JPWO2020163302A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020163302A5
JPWO2020163302A5 JP2021544941A JP2021544941A JPWO2020163302A5 JP WO2020163302 A5 JPWO2020163302 A5 JP WO2020163302A5 JP 2021544941 A JP2021544941 A JP 2021544941A JP 2021544941 A JP2021544941 A JP 2021544941A JP WO2020163302 A5 JPWO2020163302 A5 JP WO2020163302A5
Authority
JP
Japan
Prior art keywords
blast
blasting
explosive
permutations
available
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021544941A
Other languages
Japanese (ja)
Other versions
JP7431840B2 (en
JP2022519128A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/016544 external-priority patent/WO2020163302A1/en
Publication of JP2022519128A publication Critical patent/JP2022519128A/en
Publication of JPWO2020163302A5 publication Critical patent/JPWO2020163302A5/ja
Priority to JP2024001809A priority Critical patent/JP2024050596A/en
Application granted granted Critical
Publication of JP7431840B2 publication Critical patent/JP7431840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (28)

発破計画を生成する方法であって、
発破される発破現場のベンチの幾何学的特性及び地質特性と、利用可能な爆薬品の直径及び爆発特性とを含む発破データを受信することであって、前記ベンチの前記幾何学的特性は、前記ベンチの切羽高さを含む、受信することと、
前記ベンチに配置された発破孔において、前記利用可能な爆薬品によって適切に破砕されることが可能なパターン発破域を特定することであって、前記切羽高さ、前記利用可能な爆薬品の比エネルギー及び前記ベンチの前記地質特性間の関係を特定することを含む、特定することと、
前記パターン発破域から荷重及び間隔を特定することと、
前記荷重及び前記間隔を使用して発破計画を生成することと
を含む方法。
A method of generating a blast plan, comprising:
Receiving blasting data including geometric and geological characteristics of a blast site bench to be blasted and diameter and detonation characteristics of available explosives, said geometric characteristics of said bench comprising: receiving, including a face height of the bench;
identifying a patterned blast zone that can be adequately fragmented by the available explosive in a blast hole located on the bench, wherein the ratio of the face height to the available explosive is determining, including determining a relationship between energy and the geological properties of the bench;
identifying loads and spacings from the pattern blast area;
and generating a blast plan using said loads and said spacings.
前記パターン発破域を特定することは、前記ベンチの前記地質特性に特有である、前記利用可能な爆薬品の直径に対する前記切羽高さの幾何学的関係を計算して、生のパターン発破域を特定することを含む、請求項1に記載の方法。 Determining the pattern blast zone includes calculating the geometric relationship of the face height to the diameter of the available explosive material, which is specific to the geological properties of the bench, to determine the raw pattern blast zone. 2. The method of claim 1, comprising identifying. 前記パターン発破域を特定することは、先の発破の特定のベンチ材料の適切な破砕をもたらした前記先の発破からの先の発破データに経験的に適合する地質学的定数を有する方程式に、前記利用可能な爆薬品の前記直径に対する前記切羽高さの比率を変数として入力して、生のパターン発破域を特定することを含む、請求項1に記載の方法。 Determining the pattern blast zone is an equation with geological constants empirically fitted to prior blast data from the prior blast that resulted in adequate fracture of the particular bench material of the prior blast: 2. The method of claim 1 including inputting as a variable the ratio of the face height to the diameter of the available explosive to identify a raw pattern blast zone. 前記パターン発破域を特定することは、前記利用可能な爆薬品の前記比エネルギーと、前記方程式を生成する際に使用された前記先の発破データの元である前記先の発破で使用された前記爆薬品の前記比エネルギーとの間の差に基づいて、前記生のパターン発破域を調節することを更に含む、請求項に記載の方法。 Determining the pattern blasting zone includes the specific energy of the available explosive and the blast used in the previous blast from which the previous blasting data used in generating the equation is derived. 4. The method of claim 3 , further comprising adjusting the raw pattern blast zone based on the difference between the specific energy of the explosive. 前記パターン発破域を特定することは、前記利用可能な爆薬品の体積に基づいて前記生のパターン発破域を調節することを更に含む、請求項2~の何れか一項に記載の方法。 5. The method of any one of claims 2-4 , wherein identifying the pattern blast zone further comprises adjusting the raw pattern blast zone based on the volume of the available explosive. 前記利用可能な爆薬品の前記直径は、前記ベンチに配置される前記発破孔の直径を含み、及び前記利用可能な爆薬品は、バルク爆薬を含む、請求項2~の何れか一項に記載の方法。 6. A method according to any one of claims 2 to 5 , wherein said diameter of said usable explosives comprises the diameter of said blastholes located in said bench, and said usable explosives comprise bulk explosives. described method. 前記パターン発破域を特定することは、発破計画における孔の周りの面積を定義することを含み、前記パターン発破域は、前記地質特性及び前記切羽高さに基づく第1の係数、前記利用可能な爆薬品の前記比エネルギーに基づく第2の係数並びに前記利用可能な爆薬品の直径に基づく第3の係数の積を含む、請求項1に記載の方法。 Identifying the pattern blast zone includes defining an area around a hole in a blast plan, the pattern blast zone being defined by a first factor based on the geological characteristics and the face height, the available 2. The method of claim 1, comprising the product of a second factor based on the specific energy of the explosive and a third factor based on the diameter of the available explosive. 前記第1の係数を、
第1の地質係数に、切羽高さの被除数を前記利用可能な製品の前記直径で除した自然対数を乗じた結果を計算することと、
第2の地質係数によって前記結果を減じることと
によって計算することを更に含む、請求項に記載の方法。
the first coefficient,
calculating the result of multiplying the first geological coefficient by the natural logarithm of the face height dividend divided by the diameter of the usable product;
8. The method of claim 7 , further comprising calculating by subtracting the result by a second geological coefficient.
前記利用可能な爆薬品の相対バルク強度に補正係数を加算することにより、前記第2の係数を計算することを更に含む、請求項7~8の何れか一項に記載の方法。 9. The method of any one of claims 7-8 , further comprising calculating the second factor by adding a correction factor to the relative bulk strength of the available explosive. 前記直径を測定単位係数で除し、且つ結果的な被除数を二乗することにより、前記第3の係数を計算することを更に含む、請求項7~9の何れか一項に記載の方法。 10. The method of any one of claims 7-9 , further comprising calculating the third factor by dividing the diameter by a unit of measure factor and squaring the resulting dividend. 前記荷重を特定することは、前記パターン発破域の平方根に、発破現場の前記地質特性からの岩級から導出される定数を乗じることを更に含む、請求項7~10の何れか一項に記載の方法。 11. A method according to any one of claims 7 to 10 , wherein determining the load further comprises multiplying the square root of the pattern blast area by a constant derived from the rock class from the geological features of the blast site. the method of. 発破現場の前記地質特性は、岩石密度、岩石タイプ、岩石強度、減衰特性又はそれらの組合せを含み、及び
前記方法は、前記切羽高さ、所望の発破パターンタイプ、穿孔される任意の発破孔における水の可能性及び/又は潜在量並びに利用可能なドリルの直径を含む発破孔パラメータを受信することと、
前記利用可能な爆薬品のタイプ、前記発破現場に輸送可能な前記利用可能な爆薬品の重量及び/又は体積、発破される材料の重量、発破される材料の体積並びに前記発破現場に輸送可能な前記利用可能な爆薬品によって充填され得る孔の数を含む、前記利用可能な爆薬品についての情報を受信することと
を更に含む、請求項1~11の何れか一項に記載の方法。
The geological characteristics of the blast site include rock density, rock type, rock strength, damping characteristics, or combinations thereof; receiving blasthole parameters including water potential and/or potential and available drill diameter;
the type of explosives available, the weight and/or volume of the available explosives transportable to the blast site, the weight of material to be blasted, the volume of material to be blasted and transportable to the blast site 12. A method according to any preceding claim, further comprising receiving information about the available explosives, including the number of holes that can be filled with the available explosives.
前記発破孔パラメータは、所望の発破パターンタイプを含み、前記定数は、前記所望の発破パターンタイプの形状に基づいて更に導出される、請求項12に記載の方法。 13. The method of claim 12 , wherein the blast hole parameters include a desired blast pattern type and the constant is further derived based on the shape of the desired blast pattern type. 前記受信された発破データの複数の順列を含むデータセットを生成することと、
前記複数の順列の各々について発破をシミュレートして、複数のシミュレーション結果を特定することと
を更に含み、前記発破計画は、最高スコアのシミュレーション結果に基づく、請求項1~13の何れか一項に記載の方法。
generating a data set including a plurality of permutations of the received blasting data;
simulating blasting for each of said plurality of permutations to identify a plurality of simulation results, wherein said blasting plan is based on a highest scoring simulation result. The method described in .
前記発破計画を、
前記発破計画に従って孔を穿孔すること、
前記発破計画に従って前記利用可能な爆薬品を前記孔に充填すること、及び
前記発破計画に従って爆発を開始すること
の1つ又は複数によって実行することを更に含む、請求項1~14の何れか一項に記載の方法。
the blasting plan,
drilling a hole according to said blasting plan;
15. The method of any one of claims 1 to 14 , further comprising performing by one or more of filling the holes with the available explosive material according to the blasting schedule and initiating detonation according to the blasting schedule. The method described in section.
発破計画を生成する方法であって、
発破現場の寸法、発破現場の地質及び利用可能な爆薬品タイプを含む発破データを受信することと、
前記受信された発破データの複数の順列を含むデータセットを生成することと、
前記複数の順列の各々について発破をシミュレートして、複数のシミュレーション結果を特定することと、
最高スコアのシミュレーション結果に基づいて発破計画を生成することであって、前記発破計画は、穿孔される発破孔の場所及び使用される爆薬の量を識別する、生成することと
を含む方法。
A method of generating a blast plan, comprising:
receiving blast data including blast site dimensions, blast site geology and available explosive agent types;
generating a data set including a plurality of permutations of the received blasting data;
simulating blasting for each of the plurality of permutations to identify a plurality of simulation results;
generating a blast plan based on the highest scoring simulation results, the blast plan identifying and generating the locations of blast holes to be drilled and the amount of explosive charge to be used.
前記複数の順列の各々について前記発破をシミュレートすることは、順列の爆薬タイプ及び前記発破現場の地質に基づいてパターン発破域を特定することを含む、請求項16に記載の方法。 17. The method of claim 16 , wherein simulating the blasting for each of the plurality of permutations includes identifying a pattern blast zone based on permutation explosive type and geology of the blast site. 前記複数の順列の各々について前記発破をシミュレートすることは、前記パターン発破域に基づいて初期荷重及び初期間隔を特定することを更に含む、請求項17に記載の方法。 18. The method of claim 17 , wherein simulating the blasting for each of the plurality of permutations further comprises identifying an initial load and an initial spacing based on the pattern blasting area. 前記初期荷重は、
Figure 2020163302000001

であり、式中、Cは、岩級から導出される定数であり、前記初期間隔は、
Figure 2020163302000002

である、請求項18に記載の方法。
The initial load is
Figure 2020163302000001

where C is a constant derived from the rock class and the initial spacing is
Figure 2020163302000002

19. The method of claim 18 , wherein
発破計画を生成するシステムであって、
発破現場の寸法、発破現場の地質及び利用可能な爆薬タイプを含む発破データを記憶するメモリデバイス、
処理ユニット
を含み、前記処理ユニットは、
前記発破データの複数の順列を含むデータセットを生成することと、
発破現場での孔の最小のオーバーフロー又はアンダーフローをもたらす、前記複数の順列の各々の間隔及び荷重を特定することであって、前記間隔及び荷重は、前記複数の順列の各々の爆薬タイプ及び前記発破現場の地質に基づく、特定することと、
前記特定された間隔及び荷重を使用する前記複数の順列の各々についての発破が発破基準の組を満たすことを検証することと、
前記複数の順列の各々について、前記検証された発破の特性をスコア付けすることと、
最高スコアの検証結果に基づいて発破計画を生成することであって、前記発破計画は、穿孔される発破孔の場所及び使用される爆薬の量を識別する、生成することと
を行う、システム。
A system for generating a blast plan, comprising:
a memory device for storing blasting data including blast site dimensions, blast site geology and available explosive types;
a processing unit, the processing unit comprising:
generating a data set including a plurality of permutations of the blasting data;
identifying a spacing and load for each of the plurality of permutations that results in minimal overflow or underflow of the hole at the blast site, wherein the spacing and load are determined by the explosive type and the identifying based on the geology of the blast site;
verifying that blasting for each of the plurality of permutations using the specified spacing and load satisfies a set of blasting criteria;
scoring the verified blasting characteristics for each of the plurality of permutations;
generating a blast plan based on the highest score verification results, the blast plan identifying and generating the location of blast holes to be drilled and the amount of explosive charge to be used.
前記処理ユニットは、複数の画像を使用して前記発破現場の三次元モデルを更に生成する、請求項20に記載のシステム。 21. The system of claim 20 , wherein said processing unit further generates a three-dimensional model of said blast site using a plurality of images. 前記処理ユニットは、前記発破計画を前記発破現場の前記三次元モデルに更に重ねる、請求項21に記載のシステム。 22. The system of claim 21 , wherein the processing unit further overlays the blast plan on the three-dimensional model of the blast site. 前記処理ユニットは、
前記発破現場の発破後画像を受信すること、
発破後分析を前記発破後画像に対して実行して、デブリサイズ及びデブリ拡散を識別すること
を更に行う、請求項20~22の何れか一項に記載のシステム。
The processing unit is
receiving a post-blast image of the blast site;
The system of any of claims 20-22 , further comprising performing a post-blast analysis on the post-blast images to identify debris size and debris diffusion.
発破計画を生成する方法であって、
発破現場の寸法、発破現場の地質及び利用可能な爆薬タイプを含む発破データを受信することと、
前記受信された発破データの複数の順列を含むデータセットを生成することと、
前記複数の順列の各々の爆薬タイプ及び前記発破現場の地質に基づいて、前記複数の順列の各々について複数の間隔及び荷重構成を特定することと、
前記複数の順列の各々について発破をシミュレートし、且つ前記複数の順列の各々の前記複数の間隔及び荷重構成の何れが、他の間隔及び荷重構成に関連付けられた任意の他の絶対値の残りよりも小さい絶対値の残りで標的発破基準を満たすかを特定することと、
シミュレーション結果に基づいて発破計画を生成することと
を含む方法。
A method of generating a blast plan, comprising:
receiving blast data including blast site dimensions, blast site geology and available explosive types;
generating a data set including a plurality of permutations of the received blasting data;
identifying a plurality of spacings and load configurations for each of the plurality of permutations based on the explosive type of each of the plurality of permutations and the geology of the blast site;
simulating blasting for each of said plurality of permutations, and any of said plurality of intervals and load configurations of each of said plurality of permutations resting on any other absolute values associated with other intervals and load configurations; determining whether a target blasting criterion is met with a remainder of absolute value less than
generating a blast plan based on simulation results.
前記絶対値の残りは、前記間隔又は前記荷重を前記発破現場の寸法の1つで除すことによって特定される、請求項24に記載の方法。 25. The method of claim 24 , wherein the remainder of the absolute value is determined by dividing the spacing or the load by one of the dimensions of the blast site. 前記複数のシミュレーション結果をスコア付けすることと、
最高スコアのシミュレーション結果に基づいて前記発破計画を生成することと
を更に含む、請求項24又は25に記載の方法。
scoring the plurality of simulation results;
26. The method of claim 24 or 25 , further comprising generating the blasting plan based on the highest scoring simulation results.
前記複数のシミュレーション結果を前記スコア付けすることは、コスト、デッキ数、孔数、荷重剛性比率及び振動スコアの1つ又は複数に基づく、請求項26に記載の方法。 27. The method of claim 26 , wherein the scoring of the plurality of simulation results is based on one or more of cost, number of decks, number of holes, load stiffness ratio, and vibration score. 前記複数の順列内の前記爆薬タイプを変更することを更に含む、請求項24~27の何れか一項に記載の方法。
28. The method of any one of claims 24-27 , further comprising varying the explosive type within the plurality of permutations.
JP2021544941A 2019-02-05 2020-02-04 Automatic blasting design planning system and related methods Active JP7431840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024001809A JP2024050596A (en) 2019-02-05 2024-01-10 System for automatic blasting design planning and related method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962801312P 2019-02-05 2019-02-05
US62/801,312 2019-02-05
PCT/US2020/016544 WO2020163302A1 (en) 2019-02-05 2020-02-04 Systems for automated blast design planning and methods related thereto

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024001809A Division JP2024050596A (en) 2019-02-05 2024-01-10 System for automatic blasting design planning and related method

Publications (3)

Publication Number Publication Date
JP2022519128A JP2022519128A (en) 2022-03-18
JPWO2020163302A5 true JPWO2020163302A5 (en) 2023-02-08
JP7431840B2 JP7431840B2 (en) 2024-02-15

Family

ID=71947142

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021544941A Active JP7431840B2 (en) 2019-02-05 2020-02-04 Automatic blasting design planning system and related methods
JP2024001809A Pending JP2024050596A (en) 2019-02-05 2024-01-10 System for automatic blasting design planning and related method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024001809A Pending JP2024050596A (en) 2019-02-05 2024-01-10 System for automatic blasting design planning and related method

Country Status (17)

Country Link
US (2) US11797726B2 (en)
EP (1) EP3921795A4 (en)
JP (2) JP7431840B2 (en)
KR (1) KR20210113269A (en)
CN (5) CN117973074A (en)
AR (1) AR117995A1 (en)
AU (1) AU2020219764A1 (en)
BR (1) BR112021014757A2 (en)
CA (1) CA3129078A1 (en)
CL (1) CL2021001833A1 (en)
CO (1) CO2021011548A2 (en)
EA (1) EA202191837A1 (en)
MX (1) MX2021008749A (en)
PE (2) PE20230743A1 (en)
SG (1) SG11202107860SA (en)
WO (1) WO2020163302A1 (en)
ZA (2) ZA202105109B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016207A1 (en) * 2020-07-23 2022-01-27 Orica Australia Pty Ltd Blast design
KR102499401B1 (en) * 2020-11-11 2023-02-10 국방과학연구소 Device for analyzing explosives media propagation characteristic image, drone therefor and method thereof
US11920472B2 (en) * 2022-07-26 2024-03-05 China Railway Eleventh Bureau Group Co., Ltd Reasonable millisecond time control method for excavation blasting of tunnel
DE202022106442U1 (en) * 2022-11-17 2024-02-20 Herrenknecht Aktiengesellschaft Tunnel boring machine
WO2024148401A1 (en) * 2023-01-11 2024-07-18 Augment: Expert Systems Pty Ltd Systems, methods, and storage media to model blast transformation of an in-situ material composition into a muckpile volume for updating a post-blast dig plan for a mine site

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735704A (en) 1970-02-25 1973-05-29 C Livingston Control blasting
JP3168181B2 (en) * 1997-09-03 2001-05-21 鹿島建設株式会社 Optimal blast design system
JP4021102B2 (en) * 1999-07-05 2007-12-12 株式会社奥村組 Low vibration crushing method by blasting
US6772105B1 (en) * 1999-09-08 2004-08-03 Live Oak Ministries Blasting method
FI123573B (en) * 2006-12-22 2013-07-15 Sandvik Mining & Constr Oy Procedure and software product for the preparation of a drilling plan and a rock drilling rig
FI123153B (en) 2006-12-22 2012-11-30 Sandvik Mining & Construction Oy Drawing up a drilling plan for mining a rock space
WO2010118470A1 (en) * 2009-04-17 2010-10-21 The University Of Sydney Drill hole planning
US9476303B2 (en) 2009-05-01 2016-10-25 The University Of Sydney Integrated automation system for regions with variable geographical boundaries
CA2774163C (en) 2009-09-15 2017-07-18 The University Of Sydney A system and method for autonomous navigation of a tracked or skid-steer vehicle
US8733473B2 (en) * 2010-11-02 2014-05-27 Caterpillar Inc. Sequencing algorithm for planned drill holes
FI124169B (en) * 2011-06-14 2014-04-15 Sandvik Mining & Constr Oy Procedure for setting up a drilling plan
CN102663183A (en) * 2012-03-31 2012-09-12 浙江大学 Blasting simulation method in digital mine
CA2902236C (en) 2013-02-27 2023-10-17 Technological Resources Pty Ltd A method of generating a drill hole sequence plan and drill hole sequence planning equipment
US10006750B2 (en) 2013-12-12 2018-06-26 Detnet South Africa (Pty) Ltd (Za) Blasting system control
JP6352684B2 (en) * 2014-06-03 2018-07-04 株式会社鴻池組 Drilling navigation device
JP6420570B2 (en) * 2014-06-03 2018-11-07 株式会社鴻池組 Drilling navigation device
KR101756103B1 (en) * 2015-08-11 2017-07-20 (주) 라이트플러스 Explosive mounted unmanned aerial vehicle and system for controlling unmanned aerial vehicle
US9605926B1 (en) * 2016-01-07 2017-03-28 DuckDrone, LLC Drone-target hunting/shooting system
CN111699357A (en) 2018-01-29 2020-09-22 戴诺·诺贝尔公司 System for automated loading of a blast hole and related method
CN109242144A (en) * 2018-08-01 2019-01-18 京工博创(北京)科技有限公司 A kind of surface blasting prediction technique, apparatus and system
US11416645B2 (en) * 2019-02-05 2022-08-16 Dyno Nobel Inc. Systems for automated blast design planning and methods related thereto
AU2020328017B2 (en) 2019-08-15 2023-02-23 X Development Llc Improving blast patterns

Similar Documents

Publication Publication Date Title
US11416645B2 (en) Systems for automated blast design planning and methods related thereto
Ouchterlony et al. A review of the development of better prediction equations for blast fragmentation
Silva et al. Practical assessment of rock damage due to blasting
Ainalis et al. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review
CN105224742B (en) A kind of blast action of analyzing is got out of a predicament or an embarrassing situation the method for slope stability
Hao et al. Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models part 1: equivalent material property approach
Banadaki Stress-wave induced fracture in rock due to explosive action
CN106547034A (en) A kind of method for calculating compact reservoir rock brittleness index
JP7431840B2 (en) Automatic blasting design planning system and related methods
Williams et al. Validation of a loading model for simulating blast mine effects on armoured vehicles
Panowicz et al. Analysis of criteria for determining a TNT equivalent
Jeon et al. Characteristics of crater formation due to explosives blasting in rock mass
Souza et al. Analysis of blasting rocks prediction and rock fragmentation results using Split-Desktop software
Bhatawdekar et al. Building information model for drilling and blasting for tropically weathered rock.
JPWO2020163302A5 (en)
Bisyk et al. Comparison of numerical methods for modeling the effect of explosion on protective structures
Calnan Determination of explosive energy partition values in rock blasting through small-scale testing
Wang et al. PPV and Frequency Characteristics of Tunnel Blast‐Induced Vibrations on Tunnel Surfaces and Tunnel Entrance Slope Faces
JP2023548563A (en) Fracture density modeling system, method, and apparatus
Kozyrev et al. Particularities of destruction of out-contour rock mass associated with blasting the system of borehole charges
Jianbo et al. Research on evaluation model of rock failure integrity under complex geological conditions in karst area
Orlov et al. Combined Theoretical and Experimental Study of Ice Behavior Under Shock and Explosive Loads
Orlov et al. The behavior limestone under explosive load
Himanshu et al. Dynamic simulation approach to assess influence of charging parameters on blast induced vibration.
CN118067510B (en) Grouting body blasting damage characteristic test method based on field sampling