JPWO2020162595A1 - A method for determining susceptibility to a test substance, a device for determining susceptibility to a test substance, a screening method for an anticancer drug, a method for manufacturing a candidate substance for an anticancer drug, a method for manufacturing a trained model, a device for manufacturing a trained model, and a selection method. - Google Patents

A method for determining susceptibility to a test substance, a device for determining susceptibility to a test substance, a screening method for an anticancer drug, a method for manufacturing a candidate substance for an anticancer drug, a method for manufacturing a trained model, a device for manufacturing a trained model, and a selection method. Download PDF

Info

Publication number
JPWO2020162595A1
JPWO2020162595A1 JP2020571290A JP2020571290A JPWO2020162595A1 JP WO2020162595 A1 JPWO2020162595 A1 JP WO2020162595A1 JP 2020571290 A JP2020571290 A JP 2020571290A JP 2020571290 A JP2020571290 A JP 2020571290A JP WO2020162595 A1 JPWO2020162595 A1 JP WO2020162595A1
Authority
JP
Japan
Prior art keywords
shg
test substance
susceptibility
signal light
tumor cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020571290A
Other languages
Japanese (ja)
Inventor
英明 加納
拓海 岩村
諭 松阪
之為 沈
潤一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Kataoka Corp
Original Assignee
University of Tsukuba NUC
Kataoka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC, Kataoka Corp filed Critical University of Tsukuba NUC
Publication of JPWO2020162595A1 publication Critical patent/JPWO2020162595A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

腫瘍細胞の被検物質に対する感受性を判定できる新たな判定方法を提供する。本発明の被検物質への感受性の判定方法は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定工程とを含む。Provided is a new determination method capable of determining the susceptibility of tumor cells to a test substance. The method for determining susceptibility to a test substance of the present invention obtains a second harmonic (SHG) obtained by using a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells contacted with the test substance. The acquisition step includes a determination step of determining the susceptibility of the tumor cells to the test substance based on the SHG.

Description

本発明は、被検物質への感受性の判定方法、被検物質への感受性の判定装置、抗癌剤のスクリーニング方法、抗癌剤の候補物質の製造方法、学習済モデルの製造方法、学習済モデルの製造装置、および選抜方法に関する。 INDUSTRIAL APPLICABILITY The present invention relates to a method for determining susceptibility to a test substance, a device for determining susceptibility to a test substance, a method for screening an anticancer drug, a method for manufacturing a candidate substance for an anticancer drug, a method for manufacturing a trained model, and a device for manufacturing a trained model. , And the selection method.

抗癌剤のスクリーニングとしては、対象の腫瘍細胞と抗癌剤の候補化合物とを共存させ、前記腫瘍細胞の細胞死(生存率)を指標とする方法等が用いられている(非特許文献1)。 As the screening of an anticancer agent, a method in which a target tumor cell and a candidate compound of the anticancer agent coexist and the cell death (survival rate) of the tumor cell is used as an index is used (Non-Patent Document 1).

John G. Moffat et.al., "Phenotypic screening in cancer drug discovery - past, present and future", 2014, Nature Reviews Drug Discovery, volume 13, pages 588-602John G. Moffat et.al., "Phenotypic screening in cancer drug discovery --past, present and future", 2014, Nature Reviews Drug Discovery, volume 13, pages 588-602

本発明は、腫瘍細胞の被検物質に対する感受性を判定可能な新たな判定方法の提供を目的とする。 An object of the present invention is to provide a new determination method capable of determining the susceptibility of a tumor cell to a test substance.

前記目的を達成するために、本発明の被検物質への感受性の判定方法(以下、「判定方法」ともいう)は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定工程とを含む。
In order to achieve the above object, the method for determining susceptibility to a test substance (hereinafter, also referred to as “determination method”) of the present invention is coherent anti-Stoke Raman scattering (CARS) for tumor cells brought into contact with the test substance. ) The acquisition process of acquiring the second harmonic (SHG) acquired using a microscope, and
A determination step of determining the susceptibility of the tumor cells to the test substance based on the SHG is included.

本発明の被検物質への感受性の判定装置(以下、「判定装置」ともいう)は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定手段とを含む。
The device for determining susceptibility to a test substance (hereinafter, also referred to as “determining device”) of the present invention was obtained by using a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells contacted with the test substance. Acquisition means for acquiring the second harmonic (SHG),
A determination means for determining the susceptibility of the tumor cells to the test substance based on the SHG is included.

本発明の抗癌剤のスクリーニング方法(以下、「スクリーニング方法」ともいう)は、被検物質と接触させた腫瘍細胞について、前記被検物質に対する感受性を判定する判定工程と、
前記腫瘍細胞が感受性であると判定された被検物質について、抗癌剤の候補物質として選択する工程とを含み、
前記判定工程は、前記本発明の判定方法により実施される。
The method for screening an anticancer agent of the present invention (hereinafter, also referred to as “screening method”) includes a determination step for determining the susceptibility of a tumor cell in contact with a test substance to the test substance.
The step of selecting a test substance determined to be sensitive to the tumor cells as a candidate substance for an anticancer drug is included.
The determination step is carried out by the determination method of the present invention.

本発明の抗癌剤の候補物質の製造方法(以下、「製造方法」ともいう)は、被検物質から抗癌剤の候補物質を選抜する選抜工程を含み、
前記選抜工程は、前記本発明のスクリーニング方法で実施される。
The method for producing a candidate substance for an anticancer agent of the present invention (hereinafter, also referred to as “manufacturing method”) includes a selection step of selecting a candidate substance for an anticancer agent from a test substance.
The selection step is carried out by the screening method of the present invention.

本発明の腫瘍細胞の感受性の判定に用いる学習済モデルの製造方法(以下、「学習方法」ともいう)は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習工程とを含む。
The method for producing a trained model (hereinafter, also referred to as “learning method”) used for determining the susceptibility of tumor cells of the present invention is to use a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells in contact with a test substance. The acquisition process for acquiring the second harmonic (SHG) acquired using
It includes a learning step of generating a learned model that outputs a determination result of the susceptibility of the tumor cells to the test substance from the SHG using the pair of the SHG and the susceptibility of the tumor cells to the test substance as teacher data.

本発明の腫瘍細胞の感受性の判定に用いる学習済モデルの製造装置(以下、「学習装置」ともいう)は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習手段とを含む。
The training device for manufacturing a trained model (hereinafter, also referred to as “learning device”) used for determining the susceptibility of tumor cells of the present invention is a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells contacted with a test substance. The acquisition means for acquiring the second harmonic (SHG) acquired by using, and
It includes a learning means for generating a learned model that outputs a determination result of the susceptibility of a tumor cell to a test substance from the SHG using a pair of the SHG and the susceptibility of the tumor cell to the test substance as teacher data.

本発明の被検物質の感受性判定用細胞の選抜方法(以下、「選抜方法」ともいう)は、被検腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記被検腫瘍細胞から、前記被検物質の感受性試験に用いる候補腫瘍細胞を選択する選択工程とを含む。
In the method for selecting cells for determining susceptibility of a test substance of the present invention (hereinafter, also referred to as “selection method”), a coherent anti-Stoke Raman scattering (CARS) microscope is used for a second harmonic (SHG) of a test tumor cell. ) And the acquisition process
A selection step of selecting a candidate tumor cell to be used for a susceptibility test of the test substance from the test tumor cells based on the SHG is included.

本発明によれば、腫瘍細胞の被検物質に対する感受性を判定できる。 According to the present invention, the susceptibility of tumor cells to a test substance can be determined.

図1は、実施形態1の判定装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of the determination device of the first embodiment. 図2は、実施形態1の判定装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of the determination device of the first embodiment. 図3は、実施形態1の判定方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the determination method of the first embodiment. 図4は、実施形態1において、腫瘍細胞における第二高調波のシグナルの分布を示す模式図である。FIG. 4 is a schematic diagram showing the distribution of the second harmonic signal in the tumor cells in the first embodiment. 図5は、実施形態2の学習装置の構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of the learning device of the second embodiment. 図6は、実施形態2の学習方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of the learning method of the second embodiment. 図7は、実施例1で用いたCARS顕微鏡の光学系の構成の概略図である。FIG. 7 is a schematic diagram of the configuration of the optical system of the CARS microscope used in Example 1. 図8は、実施例1におけるSHG像を示す写真である。FIG. 8 is a photograph showing the SHG image in Example 1.

本発明において、「細胞」は、例えば、単離された細胞、細胞から構成される細胞塊、組織、または臓器を意味する。前記細胞は、例えば、培養細胞でもよいし、生体から単離された細胞でもよい。また、前記細胞塊、組織または臓器は、例えば、前記細胞から作製した細胞塊、細胞シート、組織または臓器でもよいし、生体から単離した細胞塊、組織または臓器でもよい。 In the present invention, "cell" means, for example, an isolated cell, a cell mass, tissue, or organ composed of cells. The cell may be, for example, a cultured cell or a cell isolated from a living body. Further, the cell mass, tissue or organ may be, for example, a cell mass, cell sheet, tissue or organ prepared from the cell, or a cell mass, tissue or organ isolated from a living body.

以下、本発明について、図面を参照して詳細に説明する。ただし、本発明は、以下の説明に限定されない。なお、以下の図1〜図8において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。また、各実施形態は、特に言及しない限り、互いにその説明を援用できる。 Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description. In the following FIGS. 1 to 8, the same parts may be designated by the same reference numerals and the description thereof may be omitted. Further, in the drawings, for convenience of explanation, the structure of each part may be shown in a simplified manner as appropriate, and the dimensional ratio of each part may be shown schematically, which is different from the actual one. Further, unless otherwise specified, the respective embodiments can be referred to each other.

<判定方法および判定装置>
本発明の被検物質への感受性の判定方法は、前述のように、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定工程とを含む。また、本発明の被検物質への感受性の判定装置は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定手段とを含む。本発明の判定方法および判定装置は、被検物質と接触させた腫瘍細胞から得られたSHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定することが特徴であり、その他の構成および条件は、制限されない。
<Judgment method and judgment device>
As described above, the method for determining susceptibility to a test substance of the present invention is to obtain a second harmonic (2nd harmonic) obtained by using a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells in contact with the test substance. It includes an acquisition step of acquiring SHG) and a determination step of determining the susceptibility of the tumor cells to the test substance based on the SHG. In addition, the device for determining susceptibility to a test substance of the present invention uses a coherent anti-Stoke Raman scattering (CARS) microscope to obtain a second harmonic (SHG) of tumor cells in contact with the test substance. The acquisition means to be acquired and the determination means for determining the susceptibility of the tumor cells to the test substance based on the SHG are included. The determination method and determination apparatus of the present invention are characterized in that the susceptibility of the tumor cells to the test substance is determined based on the SHG obtained from the tumor cells brought into contact with the test substance, and other configurations and other configurations and The conditions are not limited.

本発明者らは鋭意研究の結果、CARS顕微鏡を用いて取得された信号光、具体的には、第二高調波が、腫瘍細胞の被検物質に対する感受性と相関することを見出し、本発明を確立するに至った。このため、本発明によれば、被検細胞についてCAR顕微鏡を用いて取得された信号光に基づき、腫瘍細胞の被検物質に対する感受性を判定できる。 As a result of diligent research, the present inventors have found that the signal light obtained by using a CARS microscope, specifically, the second harmonic, correlates with the susceptibility of tumor cells to a test substance, and the present invention was developed. It came to be established. Therefore, according to the present invention, the susceptibility of a tumor cell to a test substance can be determined based on the signal light obtained for the test cell using a CAR microscope.

(実施形態1)
図1に、本実施形態における判定装置のブロック図を示す。図1に示すように、本実施形態の判定装置10は、取得手段111および判定手段112を含む。図1に示すように、取得手段111および判定手段112は、ハードウェアであるデータ処理手段(データ処理装置)11に組み込まれてもよく、ソフトウェアまたは前記ソフトウェアが組み込まれたハードウェアでもよい。データ処理手段11は、CPU等を備えてもよい。また、データ処理手段11は、例えば、後述のROM、RAM等を備えてもよい。
(Embodiment 1)
FIG. 1 shows a block diagram of the determination device according to the present embodiment. As shown in FIG. 1, the determination device 10 of the present embodiment includes the acquisition means 111 and the determination means 112. As shown in FIG. 1, the acquisition means 111 and the determination means 112 may be incorporated in the data processing means (data processing device) 11 which is hardware, or may be software or hardware in which the software is incorporated. The data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, a ROM, a RAM, or the like described later.

つぎに、図2に、判定装置10のハードウェア構成のブロック図を例示する。判定装置10は、例えば、CPU(中央処理装置)201、メモリ202、バス203、記憶装置204、入力装置206、ディスプレイ207、通信デバイス208等を有する。判定装置10の各部は、それぞれのインタフェース(I/F)により、バス203を介して接続されている。判定装置10のハードウェア構成は、例えば、後述の学習装置におけるハードウェア構成としても採用できる。 Next, FIG. 2 illustrates a block diagram of the hardware configuration of the determination device 10. The determination device 10 includes, for example, a CPU (central processing unit) 201, a memory 202, a bus 203, a storage device 204, an input device 206, a display 207, a communication device 208, and the like. Each part of the determination device 10 is connected via the bus 203 by each interface (I / F). The hardware configuration of the determination device 10 can also be adopted, for example, as the hardware configuration in the learning device described later.

CPU201は、例えば、コントローラ(システムコントローラ、I/Oコントローラ等)等により、他の構成と連携動作し、判定装置10の全体の制御を担う。判定装置10において、CPU201により、例えば、本発明のプログラム205やその他のプログラムが実行され、また、各種情報の読み込みや書き込みが行われる。具体的には、例えば、CPU201が、取得手段111および判定手段112として機能する。判定装置10は、演算装置として、CPUを備えるが、GPU(Graphics Processing Unit)、APU(Accelerated Processing Unit)等の他の演算装置を備えてもよいし、CPUとこれらとの組合せを備えてもよい。なお、CPU201は、例えば、後述する実施形態2における記憶手段以外の各手段として機能する。 The CPU 201 operates in cooperation with other configurations by, for example, a controller (system controller, I / O controller, etc.) and takes charge of overall control of the determination device 10. In the determination device 10, for example, the program 205 of the present invention and other programs are executed by the CPU 201, and various information is read and written. Specifically, for example, the CPU 201 functions as the acquisition means 111 and the determination means 112. The determination device 10 includes a CPU as an arithmetic unit, but may include other arithmetic units such as a GPU (Graphics Processing Unit) and an APU (Accelerated Processing Unit), or may include a CPU and a combination thereof. good. The CPU 201 functions as, for example, each means other than the storage means in the second embodiment described later.

メモリ202は、例えば、メインメモリを含む。前記メインメモリは、主記憶装置ともいう。CPU201が処理を行う際には、例えば、後述する記憶装置204(補助記憶装置)に記憶されている本発明のプログラム205等の種々の動作プログラムを、メモリ202が読み込む。そして、CPU201は、メモリ202からデータを読み出し、解読し、前記プログラムを実行する。前記メインメモリは、例えば、RAM(ランダムアクセスメモリ)である。メモリ202は、例えば、さらに、ROM(読み出し専用メモリ)を含む。 The memory 202 includes, for example, a main memory. The main memory is also referred to as a main storage device. When the CPU 201 performs processing, the memory 202 reads, for example, various operation programs such as the program 205 of the present invention stored in the storage device 204 (auxiliary storage device) described later. Then, the CPU 201 reads data from the memory 202, decodes it, and executes the program. The main memory is, for example, a RAM (random access memory). The memory 202 further includes, for example, a ROM (read-only memory).

バス203は、例えば、外部機器とも接続できる。前記外部機器は、例えば、外部記憶装置(外部データベース等)、プリンター等があげられる。判定装置10は、例えば、バス203に接続された通信デバイス208により、通信回線網に接続でき、通信回線網を介して、前記外部機器と接続することもできる。また、判定装置10は、通信デバイス208および通信回線網を介して、端末等にも接続できる。 The bus 203 can also be connected to, for example, an external device. Examples of the external device include an external storage device (external database, etc.), a printer, and the like. The determination device 10 can be connected to the communication network by, for example, the communication device 208 connected to the bus 203, and can also be connected to the external device via the communication network. Further, the determination device 10 can also be connected to a terminal or the like via the communication device 208 and the communication network.

記憶装置204は、例えば、前記メインメモリ(主記憶装置)に対して、いわゆる補助記憶装置ともいう。前述のように、記憶装置204には、本発明のプログラム205を含む動作プログラムが格納されている。記憶装置204は、例えば、記憶媒体と、前記記憶媒体に読み書きするドライブとを含む。前記記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、FD(フロッピー(登録商標)ディスク)、CD−ROM、CD−R、CD−RW、MO、DVD、フラッシュメモリー、メモリーカード等があげられ、前記ドライブは、特に制限されない。記憶装置204は、例えば、前記記憶媒体と前記ドライブとが一体化されたハードディスクドライブ(HDD)であってもよい。 The storage device 204 is also referred to as a so-called auxiliary storage device with respect to the main memory (main storage device), for example. As described above, the storage device 204 stores an operation program including the program 205 of the present invention. The storage device 204 includes, for example, a storage medium and a drive for reading and writing to the storage medium. The storage medium is not particularly limited, and may be, for example, an internal type or an external type, and may be an HD (hard disk), FD (floppy (registered trademark) disk), CD-ROM, CD-R, CD-RW, MO, etc. Examples thereof include a DVD, a flash memory, a memory card, and the like, and the drive is not particularly limited. The storage device 204 may be, for example, a hard disk drive (HDD) in which the storage medium and the drive are integrated.

判定装置10は、例えば、さらに、入力装置206、ディスプレイ207を有する。入力装置206は、例えば、タッチパネル、トラックパッド、マウス等のポインティングデバイス;キーボード;カメラ、スキャナ等の撮像手段;ICカードリーダ、磁気カードリーダ等のカードリーダ;マイク等の音声入力手段;等があげられる。ディスプレイ207は、例えば、LEDディスプレイ、液晶ディスプレイ等の表示装置があげられる。本実施形態1において、入力装置206とディスプレイ207とは、別個に構成されているが、入力装置206とディスプレイ207とは、タッチパネルディスプレイのように、一体として構成されてもよい。 The determination device 10 further includes, for example, an input device 206 and a display 207. The input device 206 includes, for example, a pointing device such as a touch panel, a track pad, a mouse; a keyboard; an imaging means such as a camera or a scanner; a card reader such as an IC card reader or a magnetic card reader; an audio input means such as a microphone; Be done. Examples of the display 207 include display devices such as LED displays and liquid crystal displays. In the first embodiment, the input device 206 and the display 207 are configured separately, but the input device 206 and the display 207 may be integrally configured like a touch panel display.

つぎに、本実施形態の判定装置10の処理の一例について、腫瘍細胞についてCARS顕微鏡を用いて信号光を取得した場合を例に取り、図3のフローチャートに基づき、説明する。 Next, an example of the processing of the determination device 10 of the present embodiment will be described with reference to the flowchart of FIG. 3 by taking as an example the case where the tumor cells are obtained with signal light using a CARS microscope.

判定装置10の処理に先立ち、まず、被検物質と接触させた腫瘍細胞について、CARS顕微鏡を用いて、信号光を取得する。前記被検物質と前記腫瘍細胞との接触は、例えば、in vitroでもよいし、in vivoでもよい。前記接触をin vitroで実施する場合、前記接触は、例えば、前記被検物質と前記腫瘍細胞との共存下で培養することにより実施できる。前記培養における条件は、特に制限されず、前記腫瘍細胞の種類に応じて適宜設定できる。具体例として、培養時間は、例えば、1〜96時間、12〜48時間である。培養温度は、例えば、25〜40℃、35〜38℃である。前記培養は、例えば、湿潤環境下で実施される。前記接触をin vivoで実施する場合、前記接触は、例えば、前記被検物質を、前記腫瘍細胞を有する被検体に投与することにより、実施できる。前記被検体は、例えば、ヒトまたは非ヒト動物があげられる。前記非ヒト動物は、例えば、サル、ゴリラ、チンパンジー、マーモセット等の霊長類、マウス、ラット、イヌ、ウサギ、ヒツジ、ウマ、モルモット等があげられる。前記被検物質の投与量、投与経路、投与条件等は、特に制限されず、前記被検物質の溶媒への溶解性、体内への吸収性等に応じて適宜決定できる。そして、前記接触後、腫瘍細胞を回収し、CARS顕微鏡による観察に供する。Prior to the processing of the determination device 10, first, signal light is acquired from the tumor cells that have been brought into contact with the test substance using a CARS microscope. The contact between the test substance and the tumor cells may be , for example, in vitro or in vivo . When the contact is carried out in vitro , the contact can be carried out, for example, by culturing in the coexistence of the test substance and the tumor cells. The conditions in the culture are not particularly limited and can be appropriately set according to the type of the tumor cells. As a specific example, the culture time is, for example, 1 to 96 hours and 12 to 48 hours. The culture temperature is, for example, 25-40 ° C and 35-38 ° C. The culture is carried out, for example, in a moist environment. When the contact is carried out in vivo , the contact can be carried out, for example, by administering the test substance to a subject having the tumor cells. Examples of the subject include humans and non-human animals. Examples of the non-human animal include primates such as monkeys, gorillas, chimpanzees and marmosets, mice, rats, dogs, rabbits, sheep, horses and guinea pigs. The dose, administration route, administration condition, etc. of the test substance are not particularly limited, and can be appropriately determined depending on the solubility of the test substance in a solvent, the absorbability into the body, and the like. Then, after the contact, the tumor cells are collected and subjected to observation with a CARS microscope.

前記腫瘍細胞は、例えば、生体から単離された腫瘍細胞、すなわち、初代細胞またはその継代細胞でもよいし、馴化させた培養細胞でもよいし、ウイルス、変異原等により腫瘍化させた細胞でもよいが、単離された腫瘍細胞またはその継代細胞が好ましい。また、前記腫瘍細胞は、1細胞から構成されもよいし、複数細胞から構成されてもよい。後者の場合、前記腫瘍細胞は、例えば、腫瘍細胞を含む組織、器官または臓器であってもよい。前記腫瘍細胞の由来は、特に制限されない。具体例として、前記腫瘍細胞は、例えば、肺がん、乳がん、大腸がん、肝臓がん、膵臓がん、胆道がん、食道がん、胃がん、卵巣がん、子宮頸がん、脳腫瘍、血液腫瘍、中皮腫、皮膚がん等に由来する腫瘍細胞があげられる。前記腫瘍細胞は、例えば、前記被検物質に対して感受性の腫瘍細胞でもよいし、前記被検物質に対して耐性の腫瘍細胞でもよいし、前記被検物質に対する感受性が不明の腫瘍細胞でもよい。 The tumor cell may be, for example, a tumor cell isolated from a living body, that is, a primary cell or a subculture cell thereof, an acclimatized cultured cell, or a cell tumorigenized by a virus, a mutagen, or the like. However, isolated tumor cells or passages thereof are preferred. Further, the tumor cell may be composed of one cell or a plurality of cells. In the latter case, the tumor cell may be, for example, a tissue, organ or organ containing the tumor cell. The origin of the tumor cells is not particularly limited. As a specific example, the tumor cells include, for example, lung cancer, breast cancer, colon cancer, liver cancer, pancreatic cancer, biliary tract cancer, esophageal cancer, gastric cancer, ovarian cancer, cervical cancer, brain tumor, and hematological malignancies. , Tumor cells derived from mesotheloma, skin cancer and the like. The tumor cell may be, for example, a tumor cell sensitive to the test substance, a tumor cell resistant to the test substance, or a tumor cell whose sensitivity to the test substance is unknown. ..

前記被検物質は、例えば、低分子化合物、ペプチド、タンパク質、核酸等があげられる。前記被検物質は、1種類を単独で用いてもよいし、複数種類を併用してもよい。前記被検物質は、抗腫瘍作用または腫瘍の転移を抑制することが知られている物質(いわゆる、抗癌剤または転移抑制剤)でもよいし、抗腫瘍作用または腫瘍の転移を抑制しないことが知られている物質でもよいし、抗腫瘍作用または腫瘍の転移を抑制するかが不明の物質でもよい。前記被検物質が抗腫瘍作用または腫瘍の転移を抑制することが知られている物質である場合、本発明の判定装置は、例えば、癌の抗癌剤または転移抑制剤に対する感受性の判定装置または試験装置ということができる。また、本発明の判定方法は、例えば、癌の抗癌剤または転移抑制剤に対する感受性の判定方法または試験方法ということもできる。 Examples of the test substance include low molecular weight compounds, peptides, proteins, nucleic acids and the like. The test substance may be used alone or in combination of two or more. The test substance may be a substance known to have an antitumor effect or suppress metastasis of a tumor (so-called anticancer agent or metastasis inhibitor), and is known not to suppress an antitumor effect or metastasis of a tumor. It may be a substance having an antitumor effect or a substance whose antitumor effect or suppressing tumor metastasis is unknown. When the test substance is a substance known to have an antitumor effect or suppress metastasis of a tumor, the determination device of the present invention is, for example, a determination device or a test device for determining susceptibility to an anticancer agent or a metastasis inhibitor of cancer. It can be said. Further, the determination method of the present invention can also be, for example, a determination method or a test method for determining the susceptibility of a cancer to an anticancer agent or a metastasis inhibitor.

そして、このように被検物質と接触させた腫瘍細胞についてCARS顕微鏡で観察し、信号光を取得する。前記CARS顕微鏡による信号光の取得は、前記腫瘍細胞全体または一部に対して実施する。後者の場合、前記CARS顕微鏡による信号光の取得は、例えば、前記腫瘍細胞の中心部において、腫瘍細胞の配置面に対して垂直方向を含む断面の信号光を取得することが好ましい。前記観察に供する腫瘍細胞は、1つでもよいし、複数でもよい。後者の場合、前記CARS顕微鏡による信号光の取得は、その一部または全部の細胞に対して実施する。前記CARS顕微鏡は、コヒーレント反ストークスラマン散乱を利用した顕微鏡であり、その構成は特に制限されず、例えば、後述の実施例の構成を参照できる。前記CARS顕微鏡では、CARS分光用の光照射手段を含み、前記光照射手段により、超広帯域光および励起光の混合光が腫瘍細胞に照射される。そして、前記CARS顕微鏡では、前記腫瘍細胞から出射された出射光から、回折格子等によりCARS光(信号光)が分光される。そして、前記CARS光のシグナル強度、空間位置等の情報が、取得される。本発明において、前記信号光としては、第二高調波(SHG)のみを取得してもよいし、第三高調波(THG)、二光子励起蛍光等の他の信号光も取得してもよい。前記超広帯域光の波長は、例えば、400〜2400nmである。また、前記励起光の波長は、例えば、750〜1100nm、750〜1064nmである。 Then, the tumor cells that have been brought into contact with the test substance in this way are observed with a CARS microscope, and signal light is acquired. Acquisition of signal light by the CARS microscope is performed on all or a part of the tumor cells. In the latter case, it is preferable to acquire the signal light by the CARS microscope, for example, in the central portion of the tumor cell, to acquire the signal light having a cross section including the direction perpendicular to the arrangement surface of the tumor cell. The number of tumor cells used for the observation may be one or a plurality. In the latter case, the acquisition of the signal light by the CARS microscope is performed on some or all of the cells thereof. The CARS microscope is a microscope utilizing coherent anti-Stoke Raman scattering, and its configuration is not particularly limited, and for example, the configuration of Examples described later can be referred to. The CARS microscope includes a light irradiation means for CARS spectroscopy, and the light irradiation means irradiates tumor cells with mixed light of ultra-broadband light and excitation light. Then, in the CARS microscope, CARS light (signal light) is separated from the emitted light emitted from the tumor cell by a diffraction grating or the like. Then, information such as the signal intensity and spatial position of the CARS light is acquired. In the present invention, as the signal light, only the second harmonic (SHG) may be acquired, or other signal lights such as the third harmonic (THG) and two-photon excitation fluorescence may be acquired. .. The wavelength of the ultra-wideband light is, for example, 400 to 2400 nm. The wavelength of the excitation light is, for example, 750 to 1100 nm and 750 to 1064 nm.

つぎに、判定装置10による処理を開始する。まず、判定装置10の取得手段111が、前記CARS顕微鏡で取得された、信号光、より具体的には、信号光の情報を取得する(S1、取得工程)。前記取得工程において取得する信号光は、後述の判定工程で使用される信号光を含み、具体例として、第二高調波(SHG)の信号光を含むことが好ましい。前記SHGの信号光の波数は、入射レーザの波長をλとするとλ/2となる。 Next, the process by the determination device 10 is started. First, the acquisition means 111 of the determination device 10 acquires information on the signal light, more specifically, the signal light acquired by the CARS microscope (S1, acquisition step). The signal light acquired in the acquisition step includes the signal light used in the determination step described later, and as a specific example, it is preferable to include the signal light of the second harmonic (SHG). The wave number of the signal light of the SHG is λ / 2 when the wavelength of the incident laser is λ.

つぎに、判定手段112が、前記信号光、具体的には、SHGの信号光に基づき、前記腫瘍細胞の感受性を判定する(S2、判定工程)。S2工程では、前記腫瘍細胞が、前記被検物質に感受性であると判定してもよいし、前記被検物質に抵抗性であると判定してもよい。また、S2工程では、前記腫瘍細胞が、前記被検物質に感受性を有するか不明と判定してもよい。前記信号光において、各波数(Raman shift/cm-1)は、その信号の由来となる腫瘍細胞内の物質が異なる。また、腫瘍細胞の状態が異なる場合、状態の異なる細胞ではその機能および代謝も異なるため、前記腫瘍細胞が含有する物質の種類、物質の含有率および物質の局在等も異なると推定される。そこで、本発明では、前記腫瘍細胞の状態の違いが、例えば、前記信号光の違いとして生じることを利用し、前記信号光に基づき、前記腫瘍細胞の感受性を判定する。以下、前記腫瘍細胞が、肺がん細胞である場合を例にあげて説明するが、本発明はこれに限定されず、他の腫瘍細胞の推定にも利用できる。Next, the determination means 112 determines the susceptibility of the tumor cells based on the signal light, specifically, the signal light of SHG (S2, determination step). In the S2 step, it may be determined that the tumor cells are sensitive to the test substance, or may be determined to be resistant to the test substance. Further, in the S2 step, it may be determined whether or not the tumor cells are sensitive to the test substance. In the signal light, each wave number (Raman shift / cm -1 ) differs from the substance in the tumor cell from which the signal is derived. Further, when the state of the tumor cell is different, the function and metabolism of the cell in the different state are also different, so that it is presumed that the type of the substance contained in the tumor cell, the content rate of the substance, the localization of the substance, and the like are also different. Therefore, in the present invention, the sensitivity of the tumor cells is determined based on the signal light by utilizing the fact that the difference in the state of the tumor cells occurs, for example, as the difference in the signal light. Hereinafter, the case where the tumor cell is a lung cancer cell will be described as an example, but the present invention is not limited to this, and can be used for estimation of other tumor cells.

まず、S2工程において、SHGの信号から再構築されるSHG像におけるSHGのシグナルの位置(局在)に基づき、判定する方法について説明する。図4(A)に示すように、前記被検物質と未接触の肺がん細胞Cでは、SHGの信号から再構築されるSHG像において、SHGのシグナルSが、肺がん細胞CのZ軸方向の両極、すなわち、上端側と下端側とに局在する。そして、前記被検物質と接触後の肺がん細胞Cであり、かつ肺がん細胞Cが被検物質に対して感受性を示す場合、図4(B)に示すように、SHG像において、SHGのシグナルSは、肺がん細胞CのZ軸方向の赤道周辺、すなわち、中央部に局在する。他方、前記被検物質と接触後の肺がん細胞Cであり、かつ肺がん細胞Cが被検物質に対して抵抗性を示す場合、図4(A)に示すように、前記被検物質と未接触の肺がん細胞Cと同様に、SHG像において、SHGのシグナルSが、肺がん細胞CのZ軸方向の両極、すなわち、上端側と下端側とに局在する。したがって、S2工程では、SHG信号光の位置、すなわち、SHGの信号から再構築されるSHG像におけるSHGのシグナルの位置に基づき、肺がん細胞Cが感受性か否かを判定できる。前記局在は、例えば、全SHGシグナルのうち、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上のSHGシグナルが所定の位置に存在することを意味する。前記上端側は、前記腫瘍細胞のZ軸方向において、上端と、上端からZ軸方向の長さ30%、25%、20%、15%、10%の位置との間の領域を意味する。前記下端側は、前記腫瘍細胞のZ軸方向において、下端と、下端から腫瘍細胞のZ軸方向の長さ30%、25%、20%、15%、10%の位置との間の領域を意味する。前記中央部は、例えば、前記上端側および下端側以外の領域を意味し、具体例として、前記腫瘍細胞のZ軸方向において、例えば、下端から腫瘍細胞のZ軸方向の長さ50%の位置を基準として、腫瘍細胞のZ軸方向の長さ±5%、±10%、+15%、±20%、±25%、±30%の範囲の領域を意味する。 First, in the S2 step, a method of determining based on the position (localization) of the SHG signal in the SHG image reconstructed from the SHG signal will be described. As shown in FIG. 4A, in the lung cancer cell C not in contact with the test substance, in the SHG image reconstructed from the SHG signal, the signal S of the SHG is bipolar in the Z-axis direction of the lung cancer cell C. That is, it is localized on the upper end side and the lower end side. Then, when the lung cancer cells C are the lung cancer cells C after contact with the test substance and the lung cancer cells C are sensitive to the test substance, as shown in FIG. 4 (B), the signal S of SHG is shown in the SHG image. Is localized around the equator in the Z-axis direction of lung cancer cells C, that is, in the central part. On the other hand, when the lung cancer cells C are the lung cancer cells C after contact with the test substance and the lung cancer cells C show resistance to the test substance, as shown in FIG. 4 (A), they have not contacted the test substance. In the SHG image, the signal S of SHG is localized at both poles in the Z-axis direction of the lung cancer cell C, that is, the upper end side and the lower end side. Therefore, in the S2 step, it is possible to determine whether or not the lung cancer cell C is susceptible based on the position of the SHG signal light, that is, the position of the SHG signal in the SHG image reconstructed from the SHG signal. The localization is, for example, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99 of all SHG signals. It means that% or more SHG signals are present at a predetermined position. The upper end side means a region between the upper end and 30%, 25%, 20%, 15%, and 10% of the length in the Z-axis direction from the upper end in the Z-axis direction of the tumor cell. The lower end side is a region between the lower end and 30%, 25%, 20%, 15%, and 10% of the length of the tumor cell in the Z-axis direction from the lower end in the Z-axis direction of the tumor cell. means. The central portion means, for example, a region other than the upper end side and the lower end side, and as a specific example, a position in the Z-axis direction of the tumor cell, for example, a position 50% in length from the lower end in the Z-axis direction of the tumor cell. It means a region in the range of ± 5%, ± 10%, + 15%, ± 20%, ± 25%, ± 30% of the length of the tumor cell in the Z-axis direction with reference to.

つぎに、S2工程において、SHGの信号から再構築されるSHG像におけるSHGのシグナルの形状に基づき、判定する方法について説明する。図4(A)に示すように、前記被検物質と未接触の肺がん細胞Cでは、SHG像において、SHGのシグナルSは、滑らかな円弧を形成する。そして、前記被検物質と接触後の肺がん細胞Cであり、かつ肺がん細胞Cが被検物質に対して感受性を示す場合、図4(B)に示すように、SHG像において、SHGのシグナルSは、境界がぼやけた粒を形成する。他方、前記被検物質と接触後の肺がん細胞Cであり、かつ肺がん細胞Cが被検物質に対して抵抗性を示す場合、図4(A)に示すように、前記被検物質と未接触の肺がん細胞Cと同様に、SHG像において、SHGのシグナルは、滑らかな円弧を形成する。したがって、S2では、SHG信号光の形状、すなわち、SHGの信号から再構築されるSHG像におけるSHGのシグナルの形状に基づき、前記肺がん細胞が感受性か否かを判定できる。 Next, in the S2 step, a method of determining based on the shape of the SHG signal in the SHG image reconstructed from the SHG signal will be described. As shown in FIG. 4 (A), in the lung cancer cell C not in contact with the test substance, the signal S of SHG forms a smooth arc in the SHG image. Then, when the lung cancer cells C are the lung cancer cells C after contact with the test substance and the lung cancer cells C are sensitive to the test substance, as shown in FIG. 4 (B), the signal S of SHG is shown in the SHG image. Form grains with blurred boundaries. On the other hand, when the lung cancer cells C have come into contact with the test substance and the lung cancer cells C show resistance to the test substance, as shown in FIG. 4A, the lung cancer cells have not come into contact with the test substance. Similar to Lung Cancer Cell C, in the SHG image, the SHG signal forms a smooth arc. Therefore, in S2, it can be determined whether or not the lung cancer cells are susceptible based on the shape of the SHG signal light, that is, the shape of the SHG signal in the SHG image reconstructed from the SHG signal.

また、前述のように、前記肺がん細胞の被検物質に対する感受性の有無により、前記SHGのシグナルの形状の差異があり、特にその形状の外延の明瞭さが異なる。このため、S2工程では、SHGの信号光の分散値、すなわち、SHGの信号光のシグナル強度の分散値に基づき、前記肺がん細胞の被検物質に対する感受性を判定できる。具体的には、前記被検物質に感受性の肺がん細胞では、例えば、SHGのシグナルの境界がぼやけており、シグナル強度の分布が相対的に広くなるのに対して、前記被検物質に耐性の肺がん細胞では、SHGのシグナルの境界が明瞭であり、シグナル強度の分布が相対的に狭くなる。このため、S2工程では、前記腫瘍細胞のSHGの信号光の分散値、すなわち、SHGの信号光のシグナル強度の分散値を、基準値と比較して、SHGの信号の分散値が前記基準値より有意に大きい場合、前記腫瘍細胞は、前記被検物質に感受性であると判定できる。他方、S2工程では、前記腫瘍細胞のSHGの信号光の分散値を、前記基準値と比較して、SHGの信号の分散値が前記基準値と同等(有意差がない)または有意に小さい場合、前記腫瘍細胞は、前記被検物質に耐性であると判定できる。前記基準値は、例えば、前記被検物質と未接触の肺がん細胞におけるSHGの信号光の分散値としてもよいし、前記被検物質に感受性の肺がん細胞におけるSHGの信号光の分散値と、前記被検物質に耐性の肺がん細胞におけるSHGの信号光の分散値とに基づき、両者の間の数値としてもよい。 Further, as described above, there is a difference in the shape of the signal of the SHG depending on the presence or absence of sensitivity of the lung cancer cell to the test substance, and in particular, the clarity of the extension of the shape is different. Therefore, in the S2 step, the sensitivity of the lung cancer cells to the test substance can be determined based on the dispersion value of the signal light of SHG, that is, the dispersion value of the signal intensity of the signal light of SHG. Specifically, in lung cancer cells sensitive to the test substance, for example, the boundary of the SHG signal is blurred and the distribution of the signal intensity is relatively wide, whereas the resistance to the test substance is resistant. In lung cancer cells, the boundaries of SHG signals are clear and the distribution of signal intensities is relatively narrow. Therefore, in the S2 step, the dispersion value of the SHG signal light of the tumor cell, that is, the dispersion value of the signal intensity of the SHG signal light is compared with the reference value, and the dispersion value of the SHG signal is the reference value. If it is significantly larger, the tumor cells can be determined to be sensitive to the test substance. On the other hand, in the S2 step, when the dispersion value of the SHG signal light of the tumor cell is compared with the reference value, the dispersion value of the SHG signal is equal to (no significant difference) or significantly smaller than the reference value. , The tumor cells can be determined to be resistant to the test substance. The reference value may be, for example, a dispersion value of SHG signal light in lung cancer cells not in contact with the test substance, a dispersion value of SHG signal light in lung cancer cells sensitive to the test substance, and the above-mentioned. It may be a numerical value between the two based on the dispersion value of the signal light of SHG in the lung cancer cells resistant to the test substance.

S2工程では、例えば、機械学習により生成された学習済モデルを用いて実施してもよい。前記学習済モデルは、例えば、後述の前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍の被検物質に対する感受性の判定結果を出力する学習済モデルがあげられる。 In the S2 step, for example, a trained model generated by machine learning may be used. The trained model is, for example, a trained model that outputs the determination result of the susceptibility of the tumor to the test substance from the SHG using the pair of the SHG described later and the susceptibility of the tumor cell to the test substance as teacher data. Can be given.

このようにして、S2工程では、前記腫瘍細胞が、前記被検物質に対する感受性の有無を判定できる。なお、実施形態1において、S2工程では、1つの判定方法を用いる例をあげて説明したが、複数の判定方法を組み合わせてもよい。この場合、S2工程では、いずれか1つの判定方法により感受性と判定された場合に、前記腫瘍細胞は前記被検物質に対する感受性を有すると判定してもよいし、複数の判定方法により感受性と判定された場合に、前記腫瘍細胞は前記被検物質に対する感受性を有すると判定してもよい。 In this way, in the S2 step, it is possible to determine whether or not the tumor cells are sensitive to the test substance. In the first embodiment, in the S2 step, an example of using one determination method has been described, but a plurality of determination methods may be combined. In this case, in the S2 step, when the tumor cells are determined to be sensitive by any one of the determination methods, the tumor cells may be determined to be sensitive to the test substance, or may be determined to be sensitive by a plurality of determination methods. If so, the tumor cells may be determined to be sensitive to the test substance.

実施形態1において、信号光として、SHGを用いる場合を例にあげて説明したが、他の信号光を用いてもよい。 In the first embodiment, the case where SHG is used as the signal light has been described as an example, but other signal light may be used.

実施形態1において、被検物質に対する感受性を判定する被検細胞として、腫瘍細胞を例にあげて説明したが、本発明はこれに限定されず、腫瘍細胞以外の細胞、例えば、正常組織由来の細胞等を用いてもよい。 In the first embodiment, tumor cells have been described as an example of test cells for determining susceptibility to a test substance, but the present invention is not limited to this, and cells other than tumor cells, for example, derived from normal tissues. You may use cells or the like.

実施形態1では、ハードウェア資源を用いて判定する場合を例にあげて説明したが、本発明はこれに限定されず、ハードウェア資源を用いなくてもよい。 In the first embodiment, the case where the determination is made using the hardware resource has been described as an example, but the present invention is not limited to this, and the hardware resource may not be used.

<スクリーニング方法>
本発明の抗癌剤のスクリーニング方法は、前述のように、被検物質と接触させた腫瘍細胞について、前記被検物質に対する感受性を判定する判定工程と、前記腫瘍細胞が感受性であると判定された被検物質について、抗癌剤の候補物質として選択する工程とを含み、前記判定工程は、前記本発明の判定方法により実施される。本発明のスクリーニング方法は、前記判定工程が本発明の判定方法により実施されることが特徴であり、その他の工程および条件は特に制限されない。本発明のスクリーニング方法によれば、抗癌剤をスクリーニングできる。本発明のスクリーニング方法は、前記本発明の判定方法および判定装置の説明を援用できる。
<Screening method>
As described above, the method for screening an anticancer drug of the present invention comprises a determination step of determining the susceptibility of a tumor cell in contact with a test substance to the test substance, and a determination step of determining the susceptibility of the tumor cell. The determination step includes a step of selecting a test substance as a candidate substance for an anticancer agent, and the determination step is carried out by the determination method of the present invention. The screening method of the present invention is characterized in that the determination step is carried out by the determination method of the present invention, and other steps and conditions are not particularly limited. According to the screening method of the present invention, an anticancer drug can be screened. As the screening method of the present invention, the description of the determination method and the determination device of the present invention can be incorporated.

前記抗癌剤は、例えば、腫瘍の発生の停止もしくは抑制、腫瘍の増殖の停止もしくは抑制、腫瘍の進行の停止もしくは抑制、腫瘍の転移の停止もしくは抑制、または腫瘍の縮小を誘導する薬剤を意味し、いずれの意味で用いてもよい。 The anticancer agent means, for example, an agent that induces stopping or suppressing tumor development, stopping or suppressing tumor growth, stopping or suppressing tumor progression, stopping or suppressing tumor metastasis, or inducing tumor shrinkage. It may be used in any sense.

<抗癌剤の候補物質の製造方法>
本発明の抗癌剤の候補物質の製造方法は、前述のように、被検物質から抗癌剤の候補物質を選抜する選抜工程を含み、前記選抜工程は、前記本発明のスクリーニング方法で実施される。本発明の製造方法は、前記選抜工程が前記本発明のスクリーニング方法で実施されることが特徴であり、その他の工程および条件は、特に制限されない。本発明の製造方法によれば、抗癌剤の候補物質を製造できる。本発明のスクリーニング方法は、前記本発明の判定方法、判定装置、およびスクリーニング方法の説明を援用できる。
<Manufacturing method of candidate substances for anticancer drugs>
As described above, the method for producing a candidate substance for an anticancer agent of the present invention includes a selection step of selecting a candidate substance for an anticancer agent from a test substance, and the selection step is carried out by the screening method of the present invention. The production method of the present invention is characterized in that the selection step is carried out by the screening method of the present invention, and other steps and conditions are not particularly limited. According to the production method of the present invention, a candidate substance for an anticancer agent can be produced. As the screening method of the present invention, the description of the determination method, the determination device, and the screening method of the present invention can be incorporated.

<学習済モデルの製造方法および製造装置>
本発明の腫瘍細胞の感受性の判定に用いる学習済モデルの製造方法は、前述のように、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習工程とを含む。また、本発明の腫瘍細胞の感受性の判定に用いる学習済モデルの製造装置は、被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習手段とを含む。本発明の学習方法および学習装置は、CARS顕微鏡により取得されたSHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成することが特徴であり、その他の構成および条件は、特に制限されない。本発明の学習方法および学習装置によれば、前記本発明の判定方法および判定装置に使用可能な学習済モデルを製造できる。本発明の学習方法および学習装置は、前記本発明の判定方法、判定装置、およびスクリーニング方法の説明を援用できる。
<Manufacturing method and equipment for trained models>
As described above, the method for producing a trained model used for determining the susceptibility of tumor cells of the present invention was obtained for tumor cells contacted with a test substance using a coherent anti-Stokes Slaman scattering (CARS) microscope. Using the combination of the acquisition step of acquiring the second harmonic (SHG) and the SHG and the susceptibility of the tumor cell to the test substance as training data, the determination result of the susceptibility of the tumor cell to the test substance from the SHG is obtained. Includes a training process to generate a trained model to output. In addition, the device for manufacturing the trained model used for determining the susceptibility of the tumor cells of the present invention is the second harmonic obtained by using a coherent anti-Stokes slamman scattering (CARS) microscope for the tumor cells in contact with the test substance. Learning to output the determination result of the susceptibility of the tumor cell to the test substance from the SHG using the pair of the acquisition means for acquiring the wave (SHG), the SHG, and the susceptibility of the tumor cell to the test substance as teacher data. Includes learning means to generate finished models. The learning method and learning apparatus of the present invention use the pair of the SHG acquired by the CARS microscope and the susceptibility of the tumor cells to the test substance as teacher data, and determine the susceptibility of the tumor cells to the test substance from the SHG. It is characterized by generating a trained model that outputs, and other configurations and conditions are not particularly limited. According to the learning method and the learning device of the present invention, it is possible to manufacture a learned model that can be used for the determination method and the determination device of the present invention. The learning method and the learning device of the present invention can be referred to the description of the determination method, the determination device, and the screening method of the present invention.

(実施形態2)
図5に、本実施形態における学習装置のブロック図を示す。図5に示すように、本実施形態の学習装置20は、取得手段111および学習手段113を備える。図5に示すように、取得手段111および学習手段113は、ハードウェアであるデータ処理手段(データ処理装置)11に組み込まれてもよく、ソフトウェアまたは前記ソフトウェアが組み込まれたハードウェアでもよい。データ処理手段11は、CPU等を備えてもよい。また、データ処理手段11は、例えば、前述のROM、RAM等を備えてもよい。取得手段111は、実施形態1の判定装置10における取得手段111と同様であり、その説明を援用できる。
(Embodiment 2)
FIG. 5 shows a block diagram of the learning device according to the present embodiment. As shown in FIG. 5, the learning device 20 of the present embodiment includes the acquisition means 111 and the learning means 113. As shown in FIG. 5, the acquisition means 111 and the learning means 113 may be incorporated in the data processing means (data processing device) 11 which is hardware, or may be software or hardware in which the software is incorporated. The data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, the above-mentioned ROM, RAM, and the like. The acquisition means 111 is the same as the acquisition means 111 in the determination device 10 of the first embodiment, and the description thereof can be incorporated.

つぎに、図5の学習装置における処理の一例を、図6のフローチャートに基づいて説明する。 Next, an example of the processing in the learning device of FIG. 5 will be described with reference to the flowchart of FIG.

まず、実施形態1の判定方法のS1と同様に、取得手段111により、被検物質と接触させた腫瘍細胞について、CARS顕微鏡を用いて取得された信号光を取得する。前記腫瘍細胞の数は、特に制限されず、任意の数とできる。前記腫瘍細胞が複数の場合、各腫瘍細胞の由来は、同じでもよいし、異なってもよい。後者の場合、一部の腫瘍細胞は、由来が同じであることが好ましい。具体例として、肺がん細胞、乳がん細胞および大腸がん細胞かを判定可能な学習済モデルを生成する場合、前記腫瘍細胞としては、肺がん細胞、乳がん細胞および大腸がん細胞を用いることが好ましい。また、各腫瘍細胞は、複数用いることが好ましい。 First, similarly to S1 of the determination method of the first embodiment, the acquisition means 111 acquires the signal light acquired by using the CARS microscope for the tumor cells in contact with the test substance. The number of the tumor cells is not particularly limited and can be any number. When there are a plurality of the tumor cells, the origin of each tumor cell may be the same or different. In the latter case, some tumor cells are preferably of the same origin. As a specific example, when generating a learned model capable of determining whether it is a lung cancer cell, a breast cancer cell, or a colon cancer cell, it is preferable to use a lung cancer cell, a breast cancer cell, or a colon cancer cell as the tumor cell. Moreover, it is preferable to use a plurality of each tumor cell.

つぎに、学習手段113は、前記信号光(例えば、SHG)と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記信号光から腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する(S3、学習工程)。具体的には、各被検細胞について、S1工程で得られた信号光と、前記腫瘍細胞の感受性の有無とを関連付ける。関連付ける信号光は、S1工程で得られた信号光のスペクトル全体でもよいし、特定の信号光でもよいし、特定の信号光から得られる算出値でもよい。前記特定の信号光と関連づける場合、特定の信号光は、例えば、SHGの信号光があげられる。前記特定の信号光を関連付ける場合、本実施形態の学習方法は、例えば、S1工程後、検出手段により、得られた信号において、特定の信号光を検出する。前記検出手段は、例えば、特定の信号光のシグナル強度を検出してもよいし、特定の信号光を再構築して得られた信号像における信号光の形状および/または位置(局在)を検出してもよい。前記位置は、例えば、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在である。また、前記特定の信号光から得られる算出値と関連付ける場合、本実施形態の学習方法は、例えば、算出手段により、特定の信号光の分散値、すなわち、特定の信号光のシグナル強度の分散値を算出してもよい。 Next, the learning means 113 uses the set of the signal light (for example, SHG) and the susceptibility of the tumor cell to the test substance as training data, and determines the susceptibility of the tumor cell to the test substance from the signal light. Generates a trained model that outputs (S3, training process). Specifically, for each test cell, the signal light obtained in the S1 step is associated with the presence or absence of sensitivity of the tumor cell. The associated signal light may be the entire spectrum of the signal light obtained in the S1 step, a specific signal light, or a calculated value obtained from the specific signal light. When associated with the specific signal light, the specific signal light may be, for example, an SHG signal light. When associating the specific signal light, the learning method of the present embodiment detects the specific signal light in the obtained signal by the detection means, for example, after the S1 step. The detection means may, for example, detect the signal intensity of a specific signal light, or determine the shape and / or position (localization) of the signal light in the signal image obtained by reconstructing the specific signal light. It may be detected. The position is, for example, the localization of the signal light of SHG in the Z-axis direction of the tumor cell. Further, when associating with the calculated value obtained from the specific signal light, the learning method of the present embodiment is, for example, a dispersion value of the specific signal light, that is, a dispersion value of the signal intensity of the specific signal light by the calculation means. May be calculated.

学習済モデルの生成に用いる機械学習の方法は、特に制限されず、例えば、分類に用いる学習技法を用いることができる。具体例として、前記機械学習の方法としては、サポートベクターマシン、エクストリーム・ラーニング・マシン、表現学習(Feature learning)等があげられる。本実施形態において、前記機械学習は、教師あり学習を用いているが、半教師あり学習を用いてもよい。前記教師データの数は、複数であり、その上限は特に制限されない。 The machine learning method used to generate the trained model is not particularly limited, and for example, a learning technique used for classification can be used. Specific examples of the machine learning method include a support vector machine, an extreme learning machine, and feature learning. In the present embodiment, the machine learning uses supervised learning, but semi-supervised learning may be used. The number of the teacher data is plural, and the upper limit thereof is not particularly limited.

このようにして、S3工程では、学習済モデルを生成できる。 In this way, the trained model can be generated in the S3 step.

<選抜方法>
本発明の被検物質の感受性判定用細胞の選抜方法は、前述のように、被検腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて第二高調波(SHG)を取得する取得工程と、前記SHGに基づき、前記被検腫瘍細胞から、前記被検物質の感受性試験に用いる候補腫瘍細胞を選択する選択工程とを含む。本発明の選抜方法は、CARS顕微鏡を用いて得られたSHGに基づき、前記候補腫瘍細胞を選択することが特徴であり、その他の構成および条件は、制限されない。本発明の選抜方法によれば、前記本発明の判定方法に適した腫瘍細胞を選抜できる。本発明の選抜方法は、前記本発明の判定方法、判定装置、スクリーニング方法、学習方法および学習装置の説明を援用できる。
<Selection method>
As described above, the method for selecting cells for determining susceptibility of a test substance of the present invention is to acquire a second harmonic (SHG) of a test tumor cell using a coherent anti-Stokes Slaman scattering (CARS) microscope. The step includes a selection step of selecting a candidate tumor cell to be used for the susceptibility test of the test substance from the test tumor cells based on the SHG. The selection method of the present invention is characterized in that the candidate tumor cells are selected based on SHG obtained using a CARS microscope, and other configurations and conditions are not limited. According to the selection method of the present invention, tumor cells suitable for the determination method of the present invention can be selected. As the selection method of the present invention, the description of the determination method, determination device, screening method, learning method and learning device of the present invention can be incorporated.

前記取得工程は、前記本発明の判定方法における取得工程の説明を援用できる。前記被検腫瘍細胞は、例えば、前記腫瘍細胞の説明を援用できる。 As the acquisition step, the description of the acquisition step in the determination method of the present invention can be incorporated. The test tumor cell can be referred to, for example, the description of the tumor cell.

前記選択工程は、前記SHGに基づき、前記被検腫瘍細胞から、前記被検物質の感受性試験に用いる候補腫瘍細胞を選択する。前記選択工程は、例えば、前記SHGの有無、SHGの信号光のシグナル強度、SHGの信号光から再構築されるSHG像におけるSHGシグナルの形状および/またはSHG像におけるSHGシグナルの位置(局在)に基づき、実施できる。具体例として、前記選択工程は、例えば、前記被検腫瘍細胞において、SHGが取得される場合、SHGの信号光のシグナル強度が所定の値以上の場合、SHG像におけるSHGシグナルの形状が、境界が明瞭な円弧状の場合、および/またはSHG像におけるSHGシグナルの位置が、前記候補腫瘍細胞のZ軸方向において、上端側および/または下端側に局在している場合、前記被検腫瘍細胞を、前記候補腫瘍細胞として選択する。 In the selection step, candidate tumor cells to be used for the susceptibility test of the test substance are selected from the test tumor cells based on the SHG. The selection step is, for example, the presence or absence of the SHG, the signal intensity of the SHG signal light, the shape of the SHG signal in the SHG image reconstructed from the SHG signal light, and / or the position (localization) of the SHG signal in the SHG image. Can be implemented based on. As a specific example, in the selection step, for example, when SHG is acquired in the test tumor cell, when the signal intensity of the signal light of SHG is a predetermined value or more, the shape of the SHG signal in the SHG image is a boundary. When is a clear arc and / or the position of the SHG signal in the SHG image is localized on the upper end side and / or the lower end side in the Z-axis direction of the candidate tumor cell, the test tumor cell. Is selected as the candidate tumor cell.

<プログラム>
本発明のプログラムは、前記本発明の判定方法、スクリーニング方法、製造方法、学習方法、または選抜方法を、コンピュータ上で実行可能なプログラムである。または、本実施形態のプログラムは、例えば、コンピュータ読み取り可能な記録媒体に記録されてもよい。前記記録媒体は、例えば、非一時的なコンピュータ可読記録媒体(non-transitory computer-readable storage medium)である。前記記録媒体は、特に制限されず、例えば、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク(HD)、光ディスク、フロッピー(登録商標)ディスク(FD)等があげられる。
<Program>
The program of the present invention is a program capable of executing the determination method, the screening method, the manufacturing method, the learning method, or the selection method of the present invention on a computer. Alternatively, the program of this embodiment may be recorded on a computer-readable recording medium, for example. The recording medium is, for example, a non-transitory computer-readable storage medium. The recording medium is not particularly limited, and examples thereof include a random access memory (RAM), a read-only memory (ROM), a hard disk (HD), an optical disk, a floppy disk (registered trademark) disk (FD), and the like.

次に、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, examples of the present invention will be described. However, the present invention is not limited by the following examples. Commercially available reagents were used based on those protocols unless otherwise indicated.

[実施例1]
CARS顕微鏡により取得した信号光に基づき、腫瘍細胞の被検物質に対する感受性を判定できることを確認した。
[Example 1]
It was confirmed that the susceptibility of the tumor cells to the test substance could be determined based on the signal light obtained by the CARS microscope.

(1)CARS顕微鏡
実施例1で用いるCARS顕微鏡は、マルチプレックスCARS顕微分光装置を用いた。実施例1で用いたCARS顕微鏡の光学系の構成の概略図を図7に示す。
(1) CARS Microscope As the CARS microscope used in Example 1, a multiplex CARS microspectroscopy device was used. FIG. 7 shows a schematic diagram of the configuration of the optical system of the CARS microscope used in Example 1.

光源は、発振波長1064nm、パルス幅800ps、繰り返し周波数33 kHzのcw QスイッチマイクロチップNd:YAGレーザー(A)を用いた。パルス幅がサブナノ秒であり、1cm−1以下程度の線幅を持つ。この出力を二つに分け、一方はω光として基本波である中心波長1064nmのパルスレーザーを、他方はPCFに導入し、ω光としてスーパーコンティニュウム光を発生させた。ω光は、光源本体から出射されるレーザ光をf=400.0 mm(AC254-400-C f=400.0 mm, φ1" Achromatic Doublet, ARC: 1050-1700 nm; Thorlabs)の平凸レンズ(B)でコリメートし、ω光はPCFから出射された広帯域な波長成分を有するスーパーコンティニュウム光を非軸放物面鏡(Protected Silver Reflective Collimator, 450 nm-20 um, φ4 mm, FC/APC; Thorlabs)(C)に導入することでコリメートし伝搬させた。As a light source, a cw Q-switched microchip Nd: YAG laser (A) having an oscillation wavelength of 1064 nm, a pulse width of 800 ps, and a repetition frequency of 33 kHz was used. The pulse width is sub-nanoseconds, and the line width is about 1 cm -1 or less. This output was divided into two, one was introduced into the PCF with a pulsed laser with a central wavelength of 1064 nm, which is the fundamental wave as ω 1 light, and the other was introduced into the PCF to generate super-continuum light as ω 2 light. ω 1 Light is a plano-convex lens (B) of f = 400.0 mm (AC254-400-C f = 400.0 mm, φ1 "Achromatic Doublet, ARC: 1050-1700 nm; Thorlabs) for the laser light emitted from the light source body. Collimated, ω 2 light emits super-continuum light with a wide-band wavelength component emitted from the PCF with a non-axis mirror (Protected Silver Reflective Collimator, 450 nm-20 um, φ4 mm, FC / APC; Thorlabs. ) Collimated and propagated by introducing it into (C).

また、ω光は伝搬の途中でVariable Neutral Density Filter(VND Filter)(D)と1064nm半波長板(S333-1064-2; 駿河精機社製)(E)を挟んだ。VND Filterは、試料に入射するω光の光量調整を、1064nm半波長板は後述するSHGアクティブな分子の偏光依存性を確認するために用いた。In addition, ω 1 light sandwiched a Variable Neutral Density Filter (VND Filter) (D) and a 1064 nm half-wave plate (S333-1064-2; manufactured by Suruga Seiki Co., Ltd.) (E) in the middle of propagation. The VND Filter was used to adjust the amount of ω 1 light incident on the sample, and the 1064 nm half-wave plate was used to confirm the polarization dependence of the SHG active molecule described later.

さらに、ω光は中心波長1064nm以外にもその短波長側に微弱な成分を含んでおり、検出するCARS光の以外のω光に含まれる余分なスペクトル成分を効率的にカットするために1064nm narrow Band Pass Filter(1064.1-1 OD7 Ultra Narrow Bandpass; Alluxa)(F)を用いた。前記バンドパスフィルターは、中心波長1064.1nm、半値幅1nmのスペクトル成分のみを透過させる超狭帯域バンドパスフィルターを用いた。Furthermore, the ω 1 light contains a weak component on the short wavelength side in addition to the central wavelength of 1064 nm, and in order to efficiently cut the extra spectral component contained in the ω 1 light other than the CARS light to be detected. A 1064 nm narrow Band Pass Filter (1064.1-1 OD7 Ultra Narrow Bandpass; Alluxa) (F) was used. As the bandpass filter, an ultra-narrow bandpass filter that transmits only spectral components having a center wavelength of 1064.1 nm and a half width of 1 nm was used.

ω光はPCFによって可視域から近赤外域まで緩やかに伸びるブロードなバンドを持っている。ω光の中心波長1064nmに対してCARS光の測定に必要なω光の波長域は1064〜1650nm程度までである。そこで、ω光のコリメート直後に可視光の成分をカットする二つのフィルター1050 nm long Pass Filter(G)、赤外透過フィルター(IR80N; ケンコー光学社製)(H)によってω光の近赤外域に広がるスペクトル成分のみを十分に透過させた。そして、ω光とω光の合波後、二つの光を顕微鏡へと伝搬させた。ω 2 light has a broad band that gently extends from the visible region to the near-infrared region by PCF. The wavelength range of ω 2 light required for the measurement of CARS light is from 1064 to 1650 nm with respect to the central wavelength of 1064 nm of ω 1 light. Therefore, two filters 1050 nm long Pass Filter (G) and an infrared transmission filter (IR80N; manufactured by Kenko Optical Co., Ltd.) (H) that cut the visible light component immediately after collimating the ω 2 light are used to make the ω 2 light near red. Only the spectral components spreading in the outer region were sufficiently transmitted. Then, after the combined wave of ω 1 light and ω 2 light, the two lights were propagated to the microscope.

顕微鏡としては、倒立顕微鏡(eclipse Ti-U、株式会社Nikon社製)をカスタムメイドした正倒立顕微鏡を使用した。顕微鏡の倒立側から対物レンズ(Water immersion, Plan, ×60, 1.27NA; Nikon社製)(J)に入射し、試料に集光されたω光とω光によりCARSやSHGといった非線形光学現象が発生する。対物レンズで絞られているため、これらの非線形光学現象は位相整合条件から前方方向に効率よく発生する。焦点で発生した信号光は顕微鏡正立側の対物レンズ(Dry, S Plan Fluor, ×40, 0.60NA; Nikon社製)(K)によって集光、コリメートされた。As the microscope, an inverted microscope (eclipse Ti-U, manufactured by Nikon Corporation) custom-made was used. Non-linear optics such as CARS and SHG by ω 1 light and ω 2 light incident on the objective lens (Water immersion, Plan, × 60, 1.27NA; manufactured by Nikon) (J) from the inverted side of the microscope and focused on the sample. The phenomenon occurs. Since it is focused by the objective lens, these nonlinear optical phenomena occur efficiently in the forward direction due to the phase matching condition. The signal light generated at the focal point was focused and collimated by an objective lens (Dry, S Plan Fluor, × 40, 0.60NA; manufactured by Nikon Corporation) (K) on the upright side of the microscope.

倒立側対物レンズにより試料面で集光された位置でパワーメーターを用いて測定した平均パワーはそれぞれω光が最大55 mW、ω光が最大20 mWであった。実際の測定ではこのうちパワーの高いω光に前述のVND Filterを用いることでサンプル信号強度の調節を行った。The average power measured with a power meter at the position focused on the sample surface by the inverted objective lens was 55 mW for ω 1 light and 20 mW for ω 2 light, respectively. In the actual measurement, the sample signal intensity was adjusted by using the above-mentioned VND Filter for the high-power ω 1 light.

顕微鏡にはハロゲンランプが備え付けられており、試料の光学像をCCDカメラで撮影可能である。顕微鏡内ではω光とω光がハロゲンランプの光と同軸に存在するため、倒立側対物レンズ直前のダイクロイックビームスプリッター(FF825-SDi01-25×36×2.0シングルエッジショートパスDichroicビームスプリッター; オプトライン社製)(L)と、正立側対物レンズの直後のダイクロイックミラー(TFMS-30C05-3/20超広帯域誘多膜平面ミラー; シグマ光機社製)(M)とを使用した。The microscope is equipped with a halogen lamp, and an optical image of the sample can be taken with a CCD camera. Since ω 1 light and ω 2 light exist coaxially with the light of the halogen lamp in the microscope, the dichroic beam splitter (FF825-SDi01-25 × 36 × 2.0 single edge short path Dichroic beam splitter; opt (L) manufactured by Rhein Co., Ltd. and a dichroic mirror (TFMS-30C05-3 / 20 ultra-wideband multi-film planar mirror manufactured by Sigma Kouki Co., Ltd.) immediately after the upright objective lens were used.

顕微鏡に設置したステージは二軸の微小位置決め装置によって制御されるステップモータ式MicroStage(Micro-Stage(2 axis); Mad City Labs)(N)を利用した。さらに前記MicroStageの上に動作範囲75 μm×75 μm×50 μmのピエゾステージ(Nano-LPQ; Mad City Labs社製)(O)を設置し、ミリ単位での面内幅広いストロークに加え、さらに細かいストロークの面内ステージ制御と光軸Z方向、すなわち試料に対しての奥行方向のスキャンを可能とした。MicroStageは非常に高精度の駆動装置により最小ステップサイズ95 nm、最大速度2 mm/secの制御が可能である。 The stage installed in the microscope used a step motor type MicroStage (Micro-Stage (2 axis); Mad City Labs) (N) controlled by a biaxial micro-positioning device. Furthermore, a piezo stage (Nano-LPQ; manufactured by Mad City Labs) (O) with an operating range of 75 μm × 75 μm × 50 μm is installed on the MicroStage, and in addition to a wide in-plane stroke in millimeters, it is even finer. It enables in-plane stage control of the stroke and scanning in the Z direction of the optical axis, that is, in the depth direction with respect to the sample. The MicroStage is capable of controlling a minimum step size of 95 nm and a maximum speed of 2 mm / sec with a highly accurate drive.

つぎに、検出器側の光学系は、以下の通りとした。顕微鏡の正立側対物レンズで集光された信号光は、直後のダイクロイックミラーによって反射され、その後ダイクロイックビームスプリッター(FF685-Di02-25×36 685 nm シングルエッジDichroicビームスプリッター; Semrock社製)(P)によって、近赤外域のCARS光を透過させ、可視域の光は反射させた。 Next, the optical system on the detector side was as follows. The signal light collected by the upright objective lens of the microscope is reflected by the dichroic mirror immediately after, and then the dichroic beam splitter (FF685-Di02-25 × 36 685 nm single edge Dichroic beam splitter; Semrock) (P). ), The CARS light in the near infrared region was transmitted, and the light in the visible region was reflected.

可視域の光について、633nm short Pass Filter(Q)により可視域外の励起光由来のバックグラウンドを遮断し、その後f=65 mmの平凸レンズ(R)により分光器(Z-300 Series; LUCIR社製)(S)に集光させた。前記分光器を接続したPC上でソフトウェア(Ementool; Zolix社製)によって制御を行った。本実施例では、Grating Groove 300本/mm、Grating Blaze 500 nm、分光器の中心波長410 nmに設定した。SHGの検出には電子冷却CCDカメラ(iVac300; Andor社製)(T)を用いた。 For light in the visible region, the background derived from excitation light outside the visible region is blocked by a 633 nm short Pass Filter (Q), and then a spectroscope (Z-300 Series; manufactured by LUCIR) is used by a plano-convex lens (R) with f = 65 mm. ) (S). Control was performed by software (Ementool; manufactured by Zolix) on a PC to which the spectroscope was connected. In this example, the Grating Groove was set to 300 lines / mm, the Grating Blaze was set to 500 nm, and the center wavelength of the spectroscope was set to 410 nm. An electronically cooled CCD camera (iVac300; manufactured by Andor) (T) was used to detect SHG.

近赤外域の光はダイクロイックビームスプリッターを透過し、1064nm notch Filter(1064 Narrow ノッチフィルター; Iridian社製)(U)と1050nm short Pass Filter(3RD1050SP; Omega)(V)によってω光とω光を遮断し、CARS光のみを分光器へと導光した。 Light in the near-infrared region passes through a dichroic beam splitter and is ω 1 light and ω 2 light by a 1064 nm notch filter (1064 Narrow notch filter; Iridian) (U) and a 1050 nm short Pass Filter (3RD1050SP; Omega) (V). Was blocked, and only CARS light was guided to the spectroscope.

1064nm notch Filterと1050nm short Pass Filterとを透過後、CARS光はf=25 mmの平凸レンズで分光器(Acton Series LS785; Princeton Instruments社製)(X)によって波長ごとに分光され、電子冷却CCDカメラ(PIXIS 100BR; Princeton Instruments社製)(Y)で検出した。PIXIS 100BR、iVac 316、およびiVac300は、それぞれPC上のソフトウェア(LightField; Princeton Instruments社製、Andor SOLIS; Andor社製)によって制御されている。 After passing through a 1064 nm notch filter and a 1050 nm short pass filter, CARS light is separated by wavelength by a spectroscope (Acton Series LS785; Princeton Instruments) (X) with a plano-convex lens with f = 25 mm, and an electronically cooled CCD camera. (PIXIS 100BR; manufactured by Princeton Instruments) (Y) was detected. The PIXIS 100BR, iVac 316, and iVac 300 are controlled by software on the PC (LightField; Princeton Instruments, Andor SOLIS; Andor), respectively.

(2)腫瘍細胞
腫瘍細胞としては、肺腺がん細胞(PC−9)を使用した。前記PC−9は、ゲフィチニブに対して感受性を示すことが知られている肺がん細胞株である。前記腫瘍細胞は、24ウェルディッシュ内にプレパラートを配置し、プレパラート上で培養した。そして、被検物質として、ゲフィチニブを添加し、48時間培養した。
(2) Tumor cells Lung adenocarcinoma cells (PC-9) were used as tumor cells. The PC-9 is a lung cancer cell line known to be sensitive to gefitinib. The tumor cells were prepared by placing the preparation in a 24-weldish and culturing on the preparation. Then, gefitinib was added as a test substance, and the cells were cultured for 48 hours.

(3)測定
培養後の各腫瘍細胞を含むプレパラートをスライドグラスにマウントし、前記実施例1(1)のCARS顕微鏡で、信号光を取得した。そして、得られたSHGの信号光を再構築し、SHG像を作製した。また、コントロールは、ゲフィチニブを添加しなかった以外は同様にして実施した。これらの結果を図8に示す。
(3) Measurement A preparation containing each tumor cell after culturing was mounted on a slide glass, and signal light was obtained with the CARS microscope of Example 1 (1). Then, the obtained signal light of SHG was reconstructed to prepare an SHG image. Controls were performed in the same manner except that gefitinib was not added. These results are shown in FIG.

図8は、SHG像を示す写真である。図8において、(A)は、ゲフィチニブ未添加のコントロールの結果を示し、(B)は、ゲフィチニブを添加したサンプルの結果を示す。図8(A)に示すように、ゲフィチニブ未添加の状態では、矢印で示すように、PC−9は、SHG像において上端側および下端側にSHGシグナルが局在していた。これに対して、図8(B)に示すように、ゲフィチニブ添加の状態では、SHG像において赤道周辺、すなわち、中央部に局在していた。これらのことから、CARS顕微鏡により取得した信号光を用いて、腫瘍細胞の感受性を判定できることがわかった。 FIG. 8 is a photograph showing an SHG image. In FIG. 8, (A) shows the result of the control without gefitinib, and (B) shows the result of the sample with gefitinib added. As shown in FIG. 8A, in the state where gefitinib was not added, as shown by the arrow, the SHG signal was localized on the upper end side and the lower end side of the PC-9 in the SHG image. On the other hand, as shown in FIG. 8B, in the state of adding gefitinib, it was localized around the equator, that is, in the central part in the SHG image. From these facts, it was found that the susceptibility of tumor cells can be determined by using the signal light obtained by the CARS microscope.

以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.

この出願は、2019年2月8日に出願された日本出願特願2019−021932を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority on the basis of Japanese application Japanese Patent Application No. 2019-021932 filed on February 8, 2019, and incorporates all of its disclosures herein.

<付記>
上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定工程とを含む、被検物質への感受性の判定方法。
(付記2)
前記判定工程において、前記SHGの信号光の形状および位置の少なくとも一方に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、付記1記載の判定方法。
(付記3)
前記判定工程において、前記SHGの信号光の分散値に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、付記1または2記載の判定方法。
(付記4)
前記判定工程において、前記SHGの信号光の分散値を基準値と比較し、前記SHGの信号光の分散値が、前記基準値より大きい場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定する、付記3記載の判定方法。
(付記5)
前記基準値は、前記被検物質と未接触の腫瘍細胞におけるSHGの信号光の分散値である、付記4記載の判定方法。
(付記6)
前記判定工程において、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性の判定結果を出力する機械学習により生成された学習済みモデルを用いて、前記腫瘍細胞の前記被検物質に対する感受性を判定する、付記1から5のいずれかに記載の判定方法。
(付記7)
前記判定工程において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、付記1から6のいずれかに記載の判定方法。
(付記8)
前記判定工程において、前記腫瘍細胞のZ軸方向における中央部にSHGの信号光が局在する場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定する、付記1から7のいずれかに記載の判定方法。
(付記9)
前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、付記1から8のいずれかに記載の判定方法。
(付記10)
前記腫瘍細胞が、肺がん細胞である、付記1から9のいずれかに記載の判定方法。
(付記11)
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定手段とを含む、被検物質への感受性の判定装置。
(付記12)
前記判定手段では、前記SHGの信号光の形状および位置の少なくとも一方に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、付記11記載の判定装置。
(付記13)
前記判定手段では、前記SHGの信号光の分散値に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、付記11または12記載の判定装置。
(付記14)
前記判定手段では、前記SHGの信号光の分散値を基準値と比較し、前記SHGの信号光の分散値が、前記基準値より大きい場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定される、付記13記載の判定装置。
(付記15)
前記基準値は、前記被検物質と未接触の腫瘍細胞におけるSHGの信号光の分散値である、付記14記載の判定装置。
(付記16)
前記判定手段では、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性の判定結果を出力する機械学習により生成された学習済みモデルを用いて、前記腫瘍細胞の前記被検物質に対する感受性が判定される、付記11から15のいずれかに記載の判定装置。
(付記17)
前記判定手段では、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、付記11から16のいずれかに記載の判定装置。
(付記18)
前記判定手段では、前記腫瘍細胞のZ軸方向における中央部にSHGの信号光が局在する場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定される、付記11から17のいずれかに記載の判定装置。
(付記19)
前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、付記11から18のいずれかに記載の判定装置。
(付記20)
前記腫瘍細胞が、肺がん細胞である、付記11から19のいずれかに記載の判定装置。
(付記21)
被検物質と接触させた腫瘍細胞について、前記被検物質に対する感受性を判定する判定工程と、
前記腫瘍細胞が感受性であると判定された被検物質について、抗癌剤の候補物質として選択する工程とを含み、
前記判定工程は、付記1から10のいずれかに記載の判定方法により実施される、抗癌剤のスクリーニング方法。
(付記22)
前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、付記21記載のスクリーニング方法。
(付記23)
被検物質から抗癌剤の候補物質を選抜する選抜工程を含み、
前記選抜工程は、付記21または22記載のスクリーニング方法で実施される、抗癌剤の候補物質の製造方法。
(付記24)
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習工程とを含む、腫瘍細胞の感受性の判定に用いる学習済モデルの製造方法。
(付記25)
前記SHGから、前記SHGの信号光の形状および位置の少なくとも一方を検出する信号光検出工程を含み、
前記学習工程において、前記SHGの信号光の形状および位置の少なくとも一方と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記24記載の製造方法。
(付記26)
前記SHGから、前記SHGの信号光の分散値を算出する算出工程を含み、
前記学習工程において、前記SHGの信号光の分散値と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記24または25記載の製造方法。
(付記27)
前記SHGから、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在を検出する局在検出工程を含み、
前記学習工程において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記24から26のいずれかに記載の製造方法。
(付記28)
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習手段とを含む、腫瘍細胞の感受性の判定に用いる学習済モデルの製造装置。
(付記29)
前記SHGから、前記SHGの信号光の形状および位置の少なくとも一方を検出する信号光検出手段を含み、
前記学習手段において、前記SHGの信号光の形状および位置の少なくとも一方と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記28記載の製造装置。
(付記30)
前記SHGから、前記SHGの信号光の分散値を算出する算出手段を含み、
前記学習手段において、前記SHGの信号光の分散値と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記28または29記載の製造装置。
(付記31)
前記SHGから、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在を検出する局在検出手段を含み、
前記学習手段において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、付記28から30のいずれかに記載の製造装置。
(付記32)
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡における第二高調波(SHG)を取得する取得処理と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
(付記33)
被検物質と接触させた腫瘍細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得処理と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
(付記34)
被検腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記被検腫瘍細胞から、前記被検物質の感受性試験に用いる候補腫瘍細胞を選択する選択工程とを含む、被検物質の感受性判定用細胞の選抜方法。
(付記35)
前記選択工程において、前記SHGが検出された被検腫瘍細胞を前記候補腫瘍細胞として選択する、付記34記載の選抜方法。
(付記36)
付記32または33に記載のプログラムを記録している、コンピュータ読み取り可能な記録媒体。
<Additional Notes>
Some or all of the above embodiments and examples may be described as, but not limited to, the following appendixes.
(Appendix 1)
The acquisition step of acquiring the second harmonic (SHG) acquired by using a coherent anti-Stoke Raman scattering (CARS) microscope for the tumor cells contacted with the test substance, and the acquisition process.
A method for determining susceptibility to a test substance, which comprises a determination step for determining the susceptibility of the tumor cells to the test substance based on the SHG.
(Appendix 2)
The determination method according to Appendix 1, wherein in the determination step, the susceptibility of the tumor cell to the test substance is determined based on at least one of the shape and position of the signal light of the SHG.
(Appendix 3)
The determination method according to Appendix 1 or 2, wherein in the determination step, the sensitivity of the tumor cell to the test substance is determined based on the dispersion value of the signal light of the SHG.
(Appendix 4)
In the determination step, the dispersion value of the signal light of the SHG is compared with the reference value, and when the dispersion value of the signal light of the SHG is larger than the reference value, the tumor cell is sensitive to the test substance. The determination method according to Appendix 3, wherein the determination is made.
(Appendix 5)
The determination method according to Appendix 4, wherein the reference value is a dispersion value of SHG signal light in tumor cells that have not come into contact with the test substance.
(Appendix 6)
In the determination step, the susceptibility of the tumor cells to the test substance is determined by using a learned model generated by machine learning that outputs the determination result of the susceptibility of the tumor cells to the test substance based on the SHG. Judgment, the determination method according to any one of Supplementary Provisions 1 to 5.
(Appendix 7)
The determination method according to any one of Supplementary note 1 to 6, wherein in the determination step, the sensitivity of the tumor cell to the test substance is determined based on the localization of the signal light of SHG in the Z-axis direction of the tumor cell.
(Appendix 8)
In the determination step, when the signal light of SHG is localized in the central portion in the Z-axis direction of the tumor cell, it is determined that the tumor cell is sensitive to the test substance, any one of Supplementary note 1 to 7. Judgment method described in.
(Appendix 9)
The determination method according to any one of Supplementary note 1 to 8, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids.
(Appendix 10)
The determination method according to any one of Supplementary note 1 to 9, wherein the tumor cell is a lung cancer cell.
(Appendix 11)
An acquisition means for acquiring a second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope for a tumor cell contacted with a test substance, and an acquisition means.
A device for determining susceptibility to a test substance, which comprises a determination means for determining the susceptibility of the tumor cells to the test substance based on the SHG.
(Appendix 12)
The determination device according to Appendix 11, wherein in the determination means, the susceptibility of the tumor cell to the test substance is determined based on at least one of the shape and position of the signal light of the SHG.
(Appendix 13)
The determination device according to Appendix 11 or 12, wherein in the determination means, the sensitivity of the tumor cell to the test substance is determined based on the dispersion value of the signal light of the SHG.
(Appendix 14)
In the determination means, the dispersion value of the signal light of the SHG is compared with the reference value, and when the dispersion value of the signal light of the SHG is larger than the reference value, the tumor cell is sensitive to the test substance. The determination device according to Appendix 13, wherein the determination device is determined to be.
(Appendix 15)
The determination device according to Appendix 14, wherein the reference value is a dispersion value of SHG signal light in tumor cells that have not come into contact with the test substance.
(Appendix 16)
In the determination means, the susceptibility of the tumor cells to the test substance is determined by using a learned model generated by machine learning that outputs the determination result of the susceptibility of the tumor cells to the test substance based on the SHG. The determination device according to any one of Supplementary note 11 to 15, which is determined.
(Appendix 17)
The determination device according to any one of Supplementary note 11 to 16, wherein in the determination means, the sensitivity of the tumor cell to the test substance is determined based on the localization of the signal light of SHG in the Z-axis direction of the tumor cell. ..
(Appendix 18)
In the determination means, when the signal light of SHG is localized in the central portion of the tumor cell in the Z-axis direction, the tumor cell is determined to be sensitive to the test substance. Judgment device described in Crab.
(Appendix 19)
The determination device according to any one of Supplementary note 11 to 18, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids.
(Appendix 20)
The determination device according to any one of Supplementary note 11 to 19, wherein the tumor cell is a lung cancer cell.
(Appendix 21)
A determination step for determining the susceptibility of a tumor cell in contact with a test substance to the test substance, and
The step of selecting a test substance determined to be sensitive to the tumor cells as a candidate substance for an anticancer drug is included.
The determination step is a method for screening an anticancer drug, which is carried out by the determination method according to any one of Supplementary note 1 to 10.
(Appendix 22)
21. The screening method according to Appendix 21, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids.
(Appendix 23)
Including a selection process for selecting candidate substances for anticancer drugs from test substances, including
The selection step is a method for producing a candidate substance for an anticancer agent, which is carried out by the screening method according to Appendix 21 or 22.
(Appendix 24)
The acquisition step of acquiring the second harmonic (SHG) acquired by using a coherent anti-Stoke Raman scattering (CARS) microscope for the tumor cells contacted with the test substance, and the acquisition process.
It includes a learning step of generating a learned model that outputs a determination result of the susceptibility of a tumor cell to a test substance from the SHG using a pair of the SHG and the susceptibility of the tumor cell to the test substance as teacher data. A method for producing a trained model used to determine the susceptibility of tumor cells.
(Appendix 25)
A signal light detection step of detecting at least one of the shape and position of the signal light of the SHG from the SHG is included.
The manufacturing method according to Appendix 24, wherein in the learning step, the pair of at least one of the shape and position of the signal light of the SHG and the sensitivity of the tumor cell to the test substance is used as teacher data.
(Appendix 26)
A calculation step of calculating the dispersion value of the signal light of the SHG from the SHG is included.
The production method according to Supplementary note 24 or 25, wherein in the learning step, the pair of the dispersion value of the signal light of the SHG and the sensitivity of the tumor cell to the test substance is used as the teacher data.
(Appendix 27)
A localization detection step of detecting the localization of the signal light of the SHG in the Z-axis direction of the tumor cell from the SHG is included.
The description in any of Supplementary note 24 to 26, wherein in the learning step, the pair of the localization of the signal light of SHG in the Z-axis direction of the tumor cell and the sensitivity of the tumor cell to the test substance is used as the teacher data. Production method.
(Appendix 28)
An acquisition means for acquiring a second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope for a tumor cell contacted with a test substance, and an acquisition means.
It includes a learning means for generating a learned model that outputs a determination result of the susceptibility of a tumor cell to a test substance from the SHG using a pair of the SHG and the susceptibility of the tumor cell to the test substance as teacher data. A trained model manufacturing device used to determine the susceptibility of tumor cells.
(Appendix 29)
A signal light detecting means for detecting at least one of the shape and position of the signal light of the SHG from the SHG is included.
The manufacturing apparatus according to Appendix 28, wherein in the learning means, a pair of at least one of the shape and position of the signal light of the SHG and the susceptibility of the tumor cell to a test substance is used as teacher data.
(Appendix 30)
A calculation means for calculating the dispersion value of the signal light of the SHG from the SHG is included.
The manufacturing apparatus according to Supplementary note 28 or 29, wherein in the learning means, the pair of the dispersion value of the signal light of the SHG and the sensitivity of the tumor cell to the test substance is used as the teacher data.
(Appendix 31)
A localization detecting means for detecting the localization of the signal light of the SHG in the Z-axis direction of the tumor cell from the SHG is included.
The method according to any one of Supplementary note 28 to 30, wherein in the learning means, the pair of the localization of the signal light of SHG in the Z-axis direction of the tumor cell and the sensitivity of the tumor cell to the test substance is used as teacher data. manufacturing device.
(Appendix 32)
Acquisition processing to acquire second harmonic generation (SHG) under a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells in contact with the test substance, and
Using the pair of the SHG and the susceptibility of the tumor cells to the test substance as teacher data, a learning process for generating a trained model that outputs the determination result of the susceptibility of the tumor to the test substance from the SHG is performed on a computer. A program that can be run on.
(Appendix 33)
Acquisition processing to acquire the second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope of tumor cells in contact with the test substance, and
Using the pair of the SHG and the susceptibility of the tumor cells to the test substance as training data, a computer performs a learning process to generate a trained model that outputs the determination result of the susceptibility of the tumor cells to the test substance from the SHG. A program that can be run on.
(Appendix 34)
The acquisition process for acquiring the second harmonic (SHG) of the tumor cells to be examined using a coherent anti-Stoke Raman scattering (CARS) microscope.
A method for selecting cells for determining susceptibility to a test substance, which comprises a selection step of selecting candidate tumor cells to be used for a susceptibility test of the test substance from the test tumor cells based on the SHG.
(Appendix 35)
The selection method according to Appendix 34, wherein in the selection step, the test tumor cell in which the SHG is detected is selected as the candidate tumor cell.
(Appendix 36)
A computer-readable recording medium recording the program according to Appendix 32 or 33.

以上のように、本発明によれば、腫瘍細胞の被検物質に対する感受性を判定できる。このため、本発明は、化合物のスクリーニングを行なう等において、極めて有用である。 As described above, according to the present invention, the susceptibility of tumor cells to a test substance can be determined. Therefore, the present invention is extremely useful in screening compounds and the like.

10 判定装置
11 データ処理手段
111 取得手段
112 判定手段
113 学習手段
20 学習装置
10 Judgment device 11 Data processing means 111 Acquisition means 112 Judgment means 113 Learning means 20 Learning device

Claims (35)

被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定工程とを含む、被検物質への感受性の判定方法。
The acquisition step of acquiring the second harmonic (SHG) acquired by using a coherent anti-Stoke Raman scattering (CARS) microscope for the tumor cells contacted with the test substance, and the acquisition process.
A method for determining susceptibility to a test substance, which comprises a determination step for determining the susceptibility of the tumor cells to the test substance based on the SHG.
前記判定工程において、前記SHGの信号光の形状および位置の少なくとも一方に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、請求項1記載の判定方法。 The determination method according to claim 1, wherein in the determination step, the susceptibility of the tumor cell to the test substance is determined based on at least one of the shape and position of the signal light of the SHG. 前記判定工程において、前記SHGの信号光の分散値に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、請求項1または2記載の判定方法。 The determination method according to claim 1 or 2, wherein in the determination step, the sensitivity of the tumor cell to the test substance is determined based on the dispersion value of the signal light of the SHG. 前記判定工程において、前記SHGの信号光の分散値を基準値と比較し、前記SHGの信号光の分散値が、前記基準値より大きい場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定する、請求項3記載の判定方法。 In the determination step, the dispersion value of the signal light of the SHG is compared with the reference value, and when the dispersion value of the signal light of the SHG is larger than the reference value, the tumor cell is sensitive to the test substance. 3. The determination method according to claim 3. 前記基準値は、前記被検物質と未接触の腫瘍細胞におけるSHGの信号光の分散値である、請求項4記載の判定方法。 The determination method according to claim 4, wherein the reference value is a dispersion value of SHG signal light in tumor cells that have not come into contact with the test substance. 前記判定工程において、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性の判定結果を出力する機械学習により生成された学習済みモデルを用いて、前記腫瘍細胞の前記被検物質に対する感受性を判定する、請求項1から5のいずれか一項に記載の判定方法。 In the determination step, the susceptibility of the tumor cells to the test substance is determined by using a learned model generated by machine learning that outputs the determination result of the susceptibility of the tumor cells to the test substance based on the SHG. The determination method according to any one of claims 1 to 5, wherein the determination is made. 前記判定工程において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在に基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する、請求項1から6のいずれか一項に記載の判定方法。 The invention according to any one of claims 1 to 6, wherein in the determination step, the susceptibility of the tumor cell to the test substance is determined based on the localization of the signal light of SHG in the Z-axis direction of the tumor cell. Judgment method. 前記判定工程において、前記腫瘍細胞のZ軸方向における中央部にSHGの信号光が局在する場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定する、請求項1から7のいずれか一項に記載の判定方法。 Any of claims 1 to 7, wherein in the determination step, when the signal light of SHG is localized in the central portion of the tumor cell in the Z-axis direction, the tumor cell is determined to be sensitive to the test substance. The judgment method described in item 1. 前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、請求項1から8のいずれか一項に記載の判定方法。 The determination method according to any one of claims 1 to 8, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids. 前記腫瘍細胞が、肺がん細胞である、請求項1から9のいずれか一項に記載の判定方法。 The determination method according to any one of claims 1 to 9, wherein the tumor cell is a lung cancer cell. 被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性を判定する判定手段とを含む、被検物質への感受性の判定装置。
An acquisition means for acquiring a second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope for a tumor cell contacted with a test substance, and an acquisition means.
A device for determining susceptibility to a test substance, which comprises a determination means for determining the susceptibility of the tumor cells to the test substance based on the SHG.
前記判定手段では、前記SHGの信号光の形状および位置の少なくとも一方に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、請求項11記載の判定装置。 The determination device according to claim 11, wherein the determination means determines the susceptibility of the tumor cells to the test substance based on at least one of the shape and position of the signal light of the SHG. 前記判定手段では、前記SHGの信号光の分散値に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、請求項11または12記載の判定装置。 The determination device according to claim 11 or 12, wherein the determination means determines the susceptibility of the tumor cells to the test substance based on the dispersion value of the signal light of the SHG. 前記判定手段では、前記SHGの信号光の分散値を基準値と比較し、前記SHGの信号光の分散値が、前記基準値より大きい場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定される、請求項13記載の判定装置。 In the determination means, the dispersion value of the signal light of the SHG is compared with the reference value, and when the dispersion value of the signal light of the SHG is larger than the reference value, the tumor cell is sensitive to the test substance. 13. The determination device according to claim 13. 前記基準値は、前記被検物質と未接触の腫瘍細胞におけるSHGの信号光の分散値である、請求項14記載の判定装置。 The determination device according to claim 14, wherein the reference value is a dispersion value of SHG signal light in tumor cells that have not come into contact with the test substance. 前記判定手段では、前記SHGに基づき、前記腫瘍細胞の前記被検物質に対する感受性の判定結果を出力する機械学習により生成された学習済みモデルを用いて、前記腫瘍細胞の前記被検物質に対する感受性が判定される、請求項11から15のいずれか一項に記載の判定装置。 In the determination means, the susceptibility of the tumor cells to the test substance is determined by using a learned model generated by machine learning that outputs the determination result of the susceptibility of the tumor cells to the test substance based on the SHG. The determination device according to any one of claims 11 to 15, which is determined. 前記判定手段では、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在に基づき、前記腫瘍細胞の前記被検物質に対する感受性が判定される、請求項11から16のいずれか一項に記載の判定装置。 The determination means according to any one of claims 11 to 16, wherein the susceptibility of the tumor cell to the test substance is determined based on the localization of the signal light of SHG in the Z-axis direction of the tumor cell. Judgment device. 前記判定手段では、前記腫瘍細胞のZ軸方向における中央部にSHGの信号光が局在する場合、前記腫瘍細胞は、前記被検物質に対する感受性であると判定される、請求項11から17のいずれか一項に記載の判定装置。 According to claims 11 to 17, when the signal light of SHG is localized in the central portion of the tumor cell in the Z-axis direction, the determination means determines that the tumor cell is sensitive to the test substance. The determination device according to any one item. 前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、請求項11から18のいずれか一項に記載の判定装置。 The determination device according to any one of claims 11 to 18, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids. 前記腫瘍細胞が、肺がん細胞である、請求項11から19のいずれか一項に記載の判定装置。 The determination device according to any one of claims 11 to 19, wherein the tumor cell is a lung cancer cell. 被検物質と接触させた腫瘍細胞について、前記被検物質に対する感受性を判定する判定工程と、
前記腫瘍細胞が感受性であると判定された被検物質について、抗癌剤の候補物質として選択する工程とを含み、
前記判定工程は、請求項1から10のいずれか一項に記載の判定方法により実施される、抗癌剤のスクリーニング方法。
A determination step for determining the susceptibility of a tumor cell in contact with a test substance to the test substance, and
The step of selecting a test substance determined to be sensitive to the tumor cells as a candidate substance for an anticancer drug is included.
The determination step is a method for screening an anticancer drug, which is carried out by the determination method according to any one of claims 1 to 10.
前記被検物質が、低分子化合物、ペプチド、タンパク質および核酸からなる群から選択された少なくとも1つである、請求項21記載のスクリーニング方法。 The screening method according to claim 21, wherein the test substance is at least one selected from the group consisting of low molecular weight compounds, peptides, proteins and nucleic acids. 被検物質から抗癌剤の候補物質を選抜する選抜工程を含み、
前記選抜工程は、請求項21または22記載のスクリーニング方法で実施される、抗癌剤の候補物質の製造方法。
Including a selection process for selecting candidate substances for anticancer drugs from test substances, including
The selection step is a method for producing a candidate substance for an anticancer agent, which is carried out by the screening method according to claim 21 or 22.
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得工程と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習工程とを含む、腫瘍細胞の感受性の判定に用いる学習済モデルの製造方法。
The acquisition step of acquiring the second harmonic (SHG) acquired by using a coherent anti-Stoke Raman scattering (CARS) microscope for the tumor cells contacted with the test substance, and the acquisition process.
It includes a learning step of generating a learned model that outputs a determination result of the susceptibility of a tumor cell to a test substance from the SHG using a pair of the SHG and the susceptibility of the tumor cell to the test substance as teacher data. A method for producing a trained model used to determine the susceptibility of tumor cells.
前記SHGから、前記SHGの信号光の形状および位置の少なくとも一方を検出する信号光検出工程を含み、
前記学習工程において、前記SHGの信号光の形状および位置の少なくとも一方と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項24記載の製造方法。
A signal light detection step of detecting at least one of the shape and position of the signal light of the SHG from the SHG is included.
The manufacturing method according to claim 24, wherein in the learning step, the pair of at least one of the shape and position of the signal light of the SHG and the sensitivity of the tumor cell to the test substance is used as teacher data.
前記SHGから、前記SHGの信号光の分散値を算出する算出工程を含み、
前記学習工程において、前記SHGの信号光の分散値と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項24または25記載の製造方法。
A calculation step of calculating the dispersion value of the signal light of the SHG from the SHG is included.
The production method according to claim 24 or 25, wherein in the learning step, the pair of the dispersion value of the signal light of the SHG and the sensitivity of the tumor cell to the test substance is used as the teacher data.
前記SHGから、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在を検出する局在検出工程を含み、
前記学習工程において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項24から26のいずれか一項に記載の製造方法。
A localization detection step of detecting the localization of the signal light of the SHG in the Z-axis direction of the tumor cell from the SHG is included.
One of claims 24 to 26, wherein in the learning step, the pair of the localization of the signal light of SHG in the Z-axis direction of the tumor cell and the sensitivity of the tumor cell to the test substance is used as training data. The manufacturing method described in.
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得手段と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習手段とを含む、腫瘍細胞の感受性の判定に用いる学習済モデルの製造装置。
An acquisition means for acquiring a second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope for a tumor cell contacted with a test substance, and an acquisition means.
It includes a learning means for generating a learned model that outputs a determination result of the susceptibility of a tumor cell to a test substance from the SHG using a pair of the SHG and the susceptibility of the tumor cell to the test substance as teacher data. A trained model manufacturing device used to determine the susceptibility of tumor cells.
前記SHGから、前記SHGの信号光の形状および位置の少なくとも一方を検出する信号光検出手段を含み、
前記学習手段において、前記SHGの信号光の形状および位置の少なくとも一方と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項28記載の製造装置。
A signal light detecting means for detecting at least one of the shape and position of the signal light of the SHG from the SHG is included.
28. The manufacturing apparatus according to claim 28, wherein in the learning means, a pair of at least one of the shape and position of the signal light of the SHG and the susceptibility of the tumor cell to a test substance is used as teacher data.
前記SHGから、前記SHGの信号光の分散値を算出する算出手段を含み、
前記学習手段において、前記SHGの信号光の分散値と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項28または29記載の製造装置。
A calculation means for calculating the dispersion value of the signal light of the SHG from the SHG is included.
The manufacturing apparatus according to claim 28 or 29, wherein in the learning means, a set of a dispersion value of the signal light of the SHG and the sensitivity of the tumor cell to a test substance is used as teacher data.
前記SHGから、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在を検出する局在検出手段を含み、
前記学習手段において、前記腫瘍細胞のZ軸方向におけるSHGの信号光の局在と、前記腫瘍細胞の被検物質に対する感受性との組を教師データとする、請求項28から30のいずれか一項に記載の製造装置。
A localization detecting means for detecting the localization of the signal light of the SHG in the Z-axis direction of the tumor cell from the SHG is included.
One of claims 28 to 30, wherein in the learning means, the pair of the localization of the signal light of SHG in the Z-axis direction of the tumor cell and the sensitivity of the tumor cell to the test substance is used as teacher data. The manufacturing equipment described in.
被検物質と接触させた腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡における第二高調波(SHG)を取得する取得処理と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
Acquisition processing to acquire second harmonic generation (SHG) under a coherent anti-Stoke Raman scattering (CARS) microscope for tumor cells in contact with the test substance, and
Using the pair of the SHG and the susceptibility of the tumor cells to the test substance as teacher data, a learning process for generating a trained model that outputs the determination result of the susceptibility of the tumor to the test substance from the SHG is performed on a computer. A program that can be run on.
被検物質と接触させた腫瘍細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された第二高調波(SHG)を取得する取得処理と、
前記SHGと、前記腫瘍細胞の被検物質に対する感受性との組を教師データとして、前記SHGから腫瘍細胞の被検物質に対する感受性の判定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
Acquisition processing to acquire the second harmonic (SHG) acquired using a coherent anti-Stoke Raman scattering (CARS) microscope of tumor cells in contact with the test substance, and
Using the pair of the SHG and the susceptibility of the tumor cells to the test substance as training data, a computer performs a learning process to generate a trained model that outputs the determination result of the susceptibility of the tumor cells to the test substance from the SHG. A program that can be run on.
被検腫瘍細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて第二高調波(SHG)を取得する取得工程と、
前記SHGに基づき、前記被検腫瘍細胞から、前記被検物質の感受性試験に用いる候補腫瘍細胞を選択する選択工程とを含む、被検物質の感受性判定用細胞の選抜方法。
The acquisition process for acquiring the second harmonic (SHG) of the tumor cells to be examined using a coherent anti-Stoke Raman scattering (CARS) microscope.
A method for selecting cells for determining susceptibility to a test substance, which comprises a selection step of selecting candidate tumor cells to be used for a susceptibility test of the test substance from the test tumor cells based on the SHG.
前記選択工程において、前記SHGが検出された被検腫瘍細胞を前記候補腫瘍細胞として選択する、請求項34記載の選抜方法。 The selection method according to claim 34, wherein in the selection step, the test tumor cell in which the SHG is detected is selected as the candidate tumor cell.
JP2020571290A 2019-02-08 2020-02-07 A method for determining susceptibility to a test substance, a device for determining susceptibility to a test substance, a screening method for an anticancer drug, a method for manufacturing a candidate substance for an anticancer drug, a method for manufacturing a trained model, a device for manufacturing a trained model, and a selection method. Pending JPWO2020162595A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019021932 2019-02-08
JP2019021932 2019-02-08
PCT/JP2020/004819 WO2020162595A1 (en) 2019-02-08 2020-02-07 Method for determining sensitivity to test substance, device for determining sensitivity to test substance, anticancer agent screening method, anticancer agent candidate substance production method, learned model production method, learned model production device, and selection method

Publications (1)

Publication Number Publication Date
JPWO2020162595A1 true JPWO2020162595A1 (en) 2021-12-09

Family

ID=71948318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020571290A Pending JPWO2020162595A1 (en) 2019-02-08 2020-02-07 A method for determining susceptibility to a test substance, a device for determining susceptibility to a test substance, a screening method for an anticancer drug, a method for manufacturing a candidate substance for an anticancer drug, a method for manufacturing a trained model, a device for manufacturing a trained model, and a selection method.

Country Status (2)

Country Link
JP (1) JPWO2020162595A1 (en)
WO (1) WO2020162595A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582096B2 (en) * 2009-12-18 2013-11-12 The Regents Of The University Of California System and method for efficient coherence anti-stokes raman scattering endoscopic and intravascular imaging and multimodal imaging
WO2015168080A1 (en) * 2014-04-28 2015-11-05 The Research Foundation For The State University Of New York Photodynamic therapy using in situ nonlinear photon upconversion of nir light by biological medium
US10445880B2 (en) * 2017-03-29 2019-10-15 The Board Of Trustees Of The University Of Illinois Molecular imaging biomarkers

Also Published As

Publication number Publication date
WO2020162595A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
Htun et al. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques
Wachsmann-Hogiu et al. Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans
Cheng et al. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine
Galli et al. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues
Lavoie-Cardinal et al. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons
Bohndiek et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging
Rakhymzhan et al. Synergistic strategy for multicolor two-photon microscopy: application to the analysis of germinal center reactions in vivo
Ferrara et al. Label-free imaging and biochemical characterization of bovine sperm cells
Wang et al. In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin
Kumamoto et al. Rapid and accurate peripheral nerve imaging by multipoint Raman spectroscopy
Patel et al. Coherent anti-Stokes Raman scattering for label-free biomedical imaging
Zhang et al. Molecular fingerprint detection using Raman and infrared spectroscopy technologies for cancer detection: a progress review
Poulon et al. Real-time Brain Tumor imaging with endogenous fluorophores: a diagnosis proof-of-concept study on fresh human samples
Zhao et al. Bond-selective intensity diffraction tomography
Boppart et al. Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond
Valdez et al. Multiwavelength fluorescence otoscope for video-rate chemical imaging of middle ear pathology
Vanna et al. Vibrational imaging for label-free cancer diagnosis and classification
De Angelis et al. Combined Raman spectroscopy and digital holographic microscopy for sperm cell quality analysis
Marchetti et al. Custom multiphoton/raman microscopy setup for imaging and characterization of biological samples
Ecclestone et al. Three-dimensional virtual histology in unprocessed resected tissues with photoacoustic remote sensing (PARS) microscopy and optical coherence tomography (OCT)
Schie et al. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications
Vernuccio et al. Full-spectrum CARS microscopy of cells and tissues with ultrashort white-light continuum pulses
Francis et al. In vivo simultaneous nonlinear absorption Raman and fluorescence (SNARF) imaging of mouse brain cortical structures
WO2020162601A1 (en) Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device
Galler et al. Hepatic cirrhosis and recovery as reflected by Raman spectroscopy: information revealed by statistical analysis might lead to a prognostic biomarker

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604