CN106547034A - A kind of method for calculating compact reservoir rock brittleness index - Google Patents
A kind of method for calculating compact reservoir rock brittleness index Download PDFInfo
- Publication number
- CN106547034A CN106547034A CN201610982279.7A CN201610982279A CN106547034A CN 106547034 A CN106547034 A CN 106547034A CN 201610982279 A CN201610982279 A CN 201610982279A CN 106547034 A CN106547034 A CN 106547034A
- Authority
- CN
- China
- Prior art keywords
- rock
- young
- modulus
- brittleness index
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000011156 evaluation Methods 0.000 claims abstract description 3
- 230000005251 gamma ray Effects 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 230000010339 dilation Effects 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 13
- 238000011161 development Methods 0.000 abstract description 8
- 238000005755 formation reaction Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 3
- 238000009533 lab test Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明提供一种基于测井资料快速计算岩石脆性的方法,用以实现地层条件下致密储层岩石脆性的快速计算,促进致密油气藏高效开发。本方法主要从岩石破裂形态和破裂断裂能角度出发,根据岩石破裂形态越复杂,破裂断裂能越小,岩石脆性指数越大的原理。利用杨氏模量、剪胀角分别反映岩石抵抗变形的能力、变形的速率,可以很好的描述岩石的脆性特征,同时杨氏模量和剪胀角也能反映岩石应力‑应变曲线上不同阶段的特征。利用灰色关联理论计算杨氏模量和剪胀角的权重系数,从而建立起计算岩石脆性指数的新方法。本方法是基于测井资料快速预测脆性指数的计算方法,提高了岩石脆性评价的合理性,促进了致密油气藏的高效开发。The invention provides a method for rapidly calculating rock brittleness based on well logging data, which is used to realize the rapid calculation of rock brittleness of tight reservoirs under formation conditions and promote the efficient development of tight oil and gas reservoirs. This method mainly starts from the perspective of rock fracture form and fracture fracture energy, and is based on the principle that the more complex the rock fracture form, the smaller the fracture fracture energy, and the greater the rock brittleness index. Using Young's modulus and dilation angle to reflect the ability of rock to resist deformation and the rate of deformation respectively, the brittle characteristics of rock can be well described. characteristics of the stage. The gray relational theory is used to calculate the weight coefficients of Young's modulus and dilation angle, and thus a new method for calculating rock brittleness index is established. This method is a calculation method for quickly predicting brittleness index based on well logging data, which improves the rationality of rock brittleness evaluation and promotes the efficient development of tight oil and gas reservoirs.
Description
技术领域:Technical field:
本发明涉及非常规油气勘探与开发领域,具体涉及一种基于测井资料计算致密储层岩石脆性指数的方法。The invention relates to the field of unconventional oil and gas exploration and development, in particular to a method for calculating the brittleness index of tight reservoir rocks based on logging data.
背景技术:Background technique:
我国的致密油气储量丰富,具有良好的开发潜力,但开发难度较大。受到页岩气藏有效开发的启发,致密油气藏进行了缝网压裂的实践。在缝网压裂中,岩石的脆性是判断储层压裂形成缝网能力的重要参数。目前石油工业油气开发领域应用最多的矿物脆性指数和动态岩石力学参数计算岩石脆性的方法都是美国页岩气压裂经验的总结。而岩石力学领域的岩石脆性又主要是基于岩石室内试验的应力应变曲线和力学特征进行计算,没有与油气开发领域结合起来,难以用于现场应用。因此,致密油气压裂急需一种基于岩石脆性力学表现和现场应用方便的岩石脆性计算方法。my country's tight oil and gas reserves are abundant and have good development potential, but the development is difficult. Inspired by the effective development of shale gas reservoirs, fracture network fracturing has been practiced in tight oil and gas reservoirs. In fracture network fracturing, rock brittleness is an important parameter to judge the ability of reservoir fracturing to form fracture network. At present, the mineral brittleness index and dynamic rock mechanics parameters most widely used in oil and gas development in the petroleum industry to calculate rock brittleness are summaries of the shale gas fracturing experience in the United States. The rock brittleness in the field of rock mechanics is mainly calculated based on the stress-strain curve and mechanical characteristics of rock laboratory tests, which is not combined with the field of oil and gas development, so it is difficult to be used in field applications. Therefore, tight oil and gas fracturing urgently needs a rock brittleness calculation method based on rock brittleness mechanical performance and convenient field application.
发明内容:Invention content:
本发明针对目前致密油气现场应用的岩石脆性计算方法的不足,提出了一种基于岩石断裂能、破裂形态和测井资料快速计算岩石脆性指数的方法,用以实现地层条件下致密储层岩石脆性的快速计算,为致密储层压裂方案设计提供依据。Aiming at the shortcomings of the rock brittleness calculation methods currently used in tight oil and gas fields, the present invention proposes a method for quickly calculating the rock brittleness index based on rock fracture energy, fracture shape and logging data, so as to realize the rock brittleness of tight reservoirs under formation conditions The rapid calculation of the method provides a basis for the design of fracturing schemes for tight reservoirs.
岩石微观的破裂断裂能和宏观的破裂形态是岩石脆性的具体表现。本发明提出的一种计算致密储层岩石脆性指数的方法,利用杨氏模量、剪胀角分别反映岩石抵抗变形的能力和变形的速率,具有很好的描述岩石的脆性特征的原理。通过赋予两参数相应的权值来建立新的岩石脆性计算方法,并利用测井资料来获取计算脆性指数的参数值。本发明主要包括以下步骤:The microscopic fracture energy and macroscopic fracture form of rock are the specific manifestations of rock brittleness. A method for calculating the brittleness index of tight reservoir rock proposed by the present invention uses Young's modulus and dilation angle to respectively reflect the ability of rock to resist deformation and the rate of deformation, and has a good principle of describing the brittleness characteristics of rock. A new calculation method for rock brittleness is established by assigning corresponding weights to the two parameters, and the parameter values for calculating the brittleness index are obtained by using well logging data. The present invention mainly comprises the following steps:
1.测井资料数据准备。测井资料包括全波列声波测井或者偶极子声波和自然伽马测井等数据,至少包括压裂层段的横波时差、纵波时差、密度、孔隙度、自然伽马测井曲线;1. Well logging data preparation. Well logging data include full-wave train acoustic logging or dipole acoustic and natural gamma ray logging data, at least including shear wave time difference, compressional wave time difference, density, porosity, and natural gamma ray logging curves of the fractured interval;
2.利用横波时差、纵波时差、密度曲线、自然伽马曲线分别计算出岩石的杨氏模量E、泊松比ν、内摩擦角泥质含量Vsh剖面,分别用式(1)-(5)计算:2. Calculate the Young's modulus E, Poisson's ratio ν, and internal friction angle of the rock by using the transverse wave transit time, longitudinal wave transit time, density curve, and natural gamma ray curve The shale content V sh profile is calculated by formulas (1)-(5):
式中,Ed为动态杨氏模量,vd为动态泊松比,ρ为密度,Vt为纵波速度,Vs为横波速度,为内摩擦角,φ为孔隙度,SH为自然伽马相对值,GR、GRmax、GRmin分别为目的层自然伽马值、纯泥岩地层的自然伽马值、纯岩性地层的自然伽马值,Vsh为泥质含量,GCUR为与年代有关的经验系数,老地层取3.7,新地层取2。In the formula, E d is the dynamic Young's modulus, v d is the dynamic Poisson's ratio, ρ is the density, V t is the longitudinal wave velocity, V s is the shear wave velocity, is the internal friction angle, φ is the porosity, SH is the relative value of natural gamma ray, GR, GR max and GR min are the natural gamma ray value of the target layer, the natural gamma value of the pure mudstone formation, and the natural gamma ray value of the pure lithology formation, respectively. Ma value, V sh is shale content, GCUR is an empirical coefficient related to age, 3.7 for old formations, 2 for new formations.
3.利用步骤2得到的岩石力学特征参数和泥质含量剖面计算得到岩石抗压强度和围压剖面,分别用公式(6)和(7)计算:3. Calculate the rock compressive strength and confining pressure profile by using the rock mechanical characteristic parameters obtained in step 2 and the shale content profile, and use formulas (6) and (7) to calculate respectively:
σc=(0.0045+0.0035Vsh)Ed (6)σ c =(0.0045+0.0035V sh )E d (6)
式中,σc为岩石的抗压强度,Pc为围压,H为储层的深度,α为有效应力系数。In the formula, σc is the compressive strength of the rock, Pc is the confining pressure, H is the depth of the reservoir, and α is the effective stress coefficient.
当泥质含量Vsh>0.8时,有效应力系数α=0.6;当泥质含量Vsh<0.2时,有效应力系数α=0.9;当泥质含量0.2<Vsh<0.8时,有效应力系数 When the shale content V sh >0.8, the effective stress coefficient α=0.6; when the shale content V sh <0.2, the effective stress coefficient α=0.9; when the shale content 0.2<V sh <0.8, the effective stress coefficient
4.利用步骤3得到的岩石抗压强度和围压计算岩石的剪胀角剖面,用公式(8)计算;4. Utilize the rock compressive strength that step 3 obtains and the confining pressure to calculate the dilation angle profile of the rock, calculate with formula (8);
式中,ψ为岩石的剪胀角,为内摩擦角,σc为岩石抗压强度,Pc为围压。where ψ is the dilation angle of the rock, is the internal friction angle, σ c is the rock compressive strength, and P c is the confining pressure.
5.利用杨氏模量和剪胀角这两个参数建立新的岩石脆性指数评价方法,通过灰色关联理论计算杨氏模量和剪胀角的权重系数;5. Establish a new rock brittleness index evaluation method using the two parameters of Young's modulus and dilation angle, and calculate the weight coefficients of Young's modulus and dilation angle through gray relational theory;
6.运用步骤2得到的杨氏模量、步骤4得到的剪胀角和步骤5得到的权重系数,计算得到岩石脆性指数剖面,用公式(9)计算岩石脆性指数BI。6. Using the Young's modulus obtained in step 2, the dilation angle obtained in step 4, and the weight coefficient obtained in step 5, calculate the rock brittleness index profile, and use formula (9) to calculate the rock brittleness index B I .
BI=W1En+W2ψn (9)B I =W 1 E n +W 2 ψ n (9)
式中,BI为脆性指数,En为归一化的杨氏模量,ψn为归一化的剪胀角,W1为杨氏模量所占权重,W2为剪胀角所占权重。In the formula, B I is the brittleness index, E n is the normalized Young’s modulus, ψ n is the normalized dilation angle, W 1 is the weight of Young’s modulus, W 2 is the dilation angle account for weight.
其中,En和ψn的计算公式如下:Among them, the calculation formulas of E n and ψ n are as follows:
式中,E,Emax,Emin分别为地层任意点的杨氏模量、压裂层段地层最大杨氏模量、压裂层段地层最小杨氏模量;ψ,ψmax,ψmin分别为地层任意点的剪胀角、压裂层段地层最大剪胀角、压裂层段地层最小剪胀角。In the formula, E, E max , and E min are the Young's modulus at any point in the formation, the maximum Young's modulus of the fractured interval formation, and the minimum Young's modulus of the fractured interval formation; ψ, ψ max , ψ min Respectively, the dilation angle at any point in the formation, the maximum dilation angle of the formation in the fractured interval, and the minimum dilatation angle in the formation in the fractured interval.
与现有计算岩石脆性指数的方法相比,本发明有如下有益效果:本发明基于岩石破裂断裂能和破裂形态,提出了一种可以利用测井资料快速预测脆性指数计算方法,将岩石的脆性与室内实验岩石的破裂形态结合起来,为地下岩石脆性提供了较直观的判断,为致密油气藏压裂方案优化提供依据,有利于提高致密油气压裂效果。Compared with the existing method for calculating the rock brittleness index, the present invention has the following beneficial effects: the present invention proposes a calculation method for rapidly predicting the brittleness index by utilizing logging data based on the fracture energy and fracture form of the rock, and the brittleness of the rock Combined with the fracture pattern of rocks in laboratory experiments, it provides a more intuitive judgment for the brittleness of underground rocks, provides a basis for the optimization of fracturing schemes for tight oil and gas reservoirs, and is conducive to improving the fracturing effect of tight oil and gas.
附图说明:Description of drawings:
图1是本发明计算岩石脆性的步骤框图。Fig. 1 is a block diagram of steps for calculating rock brittleness in the present invention.
图2是本发明大港油田某致密油藏4050m~4065m井段测井资料示意图Fig. 2 is a schematic diagram of well logging data of a tight oil reservoir in the Dagang Oilfield of the present invention from 4050m to 4065m
图3是根据本发明的方法计算致密油藏4050m~4065m井段脆性指数剖面示意图Fig. 3 is a schematic diagram of the brittleness index profile of the 4050m-4065m well section of the tight oil reservoir calculated according to the method of the present invention
具体实施方式:detailed description:
下面对本发明实现方法作进一步详细说明,具体如下:Below the implementation method of the present invention is described in further detail, specifically as follows:
以大港油田孔二段某一致密油藏储层为例,该储层埋深为4050~4065m,该井段地层平均压力为45MPa。以地层埋深4050m处为例,利用本发明的方法计算脆性指数。Taking a tight oil reservoir in the Kong 2 Member of Dagang Oilfield as an example, the buried depth of the reservoir is 4050-4065m, and the average formation pressure of this well section is 45MPa. Taking the buried depth of 4050m as an example, the method of the present invention is used to calculate the brittleness index.
1.根据步骤1,准备压裂层段的横波时差、纵波时差、密度、孔隙度以及自然伽马测井曲线,测井资料数据如附图2所示;1. According to step 1, prepare the shear time difference, longitudinal wave time difference, density, porosity and natural gamma ray logging curve of the fracturing section, and the logging data are shown in Figure 2;
2.利用相关测井资料数据分别计算岩石的杨氏模量、泊松比、内摩擦角、泥质含量,通过步骤2中的公式(1)-(5)计算得到在埋深4050m处杨氏模量为E=36580.5MPa、 泊松比为v=0.258、内摩擦角为泥质含量为Vsh=0.209;2. Calculate the Young’s modulus, Poisson’s ratio, internal friction angle, and shale content of the rock by using the relevant logging data, and calculate the Young’s modulus, Poisson’s ratio, internal friction angle, and shale content at the buried depth of 4050m through the formulas (1)-(5) in step 2. The modulus is E=36580.5MPa, Poisson's ratio is v=0.258, and the internal friction angle is The shale content is V sh =0.209;
3.根据步骤3中的公式(6)-(7)分别计算得到在埋深4050m处的岩石抗压强度为σc=191.44MPa,围压为Pc=59.85MPa,根据步骤4中的公式(8)计算得到岩石的剪胀角为Ψ=5.69°;3. According to the formulas (6)-(7) in step 3, the rock compressive strength at the buried depth of 4050m is calculated to be σ c =191.44MPa, and the confining pressure is P c =59.85MPa, according to the formula in step 4 (8) The calculated dilation angle of the rock is Ψ=5.69°;
4.根据步骤5中计算杨氏模量和剪胀角这两个参数的权重系数分别为0.426和0.574,并根据步骤6中的公式(9)-(11)计算得到埋深为4050m处岩石脆性指数为BI=0.824。4. According to the weight coefficients of Young's modulus and dilation angle calculated in step 5, the weight coefficients of these two parameters are 0.426 and 0.574 respectively, and according to the formula (9)-(11) in step 6, the rock at the buried depth of 4050m is obtained The brittleness index was B I =0.824.
同理,通过本发明的方法可计算得到埋深为4050~4065m致密储层岩石的脆性指数剖面,结果如附图3所示。Similarly, the method of the present invention can be used to calculate the brittleness index profile of tight reservoir rocks with a buried depth of 4050-4065m, and the results are shown in Figure 3.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610982279.7A CN106547034B (en) | 2016-11-09 | 2016-11-09 | A kind of method of determining compact reservoir rock brittleness index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610982279.7A CN106547034B (en) | 2016-11-09 | 2016-11-09 | A kind of method of determining compact reservoir rock brittleness index |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106547034A true CN106547034A (en) | 2017-03-29 |
CN106547034B CN106547034B (en) | 2018-11-02 |
Family
ID=58395393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610982279.7A Active CN106547034B (en) | 2016-11-09 | 2016-11-09 | A kind of method of determining compact reservoir rock brittleness index |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106547034B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107045580A (en) * | 2017-04-27 | 2017-08-15 | 中国石油大学(华东) | A kind of shale mechanics parameter quick calculation method based on digital cores |
CN107747916A (en) * | 2017-10-27 | 2018-03-02 | 辽宁工程技术大学 | A kind of measuring method of strain localization band dilative angle |
CN108519281A (en) * | 2018-02-27 | 2018-09-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108805158A (en) * | 2018-04-16 | 2018-11-13 | 北京师范大学 | A kind of fine and close oily reservoir diagenetic phase division methods |
CN108875115A (en) * | 2018-03-12 | 2018-11-23 | 中国石油天然气集团有限公司 | A kind of method of determining rock strength |
CN109164499A (en) * | 2018-08-30 | 2019-01-08 | 中国石油化工股份有限公司 | Consider the calculating of rock brittleness index and means of interpretation of deposition diagenetic process |
CN109778880A (en) * | 2019-02-14 | 2019-05-21 | 长安大学 | A kind of construction method of geocell retaining wall |
CN109828031A (en) * | 2019-02-15 | 2019-05-31 | 西南石油大学 | Rock brittleness evaluation method and device |
CN109917102A (en) * | 2019-01-28 | 2019-06-21 | 西南石油大学 | A Brittleness Evaluation Method Considering the Complexity of Rock Fracture |
CN110058323A (en) * | 2019-04-03 | 2019-07-26 | 天津科技大学 | A kind of tight sand formation brittleness index calculation method |
CN110288233A (en) * | 2019-06-26 | 2019-09-27 | 重庆科技学院 | A deep shale gas compressibility evaluation method based on fuzzy gray correlation method |
CN110426751A (en) * | 2019-08-09 | 2019-11-08 | 中国石油天然气股份有限公司 | Method for predicting transverse wave time difference by using logging data |
CN110566171A (en) * | 2019-07-15 | 2019-12-13 | 西南石油大学 | Ultrahigh pressure tight fractured sandstone gas reservoir sand production prediction method |
CN110618456A (en) * | 2019-10-24 | 2019-12-27 | 西南石油大学 | Method for determining years of multi-period active fracture of sedimentary basin |
CN111366452A (en) * | 2020-03-26 | 2020-07-03 | 北京科技大学 | Method for measuring energy storage level of self-energy-storage rock mass |
CN111396057A (en) * | 2020-03-04 | 2020-07-10 | 中国石油大学(华东) | A kind of deep shale reservoir brittleness evaluation method and computer readable storage medium |
CN112085305A (en) * | 2019-06-13 | 2020-12-15 | 中国石油天然气集团有限公司 | Method and device for evaluating storage layer seam network performance |
CN112649858A (en) * | 2019-10-11 | 2021-04-13 | 中国石油化工股份有限公司 | Shale brittleness prediction method and system based on core test |
CN113033021A (en) * | 2021-04-21 | 2021-06-25 | 北京艾迪博科油气技术有限公司 | Method and device for reforming and evaluating tight reservoir |
CN113189647A (en) * | 2021-04-30 | 2021-07-30 | 西南石油大学 | Method for predicting formation brittleness index of transverse isotropic shale |
CN113189648A (en) * | 2021-04-30 | 2021-07-30 | 西南石油大学 | Method for predicting brittleness index of orthotropic shale |
CN113625358A (en) * | 2021-08-11 | 2021-11-09 | 中国石油化工股份有限公司 | Method for judging influence degree of rock components on physical properties of compact sandstone reservoir |
CN113756793A (en) * | 2020-06-05 | 2021-12-07 | 中国石油天然气股份有限公司 | Method, device and equipment for determining shale oil exploitation mode and readable storage medium |
CN113818862A (en) * | 2020-06-05 | 2021-12-21 | 中国石油天然气股份有限公司 | Method, device and equipment for dividing shale oil exploitation area and readable storage medium |
CN114235579A (en) * | 2021-12-17 | 2022-03-25 | 广东石油化工学院 | Triaxial testing device and method for compressive and shear strength of natural gas hydrate cores |
US12050297B2 (en) | 2020-09-11 | 2024-07-30 | Saudi Arabian Oil Company | Method and system for determining energy-based brittleness |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US216609A (en) * | 1879-06-17 | Improvement in hotel and restaurant waiters | ||
EP0216609A2 (en) * | 1985-09-19 | 1987-04-01 | Seislith Development, Inc. | Method of acquiring and interpreting seismic data to obtain lithological parameters |
US20080288172A1 (en) * | 2000-07-14 | 2008-11-20 | Schlumberger Technology Corporation | Simulation method and apparatus for determining subsidence in a reservoir |
CN103344705A (en) * | 2013-06-25 | 2013-10-09 | 中国石油大学(北京) | Method of measuring rock brittleness index through applying acoustic emission energy values |
CN104677734A (en) * | 2015-02-12 | 2015-06-03 | 中国石油大学(华东) | Multi-scale information integration tight formation brittleness index measuring method |
CN105221141A (en) * | 2014-06-23 | 2016-01-06 | 中国石油化工股份有限公司 | A kind of mud shale brittleness index Forecasting Methodology |
CN105221140A (en) * | 2014-06-20 | 2016-01-06 | 中国石油化工股份有限公司 | A kind ofly determine that shale formation can the method for pressure break sex index |
CN105675635A (en) * | 2015-12-31 | 2016-06-15 | 中国石油天然气股份有限公司 | Method and device for determining relative content of components of compact rock and brittleness index |
-
2016
- 2016-11-09 CN CN201610982279.7A patent/CN106547034B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US216609A (en) * | 1879-06-17 | Improvement in hotel and restaurant waiters | ||
EP0216609A2 (en) * | 1985-09-19 | 1987-04-01 | Seislith Development, Inc. | Method of acquiring and interpreting seismic data to obtain lithological parameters |
US20080288172A1 (en) * | 2000-07-14 | 2008-11-20 | Schlumberger Technology Corporation | Simulation method and apparatus for determining subsidence in a reservoir |
CN103344705A (en) * | 2013-06-25 | 2013-10-09 | 中国石油大学(北京) | Method of measuring rock brittleness index through applying acoustic emission energy values |
CN105221140A (en) * | 2014-06-20 | 2016-01-06 | 中国石油化工股份有限公司 | A kind ofly determine that shale formation can the method for pressure break sex index |
CN105221141A (en) * | 2014-06-23 | 2016-01-06 | 中国石油化工股份有限公司 | A kind of mud shale brittleness index Forecasting Methodology |
CN104677734A (en) * | 2015-02-12 | 2015-06-03 | 中国石油大学(华东) | Multi-scale information integration tight formation brittleness index measuring method |
CN105675635A (en) * | 2015-12-31 | 2016-06-15 | 中国石油天然气股份有限公司 | Method and device for determining relative content of components of compact rock and brittleness index |
Non-Patent Citations (5)
Title |
---|
PENG ZHU 等: ""Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: A case study of Permian sandstones in Ordos Basin, China"", 《JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING》 * |
徐赣川 等: ""基于岩石物理实验的页岩脆性测井评价方法"", 《天然气工业》 * |
王云飞 等: ""不同围压下煤岩变形与剪胀扩容模型"", 《水文地质工程地质》 * |
许孝凯 等: ""复杂储层岩石脆性分析及应用研究"", 《测井技术》 * |
赵星光 等: ""岩石剪胀角模型与验证"", 《岩石力学与工程学报》 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107045580A (en) * | 2017-04-27 | 2017-08-15 | 中国石油大学(华东) | A kind of shale mechanics parameter quick calculation method based on digital cores |
CN107045580B (en) * | 2017-04-27 | 2020-04-21 | 中国石油大学(华东) | A fast calculation method of shale mechanical parameters based on digital core |
CN107747916A (en) * | 2017-10-27 | 2018-03-02 | 辽宁工程技术大学 | A kind of measuring method of strain localization band dilative angle |
CN108519281A (en) * | 2018-02-27 | 2018-09-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108519281B (en) * | 2018-02-27 | 2020-08-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108875115A (en) * | 2018-03-12 | 2018-11-23 | 中国石油天然气集团有限公司 | A kind of method of determining rock strength |
CN108875115B (en) * | 2018-03-12 | 2022-05-10 | 中国石油天然气集团有限公司 | Method for determining rock strength |
CN108805158A (en) * | 2018-04-16 | 2018-11-13 | 北京师范大学 | A kind of fine and close oily reservoir diagenetic phase division methods |
CN108805158B (en) * | 2018-04-16 | 2021-06-01 | 北京师范大学 | Compact oil reservoir lithogenous phase dividing method |
CN109164499A (en) * | 2018-08-30 | 2019-01-08 | 中国石油化工股份有限公司 | Consider the calculating of rock brittleness index and means of interpretation of deposition diagenetic process |
CN109164499B (en) * | 2018-08-30 | 2020-04-17 | 中国石油化工股份有限公司 | Rock brittleness index calculation and explanation method considering sedimentary diagenesis process |
CN109917102A (en) * | 2019-01-28 | 2019-06-21 | 西南石油大学 | A Brittleness Evaluation Method Considering the Complexity of Rock Fracture |
CN109778880A (en) * | 2019-02-14 | 2019-05-21 | 长安大学 | A kind of construction method of geocell retaining wall |
CN109828031A (en) * | 2019-02-15 | 2019-05-31 | 西南石油大学 | Rock brittleness evaluation method and device |
CN110058323A (en) * | 2019-04-03 | 2019-07-26 | 天津科技大学 | A kind of tight sand formation brittleness index calculation method |
CN112085305A (en) * | 2019-06-13 | 2020-12-15 | 中国石油天然气集团有限公司 | Method and device for evaluating storage layer seam network performance |
CN110288233A (en) * | 2019-06-26 | 2019-09-27 | 重庆科技学院 | A deep shale gas compressibility evaluation method based on fuzzy gray correlation method |
CN110288233B (en) * | 2019-06-26 | 2023-08-08 | 重庆科技学院 | Deep shale gas compressibility evaluation method based on fuzzy gray correlation method |
CN110566171A (en) * | 2019-07-15 | 2019-12-13 | 西南石油大学 | Ultrahigh pressure tight fractured sandstone gas reservoir sand production prediction method |
CN110426751A (en) * | 2019-08-09 | 2019-11-08 | 中国石油天然气股份有限公司 | Method for predicting transverse wave time difference by using logging data |
CN112649858A (en) * | 2019-10-11 | 2021-04-13 | 中国石油化工股份有限公司 | Shale brittleness prediction method and system based on core test |
CN110618456A (en) * | 2019-10-24 | 2019-12-27 | 西南石油大学 | Method for determining years of multi-period active fracture of sedimentary basin |
CN111396057A (en) * | 2020-03-04 | 2020-07-10 | 中国石油大学(华东) | A kind of deep shale reservoir brittleness evaluation method and computer readable storage medium |
CN111366452B (en) * | 2020-03-26 | 2021-01-29 | 北京科技大学 | A method for measuring energy storage level of self-storage rock mass |
CN111366452A (en) * | 2020-03-26 | 2020-07-03 | 北京科技大学 | Method for measuring energy storage level of self-energy-storage rock mass |
CN113756793B (en) * | 2020-06-05 | 2023-09-26 | 中国石油天然气股份有限公司 | Shale oil exploitation mode determining method, device and equipment and readable storage medium |
CN113756793A (en) * | 2020-06-05 | 2021-12-07 | 中国石油天然气股份有限公司 | Method, device and equipment for determining shale oil exploitation mode and readable storage medium |
CN113818862A (en) * | 2020-06-05 | 2021-12-21 | 中国石油天然气股份有限公司 | Method, device and equipment for dividing shale oil exploitation area and readable storage medium |
US12050297B2 (en) | 2020-09-11 | 2024-07-30 | Saudi Arabian Oil Company | Method and system for determining energy-based brittleness |
CN113033021A (en) * | 2021-04-21 | 2021-06-25 | 北京艾迪博科油气技术有限公司 | Method and device for reforming and evaluating tight reservoir |
CN113189648A (en) * | 2021-04-30 | 2021-07-30 | 西南石油大学 | Method for predicting brittleness index of orthotropic shale |
CN113189648B (en) * | 2021-04-30 | 2022-03-11 | 西南石油大学 | An Orthotropic Shale Brittleness Index Prediction Method |
CN113189647B (en) * | 2021-04-30 | 2022-03-11 | 西南石油大学 | A method for predicting the brittleness index of transversely isotropic shale formations |
CN113189647A (en) * | 2021-04-30 | 2021-07-30 | 西南石油大学 | Method for predicting formation brittleness index of transverse isotropic shale |
CN113625358A (en) * | 2021-08-11 | 2021-11-09 | 中国石油化工股份有限公司 | Method for judging influence degree of rock components on physical properties of compact sandstone reservoir |
CN113625358B (en) * | 2021-08-11 | 2024-01-19 | 中国石油化工股份有限公司 | Method for judging influence degree of rock components on physical properties of tight sandstone reservoir |
CN114235579A (en) * | 2021-12-17 | 2022-03-25 | 广东石油化工学院 | Triaxial testing device and method for compressive and shear strength of natural gas hydrate cores |
CN114235579B (en) * | 2021-12-17 | 2023-12-19 | 广东石油化工学院 | Triaxial testing device and method for compressive and shear strength of natural gas hydrate cores |
Also Published As
Publication number | Publication date |
---|---|
CN106547034B (en) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106547034B (en) | A kind of method of determining compact reservoir rock brittleness index | |
CN105156103B (en) | A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir | |
CN104775810B (en) | A kind of shale gas reservoir compressibility evaluation method | |
CN105201479B (en) | A kind of horizontal well on shale reservoir stratum staged fracturing perforation cluster method for optimally designing parameters | |
CN105866835B (en) | A kind of tomography three dimensional closure quantitative evaluation method based on crustal stress distribution | |
CN104200039B (en) | A kind of diaclase occurrence quantitative forecasting technique | |
Guo et al. | Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin | |
CN110580401A (en) | Method for judging the number of times of temporary plugging of multi-cluster fracturing wellbore in directional well and horizontal well | |
CN105134156A (en) | Modeling method for compact sandstone reservoir three-dimensional fracability model | |
CN105626025A (en) | Fracturing evaluation method for shale reservoir fracturing | |
CN110501758A (en) | A longitudinal continuous brittleness index pre-prediction method for glutenite reservoirs | |
CN110275202A (en) | A Method for Predicting Brittleness of Tight Oil Reservoirs | |
CN110426751A (en) | Method for predicting transverse wave time difference by using logging data | |
CN105182423A (en) | Integrated recognition method for overpressured crack | |
Yang et al. | Natural fractures and mechanical properties in a horn river shale core from well logs and hardness measurements | |
Ejofodomi et al. | Development of an optimized completion strategy in the Vaca Muerta Shale with an anisotropic geomechanical model | |
CN116976143A (en) | Weak-plane-considered reservoir stratum 'double dessert' evaluation method | |
Sui et al. | A new evaluation method for the fracability of a shale reservoir based on the structural properties | |
CN104483706B (en) | A kind of Coal Pore Structure based on coal petrography mechanics parameter well logging quantitative identification method | |
Zhang et al. | Architecture characteristics and characterization methods of fault-controlled karst reservoirs: A case study of the Shunbei 5 fault zone in the Tarim Basin, China | |
Gao et al. | Fracability evaluation of lacustrine shale in the Yanchang Formation of southeastern Ordos Basin | |
CN108875115B (en) | Method for determining rock strength | |
Zhao et al. | A brittleness evaluation method based on breaking energy theory for tight reservoir in Dagang Oilfield | |
Xu et al. | Three‐Dimensional Numerical Simulation of Fracture Extension in Conglomerate Fracturing Considering Pore‐Fracture Seepage and Study of Influencing Factors | |
Ge et al. | Analytical modeling on 3D stress redistribution and fault reactivation during hydraulic fracturing stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |