所 The denoising method and system of video time domain
DE102017201074A1 (en) * 2017-01-24 2018-07-26 Siemens Healthcare Gmbh Method for recording magnetic resonance data, magnetic resonance apparatus, computer program and data carrier
CN107609460B (en) * 2017-05-24 2021-02-02 南京邮电大学 Human body behavior recognition method integrating space-time dual network flow and attention mechanism
EP3413071A1 (en) * 2017-06-09 2018-12-12 Koninklijke Philips N.V. Mr imaging using a stack-of-stars acquisition with variable contrast
CN113740751A (en) * 2020-05-27 2021-12-03 台达电子企业管理(上海)有限公司 Battery internal resistance detection device and method
CN114910808A (en) * 2022-04-26 2022-08-16 深圳市道通科技股份有限公司 Battery internal resistance detection method and battery internal resistance detection circuit

Similar Documents

Publication Publication Date Title
JP6998218B2 (en) MR imaging with motion detection
JP6513398B2 (en) MR image reconstruction using prior information constrained regularization
US8073522B2 (en) Method and magnetic resonance apparatus for dynamic magnetic resonance imaging
JP5123192B2 (en) Image acquisition and reconstruction methods for functional magnetic resonance imaging
JP6636461B2 (en) MR imaging using multi-echo k-space acquisition
JP5599893B2 (en) MR imaging using navigator
JP5547800B2 (en) MR imaging using parallel signal acquisition
US6230039B1 (en) Magnetic resonance imaging method and system with adaptively selected flip angels
CN109814058B (en) Magnetic resonance system and method for generating a magnetic resonance image of an examination subject therein
KR102629667B1 (en) Method and apparatus for accelerated magnetic resonance imaging
JP5042862B2 (en) Magnetic resonance imaging with short echo times
JP2016539722A (en) MR imaging using segmented k-space acquisition with multi-echo
CN106030330B (en) Breath hold detection for magnetic resonance imaging
JP4871399B2 (en) Magnetic resonance imaging system
WO2010113083A1 (en) Dual contrast mr imaging using fluid-attenuation inversion recovery ( flair)
JP7446328B2 (en) MR images using 3D radial or spiral acquisition with soft motion gating
Mooiweer et al. Combining a reduced field of excitation with SENSE‐based parallel imaging for maximum imaging efficiency
JP2017505167A (en) Zero echo time MR imaging using sampling in the center of k-space
KR101836235B1 (en) Method And Apparatus for Magnetic Resonance Imaging
KR101310707B1 (en) Apparatus and method for magnetic resonance image processing
JP2020522344A5 (en)
US11255942B2 (en) Magnetic resonance imaging apparatus
US11543482B2 (en) Magnetic resonance imaging using motion-compensated image reconstruction
US10955499B2 (en) Method and computer for producing a pulse sequence for controlling a magnetic resonance imaging apparatus
JPWO2020183000A5 (en)