WO2020162601A1 - Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device - Google Patents

Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device Download PDF

Info

Publication number
WO2020162601A1
WO2020162601A1 PCT/JP2020/004830 JP2020004830W WO2020162601A1 WO 2020162601 A1 WO2020162601 A1 WO 2020162601A1 JP 2020004830 W JP2020004830 W JP 2020004830W WO 2020162601 A1 WO2020162601 A1 WO 2020162601A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
cell
estimation
test
cells
Prior art date
Application number
PCT/JP2020/004830
Other languages
French (fr)
Japanese (ja)
Inventor
英明 加納
洋平 林
松本 潤一
翔一 本田
Original Assignee
国立大学法人 筑波大学
国立研究開発法人理化学研究所
株式会社片岡製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 筑波大学, 国立研究開発法人理化学研究所, 株式会社片岡製作所 filed Critical 国立大学法人 筑波大学
Publication of WO2020162601A1 publication Critical patent/WO2020162601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a cell type estimating method, a cell type estimating apparatus, a cell manufacturing method, a cell manufacturing apparatus, an observing method, an observing apparatus, a learned model manufacturing method, and a learned model manufacturing apparatus.
  • Non-patent documents 1 and 2, Patent document 1 It has been attempted to evaluate the differentiation potential of pluripotent cells such as iPS cells based on the outer shape of cells. However, there is a problem that it is difficult to evaluate the cell type only by the outer shape of the cell.
  • an object of the present invention is to provide a method for estimating a cell type that allows the cell type to be estimated in a living state of the target cell.
  • a method of estimating a cell type of the present invention is a signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for a test cell.
  • CARS coherent anti-Stokes Raman scattering
  • a cell type estimation device of the present invention (hereinafter, also referred to as “estimation device”) is an acquisition unit that acquires signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for a test cell, And an estimation unit that estimates the cell type of the test cell based on the signal light.
  • CARS coherent anti-Stokes Raman scattering
  • the method for producing cells of the present invention comprises an observation step of observing test cells, An estimation step of estimating the cell type of the test cell, And a selection step of selecting test cells of a predetermined cell type,
  • the observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
  • the estimation step is performed by the method of estimating the cell type of the present invention.
  • CARS coherent anti-Stokes Raman scattering
  • the cell manufacturing apparatus of the present invention includes an observation unit capable of observing a test cell, An estimation unit for estimating the cell type of the test cell, Including a selection unit for selecting test cells of a predetermined cell type,
  • the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
  • the estimation unit includes the cell type estimation device of the present invention.
  • the observation method using coherent anti-Stokes Raman scattering (CARS) of the present invention includes an observation step of observing a test cell, An estimation step of estimating the cell type of the test cell, Including a re-observation step of observing the test cells of a predetermined cell type again, The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, The estimation step is performed by the method of estimating the cell type of the present invention.
  • CARS coherent anti-Stokes Raman scattering
  • An observation apparatus using coherent anti-Stokes Raman scattering (CARS) of the present invention is an observation unit capable of observing a test cell, An estimation unit for estimating the cell type of the test cell, A control unit capable of controlling the observation unit, The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope, The estimation unit includes a cell type estimation device of the present invention, The control unit causes the observation unit to re-observe the cells estimated to be a predetermined cell type among the test cells.
  • CARS coherent anti-Stokes Raman scattering
  • the method of manufacturing a trained model used for estimating the cell type of the present invention acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell. Acquisition process to A learning step of generating a learned model that outputs the estimation result of the cell type of the test cell from the signal light using the pair of the signal light and the cell type of the test cell as teacher data.
  • CARS coherent anti-Stokes Raman scattering
  • a trained model manufacturing device (hereinafter, also referred to as a “learning device”) used for estimating a cell type of the present invention acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell. Acquisition means to And a learning unit that generates a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teacher data.
  • CARS coherent anti-Stokes Raman scattering
  • the present invention it is possible to estimate the cell type while the target cell is alive.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the estimation device according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the estimation device according to the first embodiment.
  • FIG. 3 is a flowchart showing an example of the estimation method of the first embodiment.
  • FIG. 4 is a block diagram showing an example of the configuration of the manufacturing apparatus according to the second embodiment.
  • FIG. 5 is a flowchart showing an example of the manufacturing method of the second embodiment.
  • FIG. 6 is a block diagram showing an example of the configuration of the observation device of the third embodiment.
  • FIG. 7 is a flowchart showing an example of the observation method of the third embodiment.
  • FIG. 8 is a block diagram showing an example of the configuration of the learning device according to the fourth exemplary embodiment.
  • FIG. 8 is a block diagram showing an example of the configuration of the learning device according to the fourth exemplary embodiment.
  • FIG. 10 is a schematic diagram showing the configuration of the optical system of the CARS microscope used in Example 1.
  • FIG. 11 is a photograph showing a CH 2 stretch image and an SHG image in Example 1.
  • the “cell” means, for example, an isolated cell, a cell mass (spheroid) composed of cells, a tissue, or an organ.
  • the cells may be, for example, cultured cells or cells isolated from a living body.
  • the cell mass, tissue or organ may be, for example, a cell mass, cell sheet, tissue or organ prepared from the cells, or may be a cell mass, tissue or organ isolated from a living body.
  • selection of cells may be used to mean any of recovery of desired cells, maintenance of desired cells, and removal of cells other than desired cells.
  • the method of estimating the cell type of the present invention as described above, for the test cell, an acquisition step of acquiring a signal light acquired using a coherent anti-Stokes Raman scattering (CARS) microscope, and based on the signal light, An estimation step of estimating the cell type of the test cell.
  • the cell type estimating device of the present invention is, based on the signal light, an acquisition unit that acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell, and Estimating means for estimating the cell type of the cell.
  • the estimation method of the present invention is characterized by estimating the cell type of the test cell based on the signal light acquired by the CARS microscope, and other configurations and conditions are not particularly limited.
  • the present inventors have found that the signal light obtained by using a CARS microscope, specifically, the shape of the signal light, the signal intensity, and the like are related to the cell type. Came to be established. Therefore, according to the present invention, the cell type of the test cell can be estimated based on the signal light obtained by using the CARS microscope for the test cell. Moreover, the signal light from the CARS microscope can be obtained in a state where cells are alive. Therefore, according to the present invention, the cell type can be estimated in a state where the target cell, that is, the test cell is alive.
  • the cell type is estimated based on the signal light obtained by using the CARS microscope, for example, labeling with a binding molecule such as an antibody specific to the cell surface marker molecule is unnecessary. Furthermore, according to the present invention, since it is possible to estimate the cell type, it is possible to estimate the differentiation stage or differentiation state of the cell, for example. Therefore, according to the present invention, for example, when a differentiated cell is induced from a pluripotent cell, progenitor cell, or other cell having differentiation potential, the differentiation stage or differentiation state of the obtained cell is estimated. be able to. Therefore, the estimation method of the present invention can also be referred to as, for example, a method of estimating the differentiation stage or differentiation state of cells. In the following, unless otherwise specified, the “differentiation state” has the same meaning as the “cell type” or the “differentiation stage”, and the explanations can be applied to each other by replacing them.
  • FIG. 1 shows a block diagram of the estimation device in this embodiment.
  • the estimation device 10 of this embodiment includes an acquisition unit 111 and an estimation unit 112.
  • the acquisition unit 111 and the estimation unit 112 may be incorporated in the data processing unit (data processing device) 11 that is hardware, or may be software or hardware in which the software is incorporated.
  • the data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, a ROM, a RAM, etc. described later.
  • FIG. 2 illustrates a block diagram of a hardware configuration of the estimation device 10.
  • the estimation device 10 includes, for example, a CPU (central processing unit) 201, a memory 202, a bus 203, a storage device 204, an input device 206, a display 207, a communication device 208, and the like.
  • the respective units of the estimation device 10 are connected via a bus 203 by respective interfaces (I/F).
  • the hardware configuration of the estimation apparatus 10 can be adopted as, for example, an estimation unit in an observation apparatus, an estimation unit in a manufacturing apparatus, and a hardware configuration of a learned model manufacturing apparatus described later.
  • the CPU 201 cooperates with other configurations by, for example, a controller (system controller, I/O controller, etc.) and controls the entire estimation apparatus 10.
  • the CPU 201 executes, for example, the program 205 of the present invention or other programs, and also reads or writes various information.
  • the CPU 201 functions as the acquisition unit 111 and the estimation unit 112.
  • the estimation device 10 includes a CPU as an arithmetic device, but may include other arithmetic devices such as a GPU (Graphics Processing Unit) and an APU (Accelerated Processing Unit), or may include a CPU and a combination thereof. Good.
  • the CPU 201 functions as, for example, each unit other than the storage unit, the estimation unit, or the control unit in Embodiments 2 to 4 described later.
  • the memory 202 includes, for example, a main memory.
  • the main memory is also called a main storage device.
  • the memory 202 reads various operation programs such as the program 205 of the present invention stored in the storage device 204 (auxiliary storage device) described later, for example. Then, the CPU 201 reads the data from the memory 202, decodes the data, and executes the program.
  • the main memory is, for example, a RAM (random access memory).
  • the memory 202 further includes, for example, a ROM (read-only memory).
  • the bus 203 can be connected to an external device, for example.
  • the external device include an external storage device (external database and the like), a printer, and the like.
  • the estimating apparatus 10 can be connected to a communication line network by the communication device 208 connected to the bus 203, for example, and can also be connected to the external device via the communication line network.
  • the estimating apparatus 10 can also be connected to a terminal or the like via the communication device 208 and the communication network.
  • the storage device 204 is also called a so-called auxiliary storage device with respect to the main memory (main storage device), for example. As described above, the storage device 204 stores an operation program including the program 205 of the present invention.
  • the storage device 204 includes, for example, a storage medium and a drive that reads and writes the storage medium.
  • the storage medium is not particularly limited, and may be, for example, an internal type or an external type, HD (hard disk), FD (floppy (registered trademark) disk), CD-ROM, CD-R, CD-RW, MO, Examples thereof include DVD, flash memory, and memory card, and the drive is not particularly limited.
  • the storage device 204 may be, for example, a hard disk drive (HDD) in which the storage medium and the drive are integrated.
  • HDD hard disk drive
  • the estimation device 10 further includes, for example, an input device 206 and a display 207.
  • the input device 206 is, for example, a pointing device such as a touch panel, a track pad, or a mouse; a keyboard; an imaging means such as a camera or a scanner; a card reader such as an IC card reader or a magnetic card reader; a voice input means such as a microphone;
  • the display 207 include a display device such as an LED display and a liquid crystal display.
  • the input device 206 and the display 207 are separately configured, but the input device 206 and the display 207 may be integrally configured like a touch panel display.
  • test cell Prior to the processing of the estimation device 10, first, a test cell is observed using a CARS microscope to acquire a signal light.
  • the test cell may be any cell, for example, a cell whose cell type is known or a cell whose cell type is unknown.
  • the test cells include, for example, cells before differentiation induction, cells during differentiation induction, cells after differentiation induction, and the like.
  • the test cell is not particularly limited, and can be any cell such as a cell separated from a living body or a cultured cell.
  • specific examples of the test cells include pluripotent cells such as iPS cells and ES cells, three germ layer cells derived from the pluripotent cells, and differentiated cells of each tissue derived from the three germ layer cells. can give.
  • Examples of the differentiated cells include epithelial cells; neural cells such as neurons, glial cells and astrocytes; liver cells; adipocytes; stromal cells; hematopoietic cells such as T cells and B cells; skeletal muscle cells, myocardium Muscle cells such as cells; and the like.
  • Examples of the three germ layer cells include ectoderm cells, mesoderm cells, and endoderm cells. According to the present invention, for example, which of the pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells can be suitably estimated. As the markers for the pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells, for example, the following markers can be used.
  • iPS cells OCT4 (POU5F1), NANOG, DPPA4, DNMT3B, L1TD1, E-cadherin, Podocalyxin, TERT Ectoderm cells: PAX6, SOX1, OTX2, MAP2, Musashi1, N-cadherin, Nestin, NCAM, GFAP Mesodermal cells: T (Brachyury), Pitx2, MSX1, MESP1, GATA4, TBX6, NKX2.5, Vimentin, Desmin, Smooth Muscle Actin Endoderm cells: SOX17, MIXL1, FOXA2, PDX1, AFP, CXCR4
  • the CARS microscope is a microscope that uses coherent anti-Stokes Raman scattering, and the configuration thereof is not particularly limited, and for example, the configurations of Examples described later can be referred to.
  • the CARS microscope includes a light irradiating means for CARS spectroscopy, and the light irradiating means irradiates the test cell with the mixed light of the ultra-wide band light and the excitation light. Then, in the CARS microscope, CARS light (signal light) is dispersed from the emitted light emitted from the test cell by a diffraction grating or the like. Then, information such as the signal intensity of the CARS light and the spatial position is acquired.
  • the signal light may include a second harmonic (SHG), a third harmonic (THG), and two-photon excitation fluorescence.
  • the wavelength of the ultra wideband light is, for example, 400 to 2400 nm.
  • the wavelengths of the excitation light are, for example, 750 to 1100 nm and 750 to 1064 nm.
  • the acquisition unit 111 of the estimation device 10 acquires the signal light, more specifically, the information of the signal light acquired by the CARS microscope (S1, acquisition step).
  • the signal light acquired in the acquisition step includes signal light used in the estimation step described below, and as a specific example, includes at least one of CH 2 expansion and contraction signal light and second harmonic (SHG) signal light. Is preferred.
  • the signal light to be acquired can be appropriately set according to the molecule to be detected with reference to, for example, Tables 1A and 1B below.
  • the Raman shift values shown in Tables 1A and 1B below are typical values, and the molecule to be detected can also be detected in the regions before and after the CARS microscope.
  • Examples of the CH 2 stretching signal light include CH 2 symmetrical stretching vibration signal light, CH 2 scissors bending vibration signal light, and the like.
  • the wave number of the CH 2 expansion/contraction signal light is, for example, 2835 to 2865 Raman shift/cm ⁇ 1 .
  • the wave number of the signal light of the CH 2 symmetric stretching vibration is, for example, 2835 to 2865 Raman shift/cm ⁇ 1 .
  • the wave number of the signal light of the CH 2 scissors bending vibration is, for example, 1423 to 1453 Raman shift/cm ⁇ 1 .
  • the wave number of the signal light of the SHG is ⁇ /2, where ⁇ is the wavelength of the incident laser.
  • the estimation means 112 estimates the cell type of the test cell based on the signal light (S2, estimation step).
  • each wave number (Raman shift/cm ⁇ 1 ) is different in the substance in the test cell from which the signal is derived.
  • the cell types are different, it is presumed that the cells having different cell types have different functions and metabolisms, so that the types of substances contained in the cells, the content rates of the substances, the localization of the substances and the like are also different. Therefore, in the present invention, the fact that the difference in the cell type of the cells occurs as the difference in the signal light is used to estimate the cell type of the test cell based on the signal light.
  • the cell type of one or more test cells is estimated in the step S2, but it is preferable to estimate the cell types of all the test cells.
  • the test cell will be described with reference to an example of estimating whether the pluripotent cell, the ectodermal cell, the mesodermal cell, or the endodermal cell, the present invention
  • the present invention is not limited to this, and can be used for estimating cells of other cell types.
  • the pluripotent cells and the ectodermal cells have abundant lipid droplets compared with, for example, the mesodermal cells and the endodermal cells.
  • the fat droplets are mainly composed of triacylglycerol.
  • the fatty acid in triacylglycerol can be specified based on the CH 2 stretching signal light. Therefore, the pluripotent cell and the ectodermal cell and the mesodermal cell and the endodermal cell are, for example, a signal light of CH 2 stretching in fatty acid, and more preferably CH 2 symmetric stretching vibration. It can be estimated by the signal light or the signal light of CH 2 scissors bending vibration.
  • the pluripotent cells and the ectodermal cells and the mesodermal cells and the endodermal cells are, for example, CH 2 stretch signal light, more specifically, ,
  • a reference value is set between the two based on the signal intensity of the CH 2 expansion/contraction signal light, and the former can be estimated if the reference value is greater than or equal to the latter, and the latter can be estimated if the value is less than the reference value.
  • the reference value can be set based on the signal intensity of the pluripotent cells, the ectodermal cells, the mesoderm cells, and the endoderm cells obtained by a CARS microscope in advance, for example.
  • the signal intensity is preferably a corrected signal intensity corrected by the signal intensity of the reference sample (hereinafter the same).
  • the reference sample include plastic beads such as polystyrene beads.
  • the signal intensity is, for example, an average value of signal intensity in the acquired visual field.
  • the shape of the CH 2 stretching image reconstructed from the signal light of the CH 2 stretching pluripotent cells, ectodermal cells, mesodermal cells , And endoderm cells may be inferred.
  • a CH 2 stretch image lipid droplet
  • a region (cell nucleus) lacking a large signal is present in the CH 2 stretch image (lipid droplet)
  • the test cell is, for example, a pluripotent cell.
  • the CH 2 stretch image (fat droplets) is present in a wide range of the cytoplasm and the CH 2 stretch image (fat droplets) has a region (cell nucleus) lacking a moderate signal
  • the test cells can be presumed to be ectodermal cells, for example.
  • the test cells are, for example, mesodermal cells.
  • a granular CH 2 stretch image (lipid droplet) with strong signal intensity is present, it can be estimated that the test cell is, for example, an endoderm cell in step S2.
  • the shape can be detected using, for example, a shape detection method such as template matching.
  • the ectodermal cells and the mesodermal cells have relatively strong signal intensity of SHG signal light as compared with the pluripotent cells and the endodermal cells.
  • the ectodermal cells In the SHG image reconstructed from the SHG signal light of the ectodermal cells, the ectodermal cells generate, for example, a granular SHG signal (signal light or signal region, hereinafter the same).
  • the pluripotent cells In the SHG image reconstructed from the SHG signal light of the pluripotent cells, the pluripotent cells generate, for example, filamentous SHG signals.
  • the mesodermal cells In the other hand, in the SHG image reconstructed from the signal light of SHG of the mesodermal cells, the mesodermal cells generate, for example, reticulated SHG signals.
  • the endoderm cells do not generate the signal of SHG, for example. Therefore, the ectodermal cells and the mesoderm cells, and the pluripotent cells and the endodermal cells are, for example, based on the shape and/or the signal intensity of the signal light of SHG. You can presume to belong. Specifically, when the signal intensity of SHG signal light is used for estimation, in the step S2, the ectodermal cells and the mesodermal cells, and the pluripotent cells and the endodermal cells are, for example, A reference value is provided between the two, and it can be estimated that the value is equal to or more than the reference value and the value is less than the reference value.
  • the shape of the SHG signal light is used for estimation, if the SHG signal light exists and the shape of the SHG (the signal) in the SHG image reconstructed from the SHG signal light is a filament shape, S2 In the process, it can be presumed to be pluripotent cells.
  • the signal light of SHG exists and the shape of (signal of) SHG is granular, it can be estimated that the cells are ectodermal cells in the step S2.
  • the signal light of SHG is present and the shape of (signal of) SHG is reticulated, it can be estimated that it is a mesodermal cell in the step S2.
  • the signal light of SHG does not exist, it can be estimated that the cells are endoderm cells in step S2.
  • the test cell can be estimated to be, for example, a pluripotent cell.
  • a granular SHG image signal of SHG
  • the test cell can be estimated to be, for example, an ectodermal cell.
  • test cell when a mesh-shaped (reticular) SHG image (signal of SHG) is present, it can be estimated in the step S2 that the test cell is, for example, a mesodermal cell. Then, when the SHG image (SHG signal) does not exist, it can be estimated that the test cell is, for example, an endoderm cell in the step S2.
  • the estimation means 112 may combine a plurality of conditions to estimate the cell type. Specifically, in the step S2, it is determined whether or not the signal intensity of the CH 2 expansion/contraction signal light in the signal light is equal to or higher than a reference value. When the signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than the reference value, in the step S2, it is determined whether the signal intensity of the second harmonic (SHG) signal light in the signal light is equal to or higher than the reference value. judge. Then, when the signal intensity of the SHG signal light in the signal light is equal to or higher than a reference value, it is estimated that the test cell is an ectodermal cell in step S2.
  • SHG second harmonic
  • the test cell when the signal intensity of the signal light of SHG in the signal light is less than the reference value, it is estimated in the step S2 that the test cell is a pluripotent cell.
  • the cell tumor may be estimated based on the shape of the SHG signal in the SHG image reconstructed from the signal light instead of or in addition to the signal intensity of the SHG signal light in the signal light. Specifically, in step S2, it may be determined whether the shape of the SHG signal in the SHG image is granular or filamentous. Then, when the shape of the SHG signal in the SHG image is granular or not filamentous, it is presumed that the test cells are ectodermal cells in step S2. On the other hand, when the shape of the SHG signal in the SHG image is not granular or is filamentous, it is presumed that the test cells are pluripotent cells in step S2.
  • step S2 when the signal intensity of the CH 2 expansion and contraction signal light in the signal light is less than the reference value, it is determined in step S2 whether the signal intensity of the SHG signal light in the signal light is equal to or more than the reference value. To do. Then, when the signal intensity of the signal light of SHG in the signal light is equal to or higher than the reference value, it is estimated in the step S2 that the test cell is a mesodermal cell. On the other hand, when the signal intensity of the signal light of SHG in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell in step S2.
  • a cell tumor may be estimated based on the shape of the SHG signal in the SHG image instead of or in addition to the signal intensity of the SHG signal light in the signal light. Specifically, in the step S2, it may be determined whether or not the shape of the SHG signal in the signal light is reticulated or the shape exists. Then, when the shape of the SHG signal in the SHG image is reticular or when there is a shape, the test cell is estimated to be a mesodermal cell in step S2. On the other hand, when the shape of the SHG signal in the SHG image is not reticulated or does not exist, it is presumed that the test cells are endoderm cells in step S2.
  • the condition is the pluripotent cell, the ectodermal cell, the mesodermal cell, or the endodermal cell, in the S2 step, for example, Based on the signal light and the following conditions (1) to (4), it can be determined whether the signal light satisfies the following conditions (1) to (4), and the cell type of the test cell can be estimated.
  • the test cell is a pluripotent cell.
  • the signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light
  • the signal intensity of the second harmonic has a granular shape, it is estimated that the test cell is an ectodermal cell.
  • the signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light
  • the shape of the second harmonic signal light is reticulated, it is estimated that the test cell is a mesodermal cell.
  • the test cell Are presumed to be endodermal cells.
  • the pluripotent cells and the ectodermal cells have relatively large cell nuclei, for example, as compared with the mesodermal cells and the endodermal cells. Therefore, in the step S2, the size of the cell nucleus may be used instead of the CH 2 expansion and contraction in the signal light under the conditions (1) to (4).
  • the size of the cell nucleus is represented, for example, as the size of a region having a weak signal intensity in a CH 2 stretch image reconstructed from CH 2 stretch signal light.
  • the estimation unit 112 uses, for example, a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light, and uses the learned cell type of the test cell. May be estimated.
  • the learned model can be manufactured by, for example, a learned model manufacturing method and a learned model manufacturing apparatus described later.
  • the estimation unit 112 detects the signal intensity and the shape of the signal light of the second harmonic, but for example, the detection unit that detects the signal intensity of each signal light or the signal image from each signal light. May be reconstructed and detected by a detecting means for detecting the shape.
  • the present invention is not limited thereto as described above. Instead, it can be used to estimate other cells.
  • the test cell can be estimated to be, for example, a nerve cell.
  • the test cell can be estimated to be, for example, a photoreceptor cell.
  • Embodiment 1 the case where CH 2 expansion and contraction and SHG are used as the signal light has been described as an example, but other signal light may be used.
  • PO 4 3 ⁇ can be detected by using 961 Raman shift/cm ⁇ 1 as the signal light.
  • the method for producing cells of the present invention comprises an observation step of observing a test cell, an estimation step of estimating a cell type of the test cell, and a test cell of the predetermined cell type. Including a selection step, the observation step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, and the estimation step is performed by the cell type estimation method of the present invention.
  • the cell manufacturing apparatus of the present invention is an observation unit capable of observing a test cell, an estimation unit for estimating a cell type of the test cell, and a selection unit for selecting a test cell of the predetermined cell type.
  • the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope
  • the estimation unit includes the cell type estimation device of the present invention.
  • the production method and production apparatus of the present invention are characterized in that the estimation of the cell type of the test cell is performed by the estimation method or estimation apparatus of the present invention, and other configurations and conditions are not particularly limited.
  • a cell type can be estimated in a living state of a target cell, and thus a cell of a predetermined cell type can be produced in a living state.
  • the description of the estimation method and the estimation apparatus of the present invention can be applied to the production method and the production apparatus of the present invention.
  • FIG. 4 shows a block diagram of the manufacturing apparatus in this embodiment.
  • the manufacturing apparatus 20 of the present embodiment includes the estimation device 10 of the first embodiment as an estimation unit, and further includes an observation unit 113 and a selection unit 114.
  • the observation unit 113 can observe the test cells.
  • the observation unit 113 is, for example, an optical microscope such as a bright field microscope, a stereomicroscope, a phase contrast microscope, a differential interference microscope, a polarization microscope, a fluorescence microscope, a confocal laser microscope, a total reflection illumination fluorescence microscope, a Raman microscope, and a CARS microscope.
  • the observation unit 113 preferably includes a CARS microscope.
  • the observation unit 113 may include another optical microscope.
  • the selection unit 114 selects test cells of a predetermined cell type.
  • the selection unit 114 may be, for example, capable of collecting or maintaining a test cell of a predetermined cell type, and specific examples thereof include a laser irradiation unit capable of irradiating the test cell with a laser, a recovery unit capable of recovering a specific cell, and the like. can give.
  • the laser irradiation unit may, for example, irradiate the test cells of the predetermined cell type with a laser and collect them by peeling, or irradiate the cells other than the predetermined cell type with a laser. Alternatively, it may be peeled off or killed.
  • the recovery unit may be, for example, a combination of a scalar robot and a scraper. Except for these points, the manufacturing apparatus 20 of the second embodiment has the same configuration as the estimation apparatus 10 of the first embodiment, and the description thereof can be incorporated.
  • the test cell is observed by the observation unit 113 (S3, observation step).
  • the signal light acquired by the CARS microscope necessary for estimating the cell type of the test cell is acquired.
  • the step S3 can be carried out in the same manner as the acquisition of the signal light by the CARS microscope in the first embodiment.
  • the estimation device 10 that is an estimation unit estimates the cell type of the test cell (estimation step).
  • the selection unit 114 selects test cells of a predetermined cell type (S4, selection step).
  • the predetermined cell type is not particularly limited and can be any cell type.
  • the selection by the selection unit 114 may be performed, for example, by collecting test cells of a predetermined cell type or by removing test cells other than the predetermined cell type.
  • the predetermined cell type is, for example, a specific differentiated cell. Therefore, in the step S4, the selection unit 114 collects the specific differentiated cells and removes cells before the specific cell type, so that the specific differentiated cells can be selected.
  • the observation method using the coherent anti-Stokes Raman scattering (CARS) of the present invention includes, as described above, an observation step of observing a test cell, an estimation step of estimating the cell type of the test cell, and a predetermined cell. Re-observing the test cells of the species again, the observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, and the estimating step is the method of estimating the cell type of the present invention. It is carried out by.
  • An observation apparatus using coherent anti-Stokes Raman scattering (CARS) of the present invention is capable of observing a test cell, an estimation unit for estimating a cell type of the test cell, and the control of the observation unit.
  • the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope
  • the estimation unit includes the cell type estimation device of the present invention
  • the control unit includes one of the test cells.
  • the cells presumed to be a predetermined cell type are re-observed by the observation unit.
  • the observation method and the observation device of the present invention are characterized in that the estimation of the cell type of the test cell is performed by the estimation method or the estimation device of the present invention, and other configurations and conditions are not particularly limited. According to the present invention, since the cell type can be estimated in a living state of the target cell, it is possible to further observe a cell of a predetermined cell type in a living state.
  • the description of the estimation method, the estimation apparatus, the manufacturing method, and the manufacturing apparatus of the present invention can be applied.
  • FIG. 6 shows a block diagram of the observation device in this embodiment.
  • the observation device 30 of this embodiment includes an observation unit 113 and an estimation unit 31.
  • the estimation unit 31 includes an acquisition unit 111, an estimation unit 112, and a control unit 115.
  • the control unit 115 can control the observation unit 113, and the observation unit 113 re-observes the cells estimated to be a predetermined cell type among the test cells.
  • the observation device of the third embodiment has the same configuration as the estimation device 10 of the first embodiment or the manufacturing device 20 of the second embodiment, and the description thereof can be incorporated.
  • the test cell is observed by the observation unit 113 (S3, observation step).
  • the cell type of the test cell is estimated based on the obtained signal light in the same manner as the steps S1 and S2 in the estimation method of the first embodiment (estimation step).
  • control unit 115 controls the observation unit 113, and the observation unit 113 again observes the test cells of a predetermined cell type (S5, re-observation step).
  • the manufacturing method of the learned model used for estimating the cell type of the present invention includes an acquisition step of acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell, A learning step of generating a learned model that outputs the estimation result of the cell type of the test cell from the signal light using the pair of the signal light and the cell type of the test cell as teacher data.
  • the trained model manufacturing apparatus used for estimating the cell type of the present invention includes an acquisition unit for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell, and the signal light.
  • CARS coherent anti-Stokes Raman scattering
  • the learning method and the learning device of the present invention use a pair of a signal light obtained by using a CARS microscope for a test cell and a cell type of the test cell as teaching data, and from the signal light, a cell type of the test cell.
  • the feature is that a trained model that outputs the estimation result of is generated, and other configurations and conditions are not particularly limited.
  • the learning model manufacturing method and the manufacturing apparatus of the present invention it is possible to manufacture a learned model capable of estimating the cell type in a state where the target cell is alive.
  • the description of the estimation method, the estimation device, the manufacturing method, the manufacturing device, the observation method and the observation device of the present invention can be applied.
  • FIG. 8 shows a block diagram of the learning device in this embodiment.
  • the learning device 40 of this embodiment includes an acquisition unit 111 and a learning unit 116.
  • the acquisition unit 111 and the learning unit 116 may be incorporated in the data processing unit (data processing device) 11 that is hardware, or may be software or hardware in which the software is incorporated.
  • the data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, the above-mentioned ROM, RAM and the like.
  • the acquisition unit 111 is the same as the acquisition unit 111 in the estimation device 10 of the first embodiment, and the description thereof can be applied.
  • the acquisition unit 111 acquires the signal light acquired using the CARS microscope.
  • the number of the test cells is not particularly limited and can be any number.
  • the cell type of each test cell may be the same or different. In the latter case, it is preferable that some test cells have overlapping cell types.
  • the test cells are cell types. It is preferable to use the confirmed pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells.
  • each cell is preferably plural.
  • the learning unit 116 generates a learned model that outputs the estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teaching data.
  • S6 learning process For each test cell, the signal light obtained in step S1 is associated with the cell type of the test cell.
  • the associated signal light may be the entire spectrum of the signal light obtained in step S1 or a specific signal light.
  • the specific signal light includes, for example, CH 2 expansion/contraction signal light and SHG signal light.
  • the learning method according to the present embodiment detects the specific signal light in the obtained signal by the detecting unit after step S1, for example. Further, for example, the detection unit may detect the signal intensity of the specific signal light, or may detect the shape of the signal light in the signal image obtained by reconstructing the specific signal light.
  • the machine learning method used to generate the learned model is not particularly limited, and for example, the learning technique used for classification can be used.
  • examples of the machine learning method include a support vector machine, an extreme learning machine, and a feature learning.
  • the machine learning uses supervised learning, but semi-supervised learning may be used.
  • the number of the teacher data is plural, and the upper limit is not particularly limited.
  • a program of the present invention is a program capable of executing the estimation method, manufacturing method, observation method or learning method of the present invention on a computer.
  • the program of this embodiment may be recorded in a computer-readable recording medium, for example.
  • the recording medium is, for example, a non-transitory computer-readable storage medium.
  • the recording medium is not particularly limited, and examples thereof include a random access memory (RAM), a read-only memory (ROM), a hard disk (HD), an optical disk, and a floppy (registered trademark) disk (FD).
  • Example 1 It was confirmed that the signal light obtained by the CARS microscope has a relationship with the cell type of the cell.
  • Example 1 The CARS microscope used in Example 1 was a multiplex CARS microscope. A schematic diagram of the configuration of the optical system of the CARS microscope used in Example 1 is shown in FIG.
  • a cw Q switch microchip Nd:YAG laser (A) having an oscillation wavelength of 1064 nm, a pulse width of 800 ps and a repetition frequency of 33 kHz was used as the light source.
  • the pulse width is sub-nanosecond and has a line width of about 1 cm -1 or less.
  • Divide the output into two, a pulse laser having a center wavelength of 1064nm is fundamental as one is omega 1 light and the other is introduced into PCF, it was generated supercontinuum light as omega 2 light.
  • B plano-convex lens
  • f 400.0 mm
  • AC254-400-C f 400.0 mm, ⁇ 1" Achromatic Doublet, ARC: 1050-1700 nm; Thorlabs.
  • the ⁇ 2 light is collimated and the ⁇ 2 light is a super-continuum light having a broadband wavelength component emitted from the PCF. ) (C) was introduced and collimated and propagated.
  • VND Filter Variable Neutral Density Filter
  • S333-1064-2 1064 nm half-wave plate
  • E Suruga Seiki Co., Ltd.
  • the ⁇ 1 light contains a weak component on the short wavelength side in addition to the central wavelength of 1064 nm, and in order to efficiently cut the extra spectral components contained in the ⁇ 1 light other than the CARS light to be detected.
  • a 1064 nm narrow band pass filter (1064.1-1 OD7 Ultra Narrow Bandpass; Alluxa) (F) was used.
  • the bandpass filter used was an ultra-narrow bandpass filter that transmits only a spectral component having a center wavelength of 1064.1 nm and a half-value width of 1 nm.
  • ⁇ 2 light has a broad band that slowly extends from the visible region to the near infrared region by PCF.
  • the wavelength range of ⁇ 2 light required for measuring CARS light is about 1064 to 1650 nm with respect to the central wavelength of 1064 nm of ⁇ 1 light.
  • two filters 1050 nm cuts components of visible light immediately after collimation of the omega 2 light long Pass Filter (G), infrared transmission filter (IR80N; Kenko manufactured optical Ltd.) (H) near red omega 2 light by Only the spectral components that spread to the outer region were sufficiently transmitted. Then, after combining the ⁇ 1 light and the ⁇ 2 light, the two lights were propagated to the microscope.
  • an upside down microscope (eclipse Ti-U, manufactured by Nikon Co., Ltd.) that is custom-made is used.
  • Nonlinear optics such as CARS and SHG by ⁇ 1 light and ⁇ 2 light incident on the objective lens (Water immersion, Plan, ⁇ 60, 1.27NA; Nikon) (J) from the inverted side of the microscope and focused on the sample. The phenomenon occurs. Since they are focused by the objective lens, these nonlinear optical phenomena efficiently occur in the forward direction due to the phase matching condition.
  • the signal light generated at the focal point was condensed and collimated by an objective lens (Dry, S Plan Fluor, ⁇ 40, 0.60NA; manufactured by Nikon) on the upright side of the microscope (K).
  • the average power measured with a power meter at the position where the light was focused on the sample surface by the inverted objective lens was ⁇ 1 light of maximum 55 mW and ⁇ 2 light of maximum 20 mW, respectively.
  • the sample signal intensity was adjusted by using the above-mentioned VND filter for the ⁇ 1 light with high power.
  • the microscope is equipped with a halogen lamp, and an optical image of the sample can be taken with a CCD camera.
  • ⁇ 1 light and ⁇ 2 light exist coaxially with the light of the halogen lamp, so the dichroic beam splitter (FF825-SDi01-25 ⁇ 36 ⁇ 2.0 single edge short path Dichroic beam splitter; opt (Manufactured by Line Co., Ltd.) (L) and a dichroic mirror (TFMS-30C05-3/20 ultra-wide band induction multilayer flat mirror; manufactured by Sigma Optical Co., Ltd.) (M) immediately after the erecting side objective lens were used.
  • the stage installed in the microscope used a step motor type MicroStage (Micro-Stage(2 axis); MadCityLabs)(N) controlled by a biaxial micro-positioning device. Furthermore, a piezo stage (Nano-LPQ; made by Mad City Labs) (O) with an operating range of 75 ⁇ m ⁇ 75 ⁇ m ⁇ 50 ⁇ m (O) is installed on the MicroStage, and in addition to a wide in-plane stroke in millimeters In-plane stage control of the stroke and scanning in the optical axis Z direction, that is, in the depth direction with respect to the sample are enabled. MicroStage can control a minimum step size of 95nm and a maximum speed of 2mm/sec with an extremely high precision drive.
  • the optical system on the detector side was as follows.
  • the signal light collected by the erecting objective lens of the microscope is reflected by the dichroic mirror immediately after, and then the dichroic beam splitter (FF685-Di02-25 ⁇ 36 685 nm single-edge Dichroic beam splitter; manufactured by Semrock) (P ) Transmitted near-infrared CARS light and reflected visible light.
  • the dichroic beam splitter FF685-Di02-25 ⁇ 36 685 nm single-edge Dichroic beam splitter; manufactured by Semrock
  • R plano-convex lens
  • S plano-convex lens
  • Control was performed by software (Ementool; Zolix) on a PC connected to the spectroscope.
  • the grating Groove is set to 300 lines/mm
  • the grating Blaze is set to 500 nm
  • the center wavelength of the spectroscope is set to 410 nm.
  • An electronic cooling CCD camera iVac300; manufactured by Andor
  • a spectroscope Acton Series LS785; Princeton Instruments
  • PIXIS 100BR electronically cooled CCD camera
  • the PIXIS100BR, iVac316, and iVac300 are controlled by software (LightField; Princeton Instruments, AndorSOLIS; Andor) on the PC.
  • test cells As test cells, iPS cells (HiPS-WTc11 (GM25256)) and ectodermal cells, mesodermal cells, and endodermal cells derived from the iPS cells are used. I was there. For each cell, a preparation was placed in a 24-well dish and cultured on the preparation. Each cell was prepared as follows. For iPS cells, the cells seeded on the plate were collected and seeded again at 2500 cells/cm 2 . Stem Fit AK02N (manufactured by Ajinomoto Co., Inc.) supplemented with Supplement B and Supplement C was used for culturing iPS cells.
  • iPS cells were seeded at 2500 cells/cm 2 , cultured for 1 day, and then replaced with Stem Fit AK02N medium containing no Supplement C. did.
  • 10 ⁇ mol/L SB431542 (4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazole) was added to the medium.
  • -2-yl]benzamide (ALK inhibitor), Wako Pure Chemical Industries, Ltd.
  • DMH1 4-[6-(4-Isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline, 4 -Add each compound so that it becomes -[6-[4-(1-Methylethoxy)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline (BMP inhibitor, Wako Pure Chemical Industries) did.
  • the compound and the protein were added so that the concentration was 3 ⁇ mol/L CHIR99021 (Wako Pure Chemical Industries, Ltd.) and 10 ng/mL human recombinant Activin A (Wako Pure Chemical Industries, Ltd.). Then, each cell was cultured for 4 days or more.
  • FIG. 11 is a photograph showing a CH 2 stretch image and an SHG image. 11, (A) shows the results of iPS cells, (B) shows the results of ectodermal cells, (C) shows the results of mesodermal cells, and (D) shows the internal endoderm cells. The result of a germ cell is shown. Further, in FIG. 11, the upper part shows an SHG image, and the lower part shows a CH 2 stretch image. As shown by the arrow X in the upper part of FIGS. 11A to 11D, as the SHG image, a filamentous SHG image is observed in iPS cells, and a granular SHG image with strong signal intensity in ectodermal cells.
  • a mesh-shaped (reticular) SHG image was observed in the mesodermal cells, and no SHG image was observed in the endodermal cells. Therefore, it was found that the cell type of each cell can be estimated based on the signal intensity and shape of the SHG image. Further, as shown in the lower part of FIGS. 11A to 11D, as the CH 2 stretch image, the CH 2 stretch image was observed in a wide range in the iPS cells, and the large signal was absent in the CH 2 stretch image.
  • the cell type of each cell can be estimated based on the signal intensity and shape of the CH 2 stretch image.
  • the signal light obtained by the CARS microscope has a relationship with the cell type, and the cell type can be estimated based on the signal light.
  • Appendix 1 An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell; An estimation step of estimating the cell type of the test cell based on the signal light.
  • Appendix 2 The estimation method according to appendix 1, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  • Appendix 3 The estimation method according to appendix 2, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light or CH 2 scissors bending vibration signal light.
  • Appendix 4 4.
  • (Appendix 7) The estimation method according to any one of appendices 1 to 6, wherein in the estimation step, the cell type of the test cell is estimated based on the signal light and the following conditions (1) to (4): (1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells; (2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell; (3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in
  • the test cell is an endoderm cell.
  • the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light.
  • the estimation method according to any one of 1 to 7. (Appendix 9) 9. The estimation method according to any one of appendices 1 to 8, wherein the test cell is a pluripotent cell or a differentiated cell derived from a pluripotent cell.
  • (Appendix 10) Acquisition means for acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
  • a cell type estimation device comprising: an estimation unit that estimates the cell type of the test cell based on the signal light.
  • the estimation device according to appendix 10 wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  • the estimation device according to appendix 11 The estimation device according to appendix 11, wherein the CH 2 expansion/contraction signal light is CH 2 symmetrical expansion/contraction vibration signal light.
  • (Appendix 13) 13 13.
  • the estimation device according to any one of appendices 10 to 12, wherein the estimation unit estimates the cell type of the test cell based on at least one of the shape and signal intensity of CH 2 expansion and contraction signal light in the signal light. .. (Appendix 14) The estimation according to any one of appendices 10 to 13, wherein the estimation unit estimates the cell type of the test cell based on at least one of the shape and signal intensity of the signal light of the second harmonic in the signal light. apparatus. (Appendix 15) In any one of appendices 10 to 14, the estimation means estimates whether the cell type of the test cell is a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell. The estimation device described. (Appendix 16) 16.
  • the estimating device estimates the cell type of the test cell based on the signal light and the following conditions (1) to (4): (1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells; (2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell; (3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the
  • the test cell is an endoderm cell.
  • the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light.
  • the estimation device according to any one of 10 to 16.
  • the estimation device according to any one of appendices 10 to 17, wherein the test cell is a pluripotent cell or a differentiated cell derived from the pluripotent cell.
  • the selection step selects test cells of the predetermined cell type by collecting test cells of the predetermined cell type or removing test cells other than the predetermined cell type. The method for producing cells.
  • (Appendix 21) An observation unit capable of observing test cells, An estimation unit for estimating the cell type of the test cell, Including a selection unit for selecting test cells of a predetermined cell type, The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope, The said estimation unit is a cell manufacturing apparatus containing the estimation apparatus of the cell type in any one of appendixes 10-18.
  • the selection unit is a collection means for collecting test cells of the predetermined cell type or test cells other than the predetermined cell type, or laser irradiation capable of irradiating the test cells other than the predetermined cell type with laser. 22.
  • the cell manufacturing apparatus according to appendix 21, comprising a unit.
  • (Appendix 23) An observation step of observing the test cells, An estimation step of estimating the cell type of the test cell, Including a re-observation step of observing the test cells of a predetermined cell type again, The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, An observation method using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the estimation step is performed by the cell type estimation method according to any one of appendices 1 to 9.
  • CARS coherent anti-Stokes Raman scattering
  • An observation unit capable of observing test cells, An estimation unit for estimating the cell type of the test cell, A control unit capable of controlling the observation unit,
  • the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
  • the estimation unit includes the cell type estimation device according to any one of appendices 10 to 18, An observation apparatus using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the control unit re-observes cells estimated to be a predetermined cell type among the test cells by the observation unit.
  • CARS coherent anti-Stokes Raman scattering
  • (Appendix 25) An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell; Cell type estimation including a learning step of generating a learned model that outputs an estimation result of the cell type of the cell from the signal light, using a pair of the signal light and the cell type of the test cell as teaching data. Manufacturing method of trained model used for. (Appendix 26) 26. The manufacturing method according to appendix 25, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light. (Appendix 27) 27. The manufacturing method according to appendix 26, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light. (Appendix 28) 28.
  • CARS coherent anti-Stokes Raman scattering
  • (Appendix 31) An acquisition means for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell; A cell type including a learning unit that generates a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using a pair of the signal light and the cell type of the test cell as teaching data. Manufacturing device for trained model used for estimation.
  • Appendix 32) 32.
  • the manufacturing apparatus according to appendix 31, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  • (Appendix 33) 33 33.
  • the manufacturing apparatus according to appendix 32, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light.
  • the manufacturing apparatus uses at least one of the shape and signal intensity of CH 2 expansion and contraction signal light as the signal light.
  • the manufacturing apparatus according to any one of appendices 31 to 35, wherein the test cell includes a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell.
  • the present invention it is possible to estimate the cell type while the target cell is alive. Therefore, the present invention is extremely useful in the fields of life science, processing of cells and tissues, regenerative medicine and the like.
  • Estimating device 11 Data processing means 111 Acquisition means 112 Estimating means 113 Observation unit 114 Selection unit 115 Control unit 116 Learning means 20 Manufacturing device 30 Observation device 31 Estimating unit 40 Learning device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a cell type estimation method whereby a cell type can be estimated in a state where a target cell is alive. The cell type estimation method according to the present invention comprises: an acquisition step for acquiring a signal light from a test cell, said signal light being acquired using a coherent anti-Stokes Raman scattering (CARS) microscope; and an estimation step for estimating the cell type of the test cell on the basis of the signal light.

Description

細胞種の推定方法、細胞種の推定装置、細胞の製造方法、細胞の製造装置、観察方法、観察装置、学習済モデルの製造方法、および学習済モデルの製造装置Cell type estimation method, cell type estimation apparatus, cell manufacturing method, cell manufacturing apparatus, observation method, observation apparatus, learned model manufacturing method, and learned model manufacturing apparatus
 本発明は、細胞種の推定方法、細胞種の推定装置、細胞の製造方法、細胞の製造装置、観察方法、観察装置、学習済モデルの製造方法、および学習済モデルの製造装置に関する。 The present invention relates to a cell type estimating method, a cell type estimating apparatus, a cell manufacturing method, a cell manufacturing apparatus, an observing method, an observing apparatus, a learned model manufacturing method, and a learned model manufacturing apparatus.
 細胞の外形等に基づき、iPS細胞等の多能性細胞の分化能の評価を行うことが試みられている(非特許文献1および2、特許文献1)。ただし、細胞の外形のみでは細胞種の評価が難しいという問題がある。 It has been attempted to evaluate the differentiation potential of pluripotent cells such as iPS cells based on the outer shape of cells (Non-patent documents 1 and 2, Patent document 1). However, there is a problem that it is difficult to evaluate the cell type only by the outer shape of the cell.
特許第6448129号公報Japanese Patent No. 6448129
 他の細胞種の推定方法としては、対象細胞を回収し、回収した細胞の遺伝子発現パターンに基づき推定する方法がある。しかしながら、対象細胞の遺伝子発現を確認するには、細胞を溶解して使用する必要があるため、対象細胞が生きた状態で、細胞の種類を推定することは困難という問題がある。 As another method of estimating cell types, there is a method of collecting target cells and estimating based on the gene expression pattern of the collected cells. However, since it is necessary to lyse and use the cells in order to confirm the gene expression of the target cells, there is a problem that it is difficult to estimate the cell type in the live state of the target cells.
 そこで、本発明は、対象細胞が生きた状態で、細胞種を推定可能な細胞種の推定方法の提供を目的とする。 Therefore, an object of the present invention is to provide a method for estimating a cell type that allows the cell type to be estimated in a living state of the target cell.
 前記目的を達成するために、本発明の細胞種の推定方法(以下、「推定方法」ともいう)は、被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
前記信号光に基づき、前記被検細胞の細胞種を推定する推定工程とを含む。
In order to achieve the above object, a method of estimating a cell type of the present invention (hereinafter, also referred to as “estimation method”) is a signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for a test cell. An acquisition process for acquiring
An estimation step of estimating the cell type of the test cell based on the signal light.
 本発明の細胞種の推定装置(以下、「推定装置」ともいう)は、被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
前記信号光に基づき、前記被検細胞の細胞種を推定する推定手段とを含む。
A cell type estimation device of the present invention (hereinafter, also referred to as “estimation device”) is an acquisition unit that acquires signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for a test cell,
And an estimation unit that estimates the cell type of the test cell based on the signal light.
 本発明の細胞の製造方法は、被検細胞を観察する観察工程と、
前記被検細胞の細胞種を推定する推定工程と、
所定の細胞種の被検細胞を選抜する選抜工程とを含み、
前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
前記推定工程は、前記本発明の細胞種の推定方法により実施される。
The method for producing cells of the present invention comprises an observation step of observing test cells,
An estimation step of estimating the cell type of the test cell,
And a selection step of selecting test cells of a predetermined cell type,
The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
The estimation step is performed by the method of estimating the cell type of the present invention.
 本発明の細胞の製造装置は、被検細胞を観察可能な観察ユニットと、
前記被検細胞の細胞種を推定する推定ユニットと、
所定の細胞種の被検細胞を選抜する選抜ユニットとを含み、
前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
前記推定ユニットは、前記本発明の細胞種の推定装置を含む。
The cell manufacturing apparatus of the present invention includes an observation unit capable of observing a test cell,
An estimation unit for estimating the cell type of the test cell,
Including a selection unit for selecting test cells of a predetermined cell type,
The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
The estimation unit includes the cell type estimation device of the present invention.
 本発明のコヒーレント反ストークスラマン散乱(CARS)を用いた観察方法(以下、「観察方法」という)は、被検細胞を観察する観察工程と、
前記被検細胞の細胞種を推定する推定工程と、
所定の細胞種の被検細胞を再度観察する再観察工程とを含み、
前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
前記推定工程は、前記本発明の細胞種の推定方法により実施される。
The observation method using coherent anti-Stokes Raman scattering (CARS) of the present invention (hereinafter referred to as “observation method”) includes an observation step of observing a test cell,
An estimation step of estimating the cell type of the test cell,
Including a re-observation step of observing the test cells of a predetermined cell type again,
The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
The estimation step is performed by the method of estimating the cell type of the present invention.
 本発明のコヒーレント反ストークスラマン散乱(CARS)を用いた観察装置(以下、「観察装置」という)は、被検細胞を観察可能な観察ユニットと、
前記被検細胞の細胞種を推定する推定ユニットと、
前記観察ユニットを制御可能な制御ユニットとを含み、
前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
前記推定ユニットは、本発明の細胞種の推定装置を含み、
前記制御ユニットは、前記被検細胞のうち、所定の細胞種と推定された細胞について、前記観察ユニットにより再観察を実施する。
An observation apparatus using coherent anti-Stokes Raman scattering (CARS) of the present invention (hereinafter referred to as “observation apparatus”) is an observation unit capable of observing a test cell,
An estimation unit for estimating the cell type of the test cell,
A control unit capable of controlling the observation unit,
The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
The estimation unit includes a cell type estimation device of the present invention,
The control unit causes the observation unit to re-observe the cells estimated to be a predetermined cell type among the test cells.
 本発明の細胞種の推定に用いる学習済モデルの製造方法(以下、「学習方法」ともいう)は、被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習工程とを含む。
The method of manufacturing a trained model used for estimating the cell type of the present invention (hereinafter, also referred to as a “learning method”) acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell. Acquisition process to
A learning step of generating a learned model that outputs the estimation result of the cell type of the test cell from the signal light using the pair of the signal light and the cell type of the test cell as teacher data.
 本発明の細胞種の推定に用いる学習済モデルの製造装置(以下、「学習装置」ともいう)は、被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習手段とを含む。
A trained model manufacturing device (hereinafter, also referred to as a “learning device”) used for estimating a cell type of the present invention acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell. Acquisition means to
And a learning unit that generates a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teacher data.
 本発明によれば、対象細胞が生きた状態で、細胞種を推定可能である。 According to the present invention, it is possible to estimate the cell type while the target cell is alive.
図1は、実施形態1の推定装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of the estimation device according to the first embodiment. 図2は、実施形態1の推定装置のハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of the estimation device according to the first embodiment. 図3は、実施形態1の推定方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of the estimation method of the first embodiment. 図4は、実施形態2の製造装置の構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the manufacturing apparatus according to the second embodiment. 図5は、実施形態2の製造方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the manufacturing method of the second embodiment. 図6は、実施形態3の観察装置の構成の一例を示すブロック図である。FIG. 6 is a block diagram showing an example of the configuration of the observation device of the third embodiment. 図7は、実施形態3の観察方法の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the observation method of the third embodiment. 図8は、実施形態4の学習装置の構成の一例を示すブロック図である。FIG. 8 is a block diagram showing an example of the configuration of the learning device according to the fourth exemplary embodiment. 図9は、実施形態4の学習方法の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the learning method of the fourth embodiment. 図10は、実施例1で用いたCARS顕微鏡の光学系の構成を示す概略図である。FIG. 10 is a schematic diagram showing the configuration of the optical system of the CARS microscope used in Example 1. 図11は、実施例1におけるCH伸縮像およびSHG像を示す写真である。FIG. 11 is a photograph showing a CH 2 stretch image and an SHG image in Example 1.
 本発明において、「細胞」は、例えば、単離された細胞、細胞から構成される細胞塊(スフェロイド)、組織、または臓器を意味する。前記細胞は、例えば、培養細胞でもよいし、生体から単離された細胞でもよい。また、前記細胞塊、組織または臓器は、例えば、前記細胞から作製された細胞塊、細胞シート、組織または臓器でもよいし、生体から単離された細胞塊、組織または臓器でもよい。 In the present invention, the “cell” means, for example, an isolated cell, a cell mass (spheroid) composed of cells, a tissue, or an organ. The cells may be, for example, cultured cells or cells isolated from a living body. The cell mass, tissue or organ may be, for example, a cell mass, cell sheet, tissue or organ prepared from the cells, or may be a cell mass, tissue or organ isolated from a living body.
 本発明において、「細胞の選抜」は、例えば、所望の細胞の回収、所望の細胞の維持、および所望の細胞以外の除去のいずれの意味で用いてもよい。 In the present invention, “selection of cells” may be used to mean any of recovery of desired cells, maintenance of desired cells, and removal of cells other than desired cells.
 以下、本発明について、図面を参照して詳細に説明する。ただし、本発明は、以下の説明に限定されない。なお、以下の図1~図11において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。また、各実施形態は、特に言及しない限り、互いにその説明を援用できる。 Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description. It should be noted that, in the following FIGS. 1 to 11, the same parts are denoted by the same reference numerals and the description thereof may be omitted. Further, in the drawings, for convenience of description, the structure of each part may be simplified as appropriate, and the dimensional ratio and the like of each part may be different from the actual one and may be schematically illustrated. In addition, the description of each embodiment can be applied to each other unless otherwise specified.
<細胞種の推定方法および推定装置>
 本発明の細胞種の推定方法は、前述のように、被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、前記信号光に基づき、前記被検細胞の細胞種を推定する推定工程とを含む。また、本発明の細胞種の推定装置は、被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、前記信号光に基づき、前記被検細胞の細胞種を推定する推定手段とを含む。本発明の推定方法は、CARS顕微鏡により取得された信号光に基づき、前記被検細胞の細胞種を推定することが特徴であり、その他の構成および条件は特に制限されない。
<Cell type estimation method and estimation device>
The method of estimating the cell type of the present invention, as described above, for the test cell, an acquisition step of acquiring a signal light acquired using a coherent anti-Stokes Raman scattering (CARS) microscope, and based on the signal light, An estimation step of estimating the cell type of the test cell. Further, the cell type estimating device of the present invention is, based on the signal light, an acquisition unit that acquires signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell, and Estimating means for estimating the cell type of the cell. The estimation method of the present invention is characterized by estimating the cell type of the test cell based on the signal light acquired by the CARS microscope, and other configurations and conditions are not particularly limited.
 本発明者らは鋭意研究の結果、CARS顕微鏡を用いて取得された信号光、具体的には、信号光の形状、シグナル強度等と、細胞種とに関連性があることを見出し、本発明を確立するに至った。このため、本発明によれば、被検細胞についてCARS顕微鏡を用いて取得された信号光に基づき、前記被検細胞の細胞種を推定できる。また、CARS顕微鏡による信号光は、細胞が生きた状態で取得できる。このため、本発明によれば、対象細胞、すなわち、被検細胞が生きた状態で、細胞種を推定可能である。また、本発明は、CARS顕微鏡を用いて取得された信号光に基づき、細胞種を推定するため、例えば、細胞表面マーカー分子に対する特異的な抗体等の結合分子による標識が不要となる。さらに、本発明によれば、細胞種の推定が可能であるため、例えば、細胞の分化段階または分化状態を推定できる。このため、本発明によれば、例えば、多能性細胞、前駆細胞等の分化能を有する細胞から、分化細胞を誘導する際に、得られた細胞における細胞の分化段階または分化状態を推定することができる。したがって、本発明の推定方法は、例えば、細胞の分化段階または分化状態の推定方法ということもできる。なお、以下、特に言及しない場合、「分化状態」は、「細胞種」または「分化段階」と同義であり、互いに読み替えてその説明を援用できる。 As a result of earnest research, the present inventors have found that the signal light obtained by using a CARS microscope, specifically, the shape of the signal light, the signal intensity, and the like are related to the cell type. Came to be established. Therefore, according to the present invention, the cell type of the test cell can be estimated based on the signal light obtained by using the CARS microscope for the test cell. Moreover, the signal light from the CARS microscope can be obtained in a state where cells are alive. Therefore, according to the present invention, the cell type can be estimated in a state where the target cell, that is, the test cell is alive. Further, in the present invention, since the cell type is estimated based on the signal light obtained by using the CARS microscope, for example, labeling with a binding molecule such as an antibody specific to the cell surface marker molecule is unnecessary. Furthermore, according to the present invention, since it is possible to estimate the cell type, it is possible to estimate the differentiation stage or differentiation state of the cell, for example. Therefore, according to the present invention, for example, when a differentiated cell is induced from a pluripotent cell, progenitor cell, or other cell having differentiation potential, the differentiation stage or differentiation state of the obtained cell is estimated. be able to. Therefore, the estimation method of the present invention can also be referred to as, for example, a method of estimating the differentiation stage or differentiation state of cells. In the following, unless otherwise specified, the “differentiation state” has the same meaning as the “cell type” or the “differentiation stage”, and the explanations can be applied to each other by replacing them.
(実施形態1)
 図1に、本実施形態における推定装置のブロック図を示す。図1に示すように、本実施形態の推定装置10は、取得手段111および推定手段112を含む。図1に示すように、取得手段111および推定手段112は、ハードウェアであるデータ処理手段(データ処理装置)11に組み込まれてもよく、ソフトウェアまたは前記ソフトウェアが組み込まれたハードウェアでもよい。データ処理手段11は、CPU等を備えてもよい。また、データ処理手段11は、例えば、後述のROM、RAM等を備えてもよい。
(Embodiment 1)
FIG. 1 shows a block diagram of the estimation device in this embodiment. As shown in FIG. 1, the estimation device 10 of this embodiment includes an acquisition unit 111 and an estimation unit 112. As shown in FIG. 1, the acquisition unit 111 and the estimation unit 112 may be incorporated in the data processing unit (data processing device) 11 that is hardware, or may be software or hardware in which the software is incorporated. The data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, a ROM, a RAM, etc. described later.
 つぎに、図2に、推定装置10のハードウェア構成のブロック図を例示する。推定装置10は、例えば、CPU(中央処理装置)201、メモリ202、バス203、記憶装置204、入力装置206、ディスプレイ207、通信デバイス208等を有する。推定装置10の各部は、それぞれのインタフェース(I/F)により、バス203を介して接続されている。推定装置10のハードウェア構成は、例えば、後述の観察装置における推定ユニット、製造装置における推定ユニット、および学習済モデルの製造装置のハードウェア構成としても採用できる。 Next, FIG. 2 illustrates a block diagram of a hardware configuration of the estimation device 10. The estimation device 10 includes, for example, a CPU (central processing unit) 201, a memory 202, a bus 203, a storage device 204, an input device 206, a display 207, a communication device 208, and the like. The respective units of the estimation device 10 are connected via a bus 203 by respective interfaces (I/F). The hardware configuration of the estimation apparatus 10 can be adopted as, for example, an estimation unit in an observation apparatus, an estimation unit in a manufacturing apparatus, and a hardware configuration of a learned model manufacturing apparatus described later.
 CPU201は、例えば、コントローラ(システムコントローラ、I/Oコントローラ等)等により、他の構成と連携動作し、推定装置10の全体の制御を担う。推定装置10において、CPU201により、例えば、本発明のプログラム205やその他のプログラムが実行され、また、各種情報の読み込みや書き込みが行われる。具体的には、例えば、CPU201が、取得手段111および推定手段112として機能する。推定装置10は、演算装置として、CPUを備えるが、GPU(Graphics Processing Unit)、APU(Accelerated Processing Unit)等の他の演算装置を備えてもよいし、CPUとこれらとの組合せを備えてもよい。なお、CPU201は、例えば、後述する実施形態2~4における記憶手段以外の各手段、推定ユニット、または制御ユニットとして機能する。 The CPU 201 cooperates with other configurations by, for example, a controller (system controller, I/O controller, etc.) and controls the entire estimation apparatus 10. In the estimation device 10, the CPU 201 executes, for example, the program 205 of the present invention or other programs, and also reads or writes various information. Specifically, for example, the CPU 201 functions as the acquisition unit 111 and the estimation unit 112. The estimation device 10 includes a CPU as an arithmetic device, but may include other arithmetic devices such as a GPU (Graphics Processing Unit) and an APU (Accelerated Processing Unit), or may include a CPU and a combination thereof. Good. The CPU 201 functions as, for example, each unit other than the storage unit, the estimation unit, or the control unit in Embodiments 2 to 4 described later.
 メモリ202は、例えば、メインメモリを含む。前記メインメモリは、主記憶装置ともいう。CPU201が処理を行う際には、例えば、後述する記憶装置204(補助記憶装置)に記憶されている本発明のプログラム205等の種々の動作プログラムを、メモリ202が読み込む。そして、CPU201は、メモリ202からデータを読み出し、解読し、前記プログラムを実行する。前記メインメモリは、例えば、RAM(ランダムアクセスメモリ)である。メモリ202は、例えば、さらに、ROM(読み出し専用メモリ)を含む。 The memory 202 includes, for example, a main memory. The main memory is also called a main storage device. When the CPU 201 performs processing, the memory 202 reads various operation programs such as the program 205 of the present invention stored in the storage device 204 (auxiliary storage device) described later, for example. Then, the CPU 201 reads the data from the memory 202, decodes the data, and executes the program. The main memory is, for example, a RAM (random access memory). The memory 202 further includes, for example, a ROM (read-only memory).
 バス203は、例えば、外部機器とも接続できる。前記外部機器は、例えば、外部記憶装置(外部データベース等)、プリンター等があげられる。推定装置10は、例えば、バス203に接続された通信デバイス208により、通信回線網に接続でき、通信回線網を介して、前記外部機器と接続することもできる。また、推定装置10は、通信デバイス208および通信回線網を介して、端末等にも接続できる。 The bus 203 can be connected to an external device, for example. Examples of the external device include an external storage device (external database and the like), a printer, and the like. The estimating apparatus 10 can be connected to a communication line network by the communication device 208 connected to the bus 203, for example, and can also be connected to the external device via the communication line network. The estimating apparatus 10 can also be connected to a terminal or the like via the communication device 208 and the communication network.
 記憶装置204は、例えば、前記メインメモリ(主記憶装置)に対して、いわゆる補助記憶装置ともいう。前述のように、記憶装置204には、本発明のプログラム205を含む動作プログラムが格納されている。記憶装置204は、例えば、記憶媒体と、前記記憶媒体に読み書きするドライブとを含む。前記記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、FD(フロッピー(登録商標)ディスク)、CD-ROM、CD-R、CD-RW、MO、DVD、フラッシュメモリー、メモリーカード等があげられ、前記ドライブは、特に制限されない。記憶装置204は、例えば、前記記憶媒体と前記ドライブとが一体化されたハードディスクドライブ(HDD)であってもよい。 The storage device 204 is also called a so-called auxiliary storage device with respect to the main memory (main storage device), for example. As described above, the storage device 204 stores an operation program including the program 205 of the present invention. The storage device 204 includes, for example, a storage medium and a drive that reads and writes the storage medium. The storage medium is not particularly limited, and may be, for example, an internal type or an external type, HD (hard disk), FD (floppy (registered trademark) disk), CD-ROM, CD-R, CD-RW, MO, Examples thereof include DVD, flash memory, and memory card, and the drive is not particularly limited. The storage device 204 may be, for example, a hard disk drive (HDD) in which the storage medium and the drive are integrated.
 推定装置10は、例えば、さらに、入力装置206、ディスプレイ207を有する。入力装置206は、例えば、タッチパネル、トラックパッド、マウス等のポインティングデバイス;キーボード;カメラ、スキャナ等の撮像手段;ICカードリーダ、磁気カードリーダ等のカードリーダ;マイク等の音声入力手段;等があげられる。ディスプレイ207は、例えば、LEDディスプレイ、液晶ディスプレイ等の表示装置があげられる。本実施形態1において、入力装置206とディスプレイ207とは、別個に構成されているが、入力装置206とディスプレイ207とは、タッチパネルディスプレイのように、一体として構成されてもよい。 The estimation device 10 further includes, for example, an input device 206 and a display 207. The input device 206 is, for example, a pointing device such as a touch panel, a track pad, or a mouse; a keyboard; an imaging means such as a camera or a scanner; a card reader such as an IC card reader or a magnetic card reader; a voice input means such as a microphone; To be Examples of the display 207 include a display device such as an LED display and a liquid crystal display. In the first embodiment, the input device 206 and the display 207 are separately configured, but the input device 206 and the display 207 may be integrally configured like a touch panel display.
 つぎに、本実施形態の推定装置10の処理の一例について、被検細胞についてCARS顕微鏡を用いて信号光を取得した場合を例に取り、図3のフローチャートに基づき、説明する。 Next, an example of the process of the estimation device 10 of the present embodiment will be described based on the flowchart of FIG. 3 taking the case where signal light is acquired for a test cell using a CARS microscope as an example.
 推定装置10の処理に先立ち、まず、CARS顕微鏡を用いて被検細胞を観察し、信号光を取得する。前記CARS顕微鏡の構成は、後述の実施例1の構成を参照できる。前記被検細胞は、任意の細胞とでき、例えば、細胞種がわかっている細胞でもよいし、細胞種が不明の細胞でもよい。推定装置10を細胞の分化段階または分化状態の推定に用いる場合、前記被検細胞は、例えば、分化誘導前の細胞、分化誘導中の細胞、分化誘導後の細胞等があげられる。 Prior to the processing of the estimation device 10, first, a test cell is observed using a CARS microscope to acquire a signal light. For the configuration of the CARS microscope, the configuration of Example 1 described later can be referred to. The test cell may be any cell, for example, a cell whose cell type is known or a cell whose cell type is unknown. When the estimation device 10 is used to estimate the differentiation stage or differentiation state of cells, the test cells include, for example, cells before differentiation induction, cells during differentiation induction, cells after differentiation induction, and the like.
 前記被検細胞は、特に制限されず、例えば、生体から分離した細胞、培養細胞等の任意の細胞とできる。前記被検細胞は、具体例として、iPS細胞、ES細胞等の多能性細胞、前記多能性細胞から誘導した三胚葉系細胞、および前記三胚葉系細胞から誘導した各組織の分化細胞があげられる。前記分化細胞は、例えば、上皮系細胞;ニューロン、グリア細胞、アストロサイト等の神経系細胞;肝臓細胞;脂肪細胞;間質細胞;T細胞、B細胞等の造血系細胞;骨格筋細胞、心筋細胞等の筋細胞;等があげられる。前記三胚葉系細胞は、例えば、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞があげられる。本発明によれば、例えば、前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞、および前記内胚葉系細胞のいずれの細胞種であるかを好適に推定できる。前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞、および前記内胚葉系細胞のマーカーとしては、例えば、下記マーカーが利用できる。
iPS細胞:OCT4 (POU5F1)、NANOG、DPPA4、DNMT3B、L1TD1、E-cadherin、Podocalyxin、TERT
外胚葉系細胞:PAX6、SOX1、OTX2、MAP2、Musashi1、N-cadherin、Nestin、NCAM、GFAP
中胚葉系細胞:T(Brachyury)、Pitx2、MSX1、MESP1、GATA4、TBX6、NKX2.5、Vimentin、Desmin、Smooth Muscle Actin
内胚葉系細胞:SOX17、MIXL1、FOXA2、PDX1, AFP、CXCR4
The test cell is not particularly limited, and can be any cell such as a cell separated from a living body or a cultured cell. Specific examples of the test cells include pluripotent cells such as iPS cells and ES cells, three germ layer cells derived from the pluripotent cells, and differentiated cells of each tissue derived from the three germ layer cells. can give. Examples of the differentiated cells include epithelial cells; neural cells such as neurons, glial cells and astrocytes; liver cells; adipocytes; stromal cells; hematopoietic cells such as T cells and B cells; skeletal muscle cells, myocardium Muscle cells such as cells; and the like. Examples of the three germ layer cells include ectoderm cells, mesoderm cells, and endoderm cells. According to the present invention, for example, which of the pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells can be suitably estimated. As the markers for the pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells, for example, the following markers can be used.
iPS cells: OCT4 (POU5F1), NANOG, DPPA4, DNMT3B, L1TD1, E-cadherin, Podocalyxin, TERT
Ectoderm cells: PAX6, SOX1, OTX2, MAP2, Musashi1, N-cadherin, Nestin, NCAM, GFAP
Mesodermal cells: T (Brachyury), Pitx2, MSX1, MESP1, GATA4, TBX6, NKX2.5, Vimentin, Desmin, Smooth Muscle Actin
Endoderm cells: SOX17, MIXL1, FOXA2, PDX1, AFP, CXCR4
 前記CARS顕微鏡による信号光の取得は、前記被検細胞全体または一部に対して実施する。後者の場合、前記CARS顕微鏡による信号光の取得は、例えば、前記被検細胞の中心部において、被検細胞の配置面に対して垂直方向を含む断面の信号光を取得することが好ましい。前記被検細胞は、1つでもよいし、複数でもよい。後者の場合、前記CARS顕微鏡による信号光の取得は、その一部または全部の細胞に対して実施する。前記CARS顕微鏡は、コヒーレント反ストークスラマン散乱を利用した顕微鏡であり、その構成は特に制限されず、例えば、後述の実施例の構成を参照できる。前記CARS顕微鏡では、CARS分光用の光照射手段を含み、前記光照射手段により、超広帯域光および励起光の混合光が被検細胞に照射される。そして、前記CARS顕微鏡では、前記被検細胞から出射された出射光から、回折格子等によりCARS光(信号光)が分光される。そして、前記CARS光のシグナル強度、空間位置等の情報が、取得される。本発明において、前記信号光は、第二高調波(SHG)、第三高調波(THG)、二光子励起蛍光を含んでもよい。前記超広帯域光の波長は、例えば、400~2400nmである。また、前記励起光の波長は、例えば、750~1100nm、750~1064nmである。 Acquisition of signal light by the CARS microscope is performed for all or part of the test cells. In the latter case, it is preferable that the signal light is acquired by the CARS microscope, for example, in the central portion of the test cell, the signal light of a cross section including a direction perpendicular to the arrangement surface of the test cell is acquired. The number of test cells may be one or more. In the latter case, the signal light is obtained by the CARS microscope for some or all of the cells. The CARS microscope is a microscope that uses coherent anti-Stokes Raman scattering, and the configuration thereof is not particularly limited, and for example, the configurations of Examples described later can be referred to. The CARS microscope includes a light irradiating means for CARS spectroscopy, and the light irradiating means irradiates the test cell with the mixed light of the ultra-wide band light and the excitation light. Then, in the CARS microscope, CARS light (signal light) is dispersed from the emitted light emitted from the test cell by a diffraction grating or the like. Then, information such as the signal intensity of the CARS light and the spatial position is acquired. In the present invention, the signal light may include a second harmonic (SHG), a third harmonic (THG), and two-photon excitation fluorescence. The wavelength of the ultra wideband light is, for example, 400 to 2400 nm. The wavelengths of the excitation light are, for example, 750 to 1100 nm and 750 to 1064 nm.
 つぎに、推定装置10による処理を開始する。まず、推定装置10の取得手段111が、前記CARS顕微鏡で取得された、信号光、より具体的には、信号光の情報を取得する(S1、取得工程)。前記取得工程において取得する信号光は、後述の推定工程で使用される信号光を含み、具体例として、CH伸縮の信号光および第二高調波(SHG)の信号光の少なくとも一方を含むことが好ましい。前記取得する信号光は、例えば、下記表1Aおよび表1Bを参照して、検出対象の分子に応じて適宜設定できる。なお、下記表1Aおよび表1Bに示すラマンシフトの値は、典型的な数値であり、CARS顕微鏡に応じてその前後の領域でも検出対象の分子を検出可能である。前記CH伸縮の信号光は、例えば、CH対称伸縮振動の信号光またはCHはさみ変角振動の信号光等があげられる。前記CH伸縮の信号光の波数は、例えば、2835~2865Raman shift/cm-1である。前記CH対称伸縮振動の信号光の波数は、例えば、2835~2865Raman shift/cm-1である。前記CHはさみ変角振動の信号光の波数は、例えば、1423~1453Raman shift/cm-1である。前記SHGの信号光の波数は、入射レーザの波長をλとするとλ/2となる。 Next, the processing by the estimation device 10 is started. First, the acquisition unit 111 of the estimation device 10 acquires the signal light, more specifically, the information of the signal light acquired by the CARS microscope (S1, acquisition step). The signal light acquired in the acquisition step includes signal light used in the estimation step described below, and as a specific example, includes at least one of CH 2 expansion and contraction signal light and second harmonic (SHG) signal light. Is preferred. The signal light to be acquired can be appropriately set according to the molecule to be detected with reference to, for example, Tables 1A and 1B below. The Raman shift values shown in Tables 1A and 1B below are typical values, and the molecule to be detected can also be detected in the regions before and after the CARS microscope. Examples of the CH 2 stretching signal light include CH 2 symmetrical stretching vibration signal light, CH 2 scissors bending vibration signal light, and the like. The wave number of the CH 2 expansion/contraction signal light is, for example, 2835 to 2865 Raman shift/cm −1 . The wave number of the signal light of the CH 2 symmetric stretching vibration is, for example, 2835 to 2865 Raman shift/cm −1 . The wave number of the signal light of the CH 2 scissors bending vibration is, for example, 1423 to 1453 Raman shift/cm −1 . The wave number of the signal light of the SHG is λ/2, where λ is the wavelength of the incident laser.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 つぎに、推定手段112が、前記信号光に基づき、前記被検細胞の細胞種を推定する(S2、推定工程)。前記信号光において、各波数(Raman shift/cm-1)は、その信号の由来となる被検細胞内の物質が異なる。また、細胞種が異なる場合、細胞種の異なる細胞ではその機能および代謝も異なるため、前記細胞が含有する物質の種類、物質の含有率および物質の局在等も異なると推定される。そこで、本発明では、前記細胞の細胞種の違いが、例えば、前記信号光の違いとして生じることを利用し、前記信号光に基づき、前記被検細胞の細胞種を推定する。前記被検細胞が複数の場合、S2工程では、1つまたは複数の被検細胞の細胞種を推定するが、全部の被検細胞の細胞種を推定することが好ましい。以下、前記被検細胞が、前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞、または前記内胚葉系細胞であるかを推定する例をあげて説明するが、本発明はこれに限定されず、他の細胞種の細胞の推定にも利用できる。 Next, the estimation means 112 estimates the cell type of the test cell based on the signal light (S2, estimation step). In the signal light, each wave number (Raman shift/cm −1 ) is different in the substance in the test cell from which the signal is derived. Further, when the cell types are different, it is presumed that the cells having different cell types have different functions and metabolisms, so that the types of substances contained in the cells, the content rates of the substances, the localization of the substances and the like are also different. Therefore, in the present invention, the fact that the difference in the cell type of the cells occurs as the difference in the signal light is used to estimate the cell type of the test cell based on the signal light. When there are a plurality of test cells, the cell type of one or more test cells is estimated in the step S2, but it is preferable to estimate the cell types of all the test cells. Hereinafter, the test cell will be described with reference to an example of estimating whether the pluripotent cell, the ectodermal cell, the mesodermal cell, or the endodermal cell, the present invention However, the present invention is not limited to this, and can be used for estimating cells of other cell types.
 前記多能性細胞および前記外胚葉系細胞は、例えば、前記中胚葉系細胞および前記内胚葉系細胞と比較して、豊富に脂肪滴が存在する。前記脂肪滴は、主に、トリアシルグリセロールから構成される。また、トリアシルグリセロール中の脂肪酸は、CH伸縮の信号光に基づき特定できる。したがって、前記多能性細胞および前記外胚葉系細胞と、前記中胚葉系細胞および前記内胚葉系細胞とは、例えば、脂肪酸におけるCH伸縮の信号光、より好ましくは、CH対称伸縮振動の信号光またはCHはさみ変角振動の信号光により推定可能である。具体的には、S2工程において、前記多能性細胞および前記外胚葉系細胞と、前記中胚葉系細胞および前記内胚葉系細胞とは、例えば、CH伸縮の信号光、より具体的には、CH伸縮の信号光のシグナル強度に基づき、両者の間に基準値を設け、基準値以上であれば前者、基準値未満であれば後者と推定できる。前記基準値は、例えば、予め前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞および前記内胚葉系細胞について、CARS顕微鏡により信号光を取得し、そのシグナル強度に基づき設定できる。前記シグナル強度は、基準サンプルのシグナル強度により補正された、補正シグナル強度が好ましい(以下、同様)。前記基準サンプルは、例えば、ポリスチレンビーズ等のプラスチックビーズがあげられる。前記シグナル強度は、例えば、取得した視野におけるシグナル強度の平均値である。 The pluripotent cells and the ectodermal cells have abundant lipid droplets compared with, for example, the mesodermal cells and the endodermal cells. The fat droplets are mainly composed of triacylglycerol. Further, the fatty acid in triacylglycerol can be specified based on the CH 2 stretching signal light. Therefore, the pluripotent cell and the ectodermal cell and the mesodermal cell and the endodermal cell are, for example, a signal light of CH 2 stretching in fatty acid, and more preferably CH 2 symmetric stretching vibration. It can be estimated by the signal light or the signal light of CH 2 scissors bending vibration. Specifically, in the step S2, the pluripotent cells and the ectodermal cells and the mesodermal cells and the endodermal cells are, for example, CH 2 stretch signal light, more specifically, , A reference value is set between the two based on the signal intensity of the CH 2 expansion/contraction signal light, and the former can be estimated if the reference value is greater than or equal to the latter, and the latter can be estimated if the value is less than the reference value. The reference value can be set based on the signal intensity of the pluripotent cells, the ectodermal cells, the mesoderm cells, and the endoderm cells obtained by a CARS microscope in advance, for example. The signal intensity is preferably a corrected signal intensity corrected by the signal intensity of the reference sample (hereinafter the same). Examples of the reference sample include plastic beads such as polystyrene beads. The signal intensity is, for example, an average value of signal intensity in the acquired visual field.
 S2工程では、CH伸縮の信号光のシグナル強度と、CH伸縮の信号光から再構築されたCH伸縮像の形状とに基づき、多能性細胞、外胚葉系細胞、中胚葉系細胞、および内胚葉系細胞を推定してもよい。具体例として、細胞質の広い範囲でCH伸縮像(脂肪滴)が存在し、かつCH伸縮像(脂肪滴)内に大きなシグナルの欠如する領域(細胞核)が存在する場合、S2工程では、前記被検細胞は、例えば、多能性細胞であると推定できる。また、細胞質の広い範囲でCH伸縮像(脂肪滴)が存在し、かつCH伸縮像(脂肪滴)に中程度のシグナルの欠如する領域(細胞核)が存在する場合、S2工程では、前記被検細胞は、例えば、外胚葉系細胞であると推定できる。さらに、シグナル強度の弱い粒状のCH伸縮像(脂肪滴)が存在する場合、S2工程では、前記被検細胞は、例えば、中胚葉系細胞であると推定できる。そして、シグナル強度が強い粒状のCH伸縮像(脂肪滴)が存在する場合、S2工程では、前記被検細胞は、例えば、内胚葉系細胞であると推定できる。前記形状は、例えば、テンプレートマッチング等の形状検出方法を用いて検出できる。 S2 In step, based on the signal intensity of the signal light CH 2 stretching, the shape of the CH 2 stretching image reconstructed from the signal light of the CH 2 stretching, pluripotent cells, ectodermal cells, mesodermal cells , And endoderm cells may be inferred. As a specific example, when a CH 2 stretch image (lipid droplet) is present in a wide range of the cytoplasm and a region (cell nucleus) lacking a large signal is present in the CH 2 stretch image (lipid droplet), in the S2 step, It can be presumed that the test cell is, for example, a pluripotent cell. When the CH 2 stretch image (fat droplets) is present in a wide range of the cytoplasm and the CH 2 stretch image (fat droplets) has a region (cell nucleus) lacking a moderate signal, in the S2 step, The test cells can be presumed to be ectodermal cells, for example. Furthermore, when granular CH 2 stretch images (fat droplets) with weak signal intensity are present, it can be estimated that, in the S2 step, the test cells are, for example, mesodermal cells. When a granular CH 2 stretch image (lipid droplet) with strong signal intensity is present, it can be estimated that the test cell is, for example, an endoderm cell in step S2. The shape can be detected using, for example, a shape detection method such as template matching.
 また、前記外胚葉系細胞および前記中胚葉系細胞は、前記多能性細胞および前記内胚葉系細胞と比較して、SHGの信号光のシグナル強度が相対的に強い。また、前記外胚葉系細胞のSHGの信号光から再構成されたSHG像において、前記外胚葉系細胞は、例えば、粒状のSHGのシグナル(信号光またはシグナル領域、以下、同様)を生じる。前記多能性細胞のSHGの信号光から再構成されたSHG像において、前記多能性細胞は、例えば、フィラメント状のSHGのシグナルを生じる。他方、前記中胚葉系細胞のSHGの信号光から再構成されたSHG像において、前記中胚葉系細胞は、例えば、網状のSHGのシグナルを生じる。前記内胚葉系細胞のSHGの信号光から再構成されたSHG像において、前記内胚葉系細胞は、例えば、SHGのシグナルを生じない。このため、前記外胚葉系細胞および前記中胚葉系細胞と、前記多能性細胞および前記内胚葉系細胞とは、例えば、SHGの信号光の形状および/またはシグナル強度に基づき、両者のいずれに属するかを推定できる。具体的には、SHGの信号光のシグナル強度を推定に用いる場合、S2工程において、前記外胚葉系細胞および前記中胚葉系細胞と、前記多能性細胞および前記内胚葉系細胞とは、例えば、両者の間に基準値を設け、基準値以上であれば前者、基準値未満であれば後者と推定できる。また、SHGの信号光の形状を推定に用いる場合、SHGの信号光が存在し、かつSHGの信号光から再構成されたSHG像におけるSHG(のシグナル)の形状がフィラメント状である場合、S2工程では、多能性細胞と推定できる。SHGの信号光が存在し、かつSHG(のシグナル)の形状が粒状である場合、S2工程では、外胚葉系細胞であると推定できる。さらに、SHGの信号光が存在し、かつSHG(のシグナル)の形状が網状である場合、S2工程では、中胚葉系細胞であると推定できる。SHGの信号光が存在しない場合、S2工程では、内胚葉系細胞であると推定できる。 Further, the ectodermal cells and the mesodermal cells have relatively strong signal intensity of SHG signal light as compared with the pluripotent cells and the endodermal cells. In the SHG image reconstructed from the SHG signal light of the ectodermal cells, the ectodermal cells generate, for example, a granular SHG signal (signal light or signal region, hereinafter the same). In the SHG image reconstructed from the SHG signal light of the pluripotent cells, the pluripotent cells generate, for example, filamentous SHG signals. On the other hand, in the SHG image reconstructed from the signal light of SHG of the mesodermal cells, the mesodermal cells generate, for example, reticulated SHG signals. In the SHG image reconstructed from the signal light of SHG of the endoderm cells, the endoderm cells do not generate the signal of SHG, for example. Therefore, the ectodermal cells and the mesoderm cells, and the pluripotent cells and the endodermal cells are, for example, based on the shape and/or the signal intensity of the signal light of SHG. You can presume to belong. Specifically, when the signal intensity of SHG signal light is used for estimation, in the step S2, the ectodermal cells and the mesodermal cells, and the pluripotent cells and the endodermal cells are, for example, A reference value is provided between the two, and it can be estimated that the value is equal to or more than the reference value and the value is less than the reference value. Further, when the shape of the SHG signal light is used for estimation, if the SHG signal light exists and the shape of the SHG (the signal) in the SHG image reconstructed from the SHG signal light is a filament shape, S2 In the process, it can be presumed to be pluripotent cells. When the signal light of SHG exists and the shape of (signal of) SHG is granular, it can be estimated that the cells are ectodermal cells in the step S2. Furthermore, when the signal light of SHG is present and the shape of (signal of) SHG is reticulated, it can be estimated that it is a mesodermal cell in the step S2. When the signal light of SHG does not exist, it can be estimated that the cells are endoderm cells in step S2.
 S2工程では、SHGの信号光のシグナル強度と、SHGの信号光から再構築されたSHG像におけるSHGのシグナルの形状とに基づき、多能性細胞、外胚葉系細胞、中胚葉系細胞、および内胚葉系細胞を推定してもよい。具体例として、フィラメント状のSHG像(SHGのシグナル)が存在する場合、S2工程では、前記被検細胞は、例えば、多能性細胞であると推定できる。また、シグナル強度が強い粒状のSHG像(SHGのシグナル)が存在する場合、S2工程では、前記被検細胞は、例えば、外胚葉系細胞であると推定できる。さらに、メッシュ状(網状)のSHG像(SHGのシグナル)が存在する場合、S2工程では、前記被検細胞は、例えば、中胚葉系細胞であると推定できる。そして、SHG像(SHGのシグナル)が存在しない場合、S2工程では、前記被検細胞は、例えば、内胚葉系細胞であると推定できる。 In the S2 step, based on the signal intensity of the SHG signal light and the shape of the SHG signal in the SHG image reconstructed from the SHG signal light, pluripotent cells, ectodermal cells, mesodermal cells, and Endoderm cells may be inferred. As a specific example, when a filamentous SHG image (SHG signal) is present, in the S2 step, the test cell can be estimated to be, for example, a pluripotent cell. Further, when a granular SHG image (signal of SHG) having a strong signal intensity is present, in the S2 step, the test cell can be estimated to be, for example, an ectodermal cell. Further, when a mesh-shaped (reticular) SHG image (signal of SHG) is present, it can be estimated in the step S2 that the test cell is, for example, a mesodermal cell. Then, when the SHG image (SHG signal) does not exist, it can be estimated that the test cell is, for example, an endoderm cell in the step S2.
 S2工程において、推定手段112は、複数の条件を組み合せて、細胞種を推定してもよい。具体的には、S2工程では、前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上か否かを判定する。前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上である場合、S2工程では、前記信号光における第二高調波(SHG)の信号光のシグナル強度が基準値以上か否かを判定する。そして、前記信号光におけるSHGの信号光のシグナル強度が基準値以上である場合、S2工程では、前記被検細胞は、外胚葉系細胞であると推定する。他方、前記信号光におけるSHGの信号光のシグナル強度が基準値未満である場合、S2工程では、前記被検細胞は多能性細胞であると推定する。S2工程では、前記信号光におけるSHGの信号光のシグナル強度に代えてまたは加えて、前記信号光から再構築されるSHG像におけるSHGのシグナルの形状に基づき、細胞腫を推定してもよい。具体的には、S2工程では、前記SHG像におけるSHGのシグナルの形状が粒状である、またはフィラメント状であるか否かを判定してもよい。そして、前記SHG像におけるSHGのシグナルの形状が粒状である場合またはフィラメント状でない場合、S2工程では、前記被検細胞は、外胚葉系細胞であると推定する。他方、前記SHG像におけるSHGのシグナルの形状が粒状でない場合またはフィラメント状である場合、S2工程では、前記被検細胞は、多能性細胞であると推定する。 In step S2, the estimation means 112 may combine a plurality of conditions to estimate the cell type. Specifically, in the step S2, it is determined whether or not the signal intensity of the CH 2 expansion/contraction signal light in the signal light is equal to or higher than a reference value. When the signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than the reference value, in the step S2, it is determined whether the signal intensity of the second harmonic (SHG) signal light in the signal light is equal to or higher than the reference value. judge. Then, when the signal intensity of the SHG signal light in the signal light is equal to or higher than a reference value, it is estimated that the test cell is an ectodermal cell in step S2. On the other hand, when the signal intensity of the signal light of SHG in the signal light is less than the reference value, it is estimated in the step S2 that the test cell is a pluripotent cell. In the step S2, the cell tumor may be estimated based on the shape of the SHG signal in the SHG image reconstructed from the signal light instead of or in addition to the signal intensity of the SHG signal light in the signal light. Specifically, in step S2, it may be determined whether the shape of the SHG signal in the SHG image is granular or filamentous. Then, when the shape of the SHG signal in the SHG image is granular or not filamentous, it is presumed that the test cells are ectodermal cells in step S2. On the other hand, when the shape of the SHG signal in the SHG image is not granular or is filamentous, it is presumed that the test cells are pluripotent cells in step S2.
 つぎに、前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満である場合、S2工程では、前記信号光におけるSHGの信号光のシグナル強度が基準値以上であるか否かを判定する。そして、前記信号光におけるSHGの信号光のシグナル強度が基準値以上である場合、S2工程では、前記被検細胞は、中胚葉系細胞であると推定する。他方、前記信号光におけるSHGの信号光のシグナル強度が基準値未満である場合、S2工程では、前記被検細胞は、内胚葉系細胞であると推定する。S2工程では、前記信号光におけるSHGの信号光のシグナル強度に代えてまたは加えて、前記SHG像におけるSHGのシグナルの形状に基づき、細胞腫を推定してもよい。具体的には、S2工程では、前記信号光におけるSHGのシグナルの形状が網状であるか、または形状が存在するか否かを判定してもよい。そして、前記SHG像におけるSHGのシグナルの形状が網状である場合または形状が存在する場合、S2工程では、前記被検細胞は、中胚葉系細胞であると推定する。他方、前記SHG像におけるSHGのシグナルの形状が網状でない場合または形状が存在しない場合、S2工程では、前記被検細胞は、内胚葉系細胞であると推定する。 Next, when the signal intensity of the CH 2 expansion and contraction signal light in the signal light is less than the reference value, it is determined in step S2 whether the signal intensity of the SHG signal light in the signal light is equal to or more than the reference value. To do. Then, when the signal intensity of the signal light of SHG in the signal light is equal to or higher than the reference value, it is estimated in the step S2 that the test cell is a mesodermal cell. On the other hand, when the signal intensity of the signal light of SHG in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell in step S2. In the step S2, a cell tumor may be estimated based on the shape of the SHG signal in the SHG image instead of or in addition to the signal intensity of the SHG signal light in the signal light. Specifically, in the step S2, it may be determined whether or not the shape of the SHG signal in the signal light is reticulated or the shape exists. Then, when the shape of the SHG signal in the SHG image is reticular or when there is a shape, the test cell is estimated to be a mesodermal cell in step S2. On the other hand, when the shape of the SHG signal in the SHG image is not reticulated or does not exist, it is presumed that the test cells are endoderm cells in step S2.
 S2工程における複数の条件の具体例として、前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞、または前記内胚葉系細胞であるかを推定する場合、S2工程では、例えば、前記信号光と下記条件(1)~(4)に基づき、前記信号光が、下記条件(1)~(4)を満たすかを判定し、前記被検細胞の細胞種を推定できる。
(1)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以下(未満)である場合、または前記信号光における第二高調波の信号光の形状がフィラメント状である場合、前記被検細胞は多能性細胞であると推定する。
(2)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が粒状である場合、前記被検細胞は、外胚葉系細胞であると推定する。
(3)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が網状である場合、前記被検細胞は、中胚葉系細胞であると推定する。
(4)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値未満である場合、前記被検細胞は、内胚葉系細胞であると推定する。
As a specific example of the plurality of conditions in the step S2, when estimating whether the condition is the pluripotent cell, the ectodermal cell, the mesodermal cell, or the endodermal cell, in the S2 step, for example, Based on the signal light and the following conditions (1) to (4), it can be determined whether the signal light satisfies the following conditions (1) to (4), and the cell type of the test cell can be estimated.
(1) When the signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value and the signal intensity of the second harmonic signal light in the signal light is equal to or lower than the reference value (less than), or When the shape of the signal light of the second harmonic in the signal light is filamentous, it is estimated that the test cell is a pluripotent cell.
(2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the signal light of the second harmonic has a granular shape, it is estimated that the test cell is an ectodermal cell.
(3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the second harmonic signal light is reticulated, it is estimated that the test cell is a mesodermal cell.
(4) When the signal intensity of the CH 2 expansion and contraction signal light in the signal light is less than a reference value and the signal intensity of the second harmonic signal light in the signal light is less than the reference value, the test cell Are presumed to be endodermal cells.
 前記多能性細胞および前記外胚葉系細胞は、例えば、前記中胚葉系細胞および前記内胚葉系細胞と比較して、細胞核が相対的に大きい。このため、S2工程では、前記条件(1)~(4)において、前記信号光におけるCH伸縮に代えて、細胞核の大きさを用いて、推定してもよい。前記細胞核の大きさは、例えば、CH伸縮の信号光から再構成されたCH伸縮像において、シグナル強度の弱い領域の大きさとして表される。 The pluripotent cells and the ectodermal cells have relatively large cell nuclei, for example, as compared with the mesodermal cells and the endodermal cells. Therefore, in the step S2, the size of the cell nucleus may be used instead of the CH 2 expansion and contraction in the signal light under the conditions (1) to (4). The size of the cell nucleus is represented, for example, as the size of a region having a weak signal intensity in a CH 2 stretch image reconstructed from CH 2 stretch signal light.
 S2工程において、推定手段112は、例えば、前記信号光に基づき、前記被検細胞の細胞種の推定結果を出力する機械学習により生成された学習済モデルを用いて、前記被検細胞の細胞種の推定を実施してもよい。前記学習済モデルは、例えば、後述の学習済モデルの製造方法および学習済モデルの製造装置により製造できる。 In step S2, the estimation unit 112 uses, for example, a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light, and uses the learned cell type of the test cell. May be estimated. The learned model can be manufactured by, for example, a learned model manufacturing method and a learned model manufacturing apparatus described later.
 実施形態1において、シグナル強度および第二高調波の信号光の形状の検出は、推定手段112が行なっているが、例えば、各信号光のシグナル強度を検出する検出手段または各信号光から信号像を再構築し、形状を検出する検出手段によって実施されてもよい。 In the first embodiment, the estimation unit 112 detects the signal intensity and the shape of the signal light of the second harmonic, but for example, the detection unit that detects the signal intensity of each signal light or the signal image from each signal light. May be reconstructed and detected by a detecting means for detecting the shape.
 実施形態1において、被検細胞として、多能性細胞、外胚葉系細胞、中胚葉系細胞、および内胚葉細胞を例にあげて説明したが、前述のように、本発明はこれに限定されず、他の細胞の推定に使用できる。具体例として、SHGから再構築されたSHG像が軸索状の場合、前記被検細胞は、例えば、神経細胞と推定できる。また、SHGから再構築されたSHG像が線毛根状の場合、前記被検細胞は、例えば、視細胞と推定できる。 Although the pluripotent cells, ectodermal cells, mesoderm cells, and endoderm cells have been described as examples of the test cells in Embodiment 1, the present invention is not limited thereto as described above. Instead, it can be used to estimate other cells. As a specific example, when the SHG image reconstructed from SHG is axonal, the test cell can be estimated to be, for example, a nerve cell. Moreover, when the SHG image reconstructed from SHG has a pili root shape, the test cell can be estimated to be, for example, a photoreceptor cell.
 実施形態1において、信号光として、CH伸縮およびSHGを用いる場合を例にあげて説明したが、他の信号光を用いてもよい。具体例として、前記被検細胞として骨系の細胞を検出する場合、前記信号光として、961Raman shift/cm-1を使用することにより、PO4 3-を検出できる。 In Embodiment 1, the case where CH 2 expansion and contraction and SHG are used as the signal light has been described as an example, but other signal light may be used. As a specific example, when detecting bone-type cells as the test cells, PO 4 3− can be detected by using 961 Raman shift/cm −1 as the signal light.
<細胞の製造方法および製造装置>
 本発明の細胞の製造方法は、前述のように、被検細胞を観察する観察工程と、前記被検細胞の細胞種を推定する推定工程と、前記所定の細胞種の被検細胞を選抜する選抜工程とを含み、前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、前記推定工程は、前記本発明の細胞種の推定方法により実施される。また、本発明の細胞の製造装置は、被検細胞を観察可能な観察ユニットと、前記被検細胞の細胞種を推定する推定ユニットと、前記所定の細胞種の被検細胞を選抜する選抜ユニットとを含み、前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、前記推定ユニットは、前記本発明の細胞種の推定装置を含む。本発明の製造方法および製造装置は、前記被検細胞の細胞種の推定を、前記本発明の推定方法または推定装置で実施することが特徴であり、その他の構成および条件は、特に制限されない。本発明によれば、対象細胞が生きた状態で、細胞種を推定可能であるため、所定の細胞種の細胞を生きた状態で製造できる。本発明の製造方法および製造装置は、前記本発明の推定方法および推定装置の説明を援用できる。
<Cell manufacturing method and manufacturing apparatus>
As described above, the method for producing cells of the present invention comprises an observation step of observing a test cell, an estimation step of estimating a cell type of the test cell, and a test cell of the predetermined cell type. Including a selection step, the observation step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, and the estimation step is performed by the cell type estimation method of the present invention. Further, the cell manufacturing apparatus of the present invention is an observation unit capable of observing a test cell, an estimation unit for estimating a cell type of the test cell, and a selection unit for selecting a test cell of the predetermined cell type. And the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope, and the estimation unit includes the cell type estimation device of the present invention. The production method and production apparatus of the present invention are characterized in that the estimation of the cell type of the test cell is performed by the estimation method or estimation apparatus of the present invention, and other configurations and conditions are not particularly limited. According to the present invention, a cell type can be estimated in a living state of a target cell, and thus a cell of a predetermined cell type can be produced in a living state. The description of the estimation method and the estimation apparatus of the present invention can be applied to the production method and the production apparatus of the present invention.
(実施形態2)
 図4に、本実施形態における製造装置のブロック図を示す。図4に示すように、本実施形態の製造装置20は、推定ユニットとして、実施形態1の推定装置10を備え、さらに、観察ユニット113および選抜ユニット114を含む。観察ユニット113は、被検細胞を観察可能である。観察ユニット113は、例えば、明視野顕微鏡、実体顕微鏡、位相差顕微鏡、微分干渉顕微鏡、偏光顕微鏡、蛍光顕微鏡、共焦点レーザ顕微鏡、全反射照明蛍光顕微鏡、ラマン顕微鏡、CARS顕微鏡等の光学顕微鏡があげられる。観察ユニット113は、CARS顕微鏡を含むことが好ましい。この場合、観察ユニット113は、他の光学顕微鏡を含んでもよい。選抜ユニット114は、所定の細胞種の被検細胞を選抜する。選抜ユニット114は、例えば、所定の細胞種の被検細胞を回収または維持できればよく、具体例として、被検細胞にレーザを照射可能なレーザ照射ユニット、特定の細胞を回収可能な回収ユニット等があげられる。前者の場合、レーザ照射ユニットは、例えば、前記所定の細胞種の被検細胞にレーザを照射し、剥離することにより回収してもよいし、前記所定の細胞種以外の細胞にレーザを照射し、剥離または致死させることにより実施してもよい。後者の場合、前記回収ユニットは、例えば、スカラーロボットとスクレーパー等の組合せがあげられる。これらの点を除き、実施形態2の製造装置20は、実施形態1の推定装置10と同様の構成を有し、その説明を援用できる。
(Embodiment 2)
FIG. 4 shows a block diagram of the manufacturing apparatus in this embodiment. As shown in FIG. 4, the manufacturing apparatus 20 of the present embodiment includes the estimation device 10 of the first embodiment as an estimation unit, and further includes an observation unit 113 and a selection unit 114. The observation unit 113 can observe the test cells. The observation unit 113 is, for example, an optical microscope such as a bright field microscope, a stereomicroscope, a phase contrast microscope, a differential interference microscope, a polarization microscope, a fluorescence microscope, a confocal laser microscope, a total reflection illumination fluorescence microscope, a Raman microscope, and a CARS microscope. To be The observation unit 113 preferably includes a CARS microscope. In this case, the observation unit 113 may include another optical microscope. The selection unit 114 selects test cells of a predetermined cell type. The selection unit 114 may be, for example, capable of collecting or maintaining a test cell of a predetermined cell type, and specific examples thereof include a laser irradiation unit capable of irradiating the test cell with a laser, a recovery unit capable of recovering a specific cell, and the like. can give. In the former case, the laser irradiation unit may, for example, irradiate the test cells of the predetermined cell type with a laser and collect them by peeling, or irradiate the cells other than the predetermined cell type with a laser. Alternatively, it may be peeled off or killed. In the latter case, the recovery unit may be, for example, a combination of a scalar robot and a scraper. Except for these points, the manufacturing apparatus 20 of the second embodiment has the same configuration as the estimation apparatus 10 of the first embodiment, and the description thereof can be incorporated.
 つぎに、図4の製造装置における処理の一例を、図5のフローチャートに基づいて説明する。 Next, an example of processing in the manufacturing apparatus of FIG. 4 will be described based on the flowchart of FIG.
 まず、観察ユニット113により、被検細胞を観察する(S3、観察工程)。これにより、被検細胞の細胞種の推定に必要な、CARS顕微鏡により取得される信号光を取得する。S3工程は、実施形態1におけるCARS顕微鏡による信号光の取得と同様にして実施できる。 First, the test cell is observed by the observation unit 113 (S3, observation step). Thereby, the signal light acquired by the CARS microscope necessary for estimating the cell type of the test cell is acquired. The step S3 can be carried out in the same manner as the acquisition of the signal light by the CARS microscope in the first embodiment.
 つぎに、実施形態1の推定方法におけるS1工程およびS2工程と同様にして、推定ユニットである推定装置10により、被検細胞の細胞種を推定する(推定工程)。 Next, in the same manner as the steps S1 and S2 in the estimation method of the first embodiment, the estimation device 10 that is an estimation unit estimates the cell type of the test cell (estimation step).
 さらに、選抜ユニット114により、所定の細胞種の被検細胞を選抜する(S4、選抜工程)。前記所定の細胞種は、特に制限されず、任意の細胞種とできる。選抜ユニット114による選抜は、例えば、所定の細胞種の被検細胞を回収することにより実施してもよいし、所定の細胞種以外の被検細胞を除去することにより実施してもよい。具体例として、前記多能性細胞から、特定の分化細胞を誘導する場合、前記所定の細胞種は、例えば、特定の分化細胞である。このため、S4工程では、選抜ユニット114により、特定の分化細胞を回収する、また、特定の細胞種以前の細胞を除去することにより、前記特定の分化細胞を選抜できる。 Further, the selection unit 114 selects test cells of a predetermined cell type (S4, selection step). The predetermined cell type is not particularly limited and can be any cell type. The selection by the selection unit 114 may be performed, for example, by collecting test cells of a predetermined cell type or by removing test cells other than the predetermined cell type. As a specific example, in the case of inducing a specific differentiated cell from the pluripotent cell, the predetermined cell type is, for example, a specific differentiated cell. Therefore, in the step S4, the selection unit 114 collects the specific differentiated cells and removes cells before the specific cell type, so that the specific differentiated cells can be selected.
<観察方法および観察装置>
 本発明のコヒーレント反ストークスラマン散乱(CARS)を用いた観察方法は、前述のように、被検細胞を観察する観察工程と、前記被検細胞の細胞種を推定する推定工程と、所定の細胞種の被検細胞を再度観察する再観察工程とを含み、前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、前記推定工程は、前記本発明の細胞種の推定方法により実施される。本発明のコヒーレント反ストークスラマン散乱(CARS)を用いた観察装置は、被検細胞を観察可能な観察ユニットと、前記被検細胞の細胞種を推定する推定ユニットと、前記観察ユニットを制御可能な制御ユニットとを含み、前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、前記推定ユニットは、本発明の細胞種の推定装置を含み、前記制御ユニットは、前記被検細胞のうち、所定の細胞種と推定された細胞について、前記観察ユニットにより再観察を実施する。本発明の観察方法および観察装置は、前記被検細胞の細胞種の推定を、前記本発明の推定方法または推定装置で実施することが特徴であり、その他の構成および条件は、特に制限されない。本発明によれば、対象細胞が生きた状態で、細胞種を推定可能であるため、所定の細胞種の細胞について、生きた状態でさらなる観察を行なうことができる。本発明の観察方法および観察装置は、前記本発明の推定方法、推定装置、製造方法および製造装置の説明を援用できる。
<Observation method and observation device>
The observation method using the coherent anti-Stokes Raman scattering (CARS) of the present invention includes, as described above, an observation step of observing a test cell, an estimation step of estimating the cell type of the test cell, and a predetermined cell. Re-observing the test cells of the species again, the observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope, and the estimating step is the method of estimating the cell type of the present invention. It is carried out by. An observation apparatus using coherent anti-Stokes Raman scattering (CARS) of the present invention is capable of observing a test cell, an estimation unit for estimating a cell type of the test cell, and the control of the observation unit. And a control unit, the observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope, the estimation unit includes the cell type estimation device of the present invention, and the control unit includes one of the test cells. The cells presumed to be a predetermined cell type are re-observed by the observation unit. The observation method and the observation device of the present invention are characterized in that the estimation of the cell type of the test cell is performed by the estimation method or the estimation device of the present invention, and other configurations and conditions are not particularly limited. According to the present invention, since the cell type can be estimated in a living state of the target cell, it is possible to further observe a cell of a predetermined cell type in a living state. Regarding the observation method and the observation apparatus of the present invention, the description of the estimation method, the estimation apparatus, the manufacturing method, and the manufacturing apparatus of the present invention can be applied.
(実施形態3)
 図6に、本実施形態における観察装置のブロック図を示す。図6に示すように、本実施形態の観察装置30は、観察ユニット113および推定ユニット31を備える。推定ユニット31は、取得手段111、推定手段112、および制御ユニット115を備える。制御ユニット115は、観察ユニット113を制御可能であり、被検細胞のうち、所定の細胞種と推定された細胞について、観察ユニット113により再観察を実施する。これらの点を除き、実施形態3の観察装置は、実施形態1の推定装置10または実施形態2の製造装置20と同様の構成を有し、その説明を援用できる。
(Embodiment 3)
FIG. 6 shows a block diagram of the observation device in this embodiment. As shown in FIG. 6, the observation device 30 of this embodiment includes an observation unit 113 and an estimation unit 31. The estimation unit 31 includes an acquisition unit 111, an estimation unit 112, and a control unit 115. The control unit 115 can control the observation unit 113, and the observation unit 113 re-observes the cells estimated to be a predetermined cell type among the test cells. Except for these points, the observation device of the third embodiment has the same configuration as the estimation device 10 of the first embodiment or the manufacturing device 20 of the second embodiment, and the description thereof can be incorporated.
 つぎに、図6の観察装置における処理の一例を、図7のフローチャートに基づいて説明する。 Next, an example of processing in the observation device in FIG. 6 will be described based on the flowchart in FIG. 7.
 まず、実施形態2の製造方法と同様に、観察ユニット113により被検細胞を観察する(S3、観察工程)。つぎに、実施形態1の推定方法におけるS1工程およびS2工程と同様にして、得られた信号光に基づき、被検細胞の細胞種を推定する(推定工程)。 First, similarly to the manufacturing method of the second embodiment, the test cell is observed by the observation unit 113 (S3, observation step). Next, the cell type of the test cell is estimated based on the obtained signal light in the same manner as the steps S1 and S2 in the estimation method of the first embodiment (estimation step).
 さらに、制御ユニット115は、観察ユニット113を制御し、観察ユニット113により、所定の細胞種の被検細胞を再度観察する(S5、再観察工程)。 Further, the control unit 115 controls the observation unit 113, and the observation unit 113 again observes the test cells of a predetermined cell type (S5, re-observation step).
<学習済モデルの製造方法および製造装置>
 本発明の細胞種の推定に用いる学習済モデルの製造方法は、前述のように、被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習工程とを含む。また、本発明の細胞種の推定に用いる学習済モデルの製造装置は、被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習手段とを含む。本発明の学習方法および学習装置は、被検細胞についてCARS顕微鏡を用いて取得された信号光と、被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成することが特徴であり、その他の構成および条件は、特に制限されない。本発明の学習済モデルの製造方法および製造装置によれば、対象細胞が生きた状態で、細胞種を推定可能な学習済モデルを製造できる。本発明の学習方法および学習装置は、前記本発明の推定方法、推定装置、製造方法、製造装置、観察方法および観察装置の説明を援用できる。
<Learning model manufacturing method and manufacturing device>
As described above, the manufacturing method of the learned model used for estimating the cell type of the present invention includes an acquisition step of acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell, A learning step of generating a learned model that outputs the estimation result of the cell type of the test cell from the signal light using the pair of the signal light and the cell type of the test cell as teacher data. Further, the trained model manufacturing apparatus used for estimating the cell type of the present invention includes an acquisition unit for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell, and the signal light. And learning means for generating a learned model that outputs the estimation result of the cell type of the test cell from the signal light, using the set of the cell type of the test cell as teacher data. The learning method and the learning device of the present invention use a pair of a signal light obtained by using a CARS microscope for a test cell and a cell type of the test cell as teaching data, and from the signal light, a cell type of the test cell. The feature is that a trained model that outputs the estimation result of is generated, and other configurations and conditions are not particularly limited. According to the learning model manufacturing method and the manufacturing apparatus of the present invention, it is possible to manufacture a learned model capable of estimating the cell type in a state where the target cell is alive. Regarding the learning method and the learning device of the present invention, the description of the estimation method, the estimation device, the manufacturing method, the manufacturing device, the observation method and the observation device of the present invention can be applied.
(実施形態4)
 図8に、本実施形態における学習装置のブロック図を示す。図8に示すように、本実施形態の学習装置40は、取得手段111および学習手段116を備える。図8に示すように、取得手段111および学習手段116は、ハードウェアであるデータ処理手段(データ処理装置)11に組み込まれてもよく、ソフトウェアまたは前記ソフトウェアが組み込まれたハードウェアでもよい。データ処理手段11は、CPU等を備えてもよい。また、データ処理手段11は、例えば、前述のROM、RAM等を備えてもよい。取得手段111は、実施形態1の推定装置10における取得手段111と同様であり、その説明を援用できる。
(Embodiment 4)
FIG. 8 shows a block diagram of the learning device in this embodiment. As shown in FIG. 8, the learning device 40 of this embodiment includes an acquisition unit 111 and a learning unit 116. As shown in FIG. 8, the acquisition unit 111 and the learning unit 116 may be incorporated in the data processing unit (data processing device) 11 that is hardware, or may be software or hardware in which the software is incorporated. The data processing means 11 may include a CPU or the like. Further, the data processing means 11 may include, for example, the above-mentioned ROM, RAM and the like. The acquisition unit 111 is the same as the acquisition unit 111 in the estimation device 10 of the first embodiment, and the description thereof can be applied.
 つぎに、図8の学習装置における処理の一例を、図9のフローチャートに基づいて説明する。 Next, an example of processing in the learning device in FIG. 8 will be described based on the flowchart in FIG.
 まず、実施形態1の推定方法のS1工程と同様に、取得手段111により、CARS顕微鏡を用いて取得された信号光を取得する。前記被検細胞の数は、特に制限されず、任意の数とできる。前記被検細胞が複数の場合、各被検細胞の細胞種は、同じでもよいし、異なってもよい。後者の場合、一部の被検細胞は、細胞種が重複することが好ましい。具体例として、前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞および前記内胚葉系細胞かを推定可能な学習済モデルを生成する場合、前記被検細胞としては、細胞種を確認した前記多能性細胞、前記外胚葉系細胞、前記中胚葉系細胞および前記内胚葉系細胞を用いることが好ましい。また、各細胞は、複数が好ましい。 First, similarly to step S1 of the estimation method of the first embodiment, the acquisition unit 111 acquires the signal light acquired using the CARS microscope. The number of the test cells is not particularly limited and can be any number. When there are a plurality of test cells, the cell type of each test cell may be the same or different. In the latter case, it is preferable that some test cells have overlapping cell types. As a specific example, when a learned model capable of estimating the pluripotent cells, the ectodermal cells, the mesodermal cells and the endodermal cells is generated, the test cells are cell types. It is preferable to use the confirmed pluripotent cells, the ectodermal cells, the mesodermal cells, and the endodermal cells. Also, each cell is preferably plural.
 つぎに、学習手段116は、前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する(S6、学習工程)。具体的には、各被検細胞について、S1工程で得られた信号光と、被検細胞の細胞種とを関連付ける。関連付ける信号光は、S1工程で得られた信号光のスペクトル全体でもよいし、特定の信号光でもよい。後者の場合、特定の信号光は、例えば、CH伸縮の信号光およびSHGの信号光があげられる。前記特定の信号光を関連付ける場合、本実施形態の学習方法は、例えば、S1工程後、検出手段により、得られた信号において、特定の信号光を検出する。また、前記検出手段は、例えば、特定の信号光のシグナル強度を検出してもよいし、特定の信号光を再構築して得られた信号像における信号光の形状を検出してもよい。 Next, the learning unit 116 generates a learned model that outputs the estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teaching data. (S6, learning process). Specifically, for each test cell, the signal light obtained in step S1 is associated with the cell type of the test cell. The associated signal light may be the entire spectrum of the signal light obtained in step S1 or a specific signal light. In the latter case, the specific signal light includes, for example, CH 2 expansion/contraction signal light and SHG signal light. In the case of associating the specific signal light, the learning method according to the present embodiment detects the specific signal light in the obtained signal by the detecting unit after step S1, for example. Further, for example, the detection unit may detect the signal intensity of the specific signal light, or may detect the shape of the signal light in the signal image obtained by reconstructing the specific signal light.
 学習済モデルの生成に用いる機械学習の方法は、特に制限されず、例えば、分類に用いる学習技法を用いることができる。具体例として、前記機械学習の方法としては、例えば、サポートベクターマシン、エクストリーム・ラーニング・マシン、表現学習(Feature learning)等があげられる。本実施形態において、前記機械学習は、教師あり学習を用いているが、半教師あり学習を用いてもよい。前記教師データの数は、複数であり、その上限は特に制限されない。 The machine learning method used to generate the learned model is not particularly limited, and for example, the learning technique used for classification can be used. As a specific example, examples of the machine learning method include a support vector machine, an extreme learning machine, and a feature learning. In the present embodiment, the machine learning uses supervised learning, but semi-supervised learning may be used. The number of the teacher data is plural, and the upper limit is not particularly limited.
<プログラム>
 本発明のプログラムは、前記本発明の推定方法、製造方法、観察方法または学習方法を、コンピュータ上で実行可能なプログラムである。または、本実施形態のプログラムは、例えば、コンピュータ読み取り可能な記録媒体に記録されてもよい。前記記録媒体は、例えば、非一時的なコンピュータ可読記録媒体(non-transitory computer-readable storage medium)である。前記記録媒体は、特に制限されず、例えば、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク(HD)、光ディスク、フロッピー(登録商標)ディスク(FD)等があげられる。
<Program>
A program of the present invention is a program capable of executing the estimation method, manufacturing method, observation method or learning method of the present invention on a computer. Alternatively, the program of this embodiment may be recorded in a computer-readable recording medium, for example. The recording medium is, for example, a non-transitory computer-readable storage medium. The recording medium is not particularly limited, and examples thereof include a random access memory (RAM), a read-only memory (ROM), a hard disk (HD), an optical disk, and a floppy (registered trademark) disk (FD).
 次に、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, an embodiment of the present invention will be described. However, the present invention is not limited to the following examples. Commercially available reagents were used according to their protocol unless otherwise indicated.
[実施例1]
 CARS顕微鏡により取得した信号光が、細胞の細胞種と関連性を有することを確認した。
[Example 1]
It was confirmed that the signal light obtained by the CARS microscope has a relationship with the cell type of the cell.
(1)CARS顕微鏡
 実施例1で用いるCARS顕微鏡は、マルチプレックスCARS顕微分光装置を用いた。実施例1で用いたCARS顕微鏡の光学系の構成の概略図を図10に示す。
(1) CARS Microscope The CARS microscope used in Example 1 was a multiplex CARS microscope. A schematic diagram of the configuration of the optical system of the CARS microscope used in Example 1 is shown in FIG.
 光源は、発振波長1064nm、パルス幅800ps、繰り返し周波数33 kHzのcw QスイッチマイクロチップNd:YAGレーザー(A)を用いた。パルス幅がサブナノ秒であり、1cm-1以下程度の線幅を持つ。この出力を二つに分け、一方はω光として基本波である中心波長1064nmのパルスレーザーを、他方はPCFに導入し、ω光としてスーパーコンティニュウム光を発生させた。ω光は、光源本体から出射されるレーザ光をf=400.0 mm(AC254-400-C f=400.0 mm, φ1" Achromatic Doublet, ARC: 1050-1700 nm; Thorlabs)の平凸レンズ(B)でコリメートし、ω光はPCFから出射された広帯域な波長成分を有するスーパーコンティニュウム光を非軸放物面鏡(Protected Silver Reflective Collimator, 450 nm-20 um, φ4 mm, FC/APC; Thorlabs)(C)に導入することでコリメートし伝搬させた。 As the light source, a cw Q switch microchip Nd:YAG laser (A) having an oscillation wavelength of 1064 nm, a pulse width of 800 ps and a repetition frequency of 33 kHz was used. The pulse width is sub-nanosecond and has a line width of about 1 cm -1 or less. Divide the output into two, a pulse laser having a center wavelength of 1064nm is fundamental as one is omega 1 light and the other is introduced into PCF, it was generated supercontinuum light as omega 2 light. The ω 1 light is the laser light emitted from the light source body with a plano-convex lens (B) of f=400.0 mm (AC254-400-C f=400.0 mm, φ1" Achromatic Doublet, ARC: 1050-1700 nm; Thorlabs). The ω 2 light is collimated and the ω 2 light is a super-continuum light having a broadband wavelength component emitted from the PCF. ) (C) was introduced and collimated and propagated.
 また、ω光は伝搬の途中でVariable Neutral Density Filter(VND Filter)(D)と1064nm半波長板(S333-1064-2; 駿河精機社製)(E)を挟んだ。VND Filterは、試料に入射するω光の光量調整を、1064nm半波長板は後述するSHGアクティブな分子の偏光依存性を確認するために用いた。 Further, the ω 1 light was sandwiched between a Variable Neutral Density Filter (VND Filter) (D) and a 1064 nm half-wave plate (S333-1064-2; manufactured by Suruga Seiki Co., Ltd.) (E) on the way of propagation. The VND filter was used to adjust the light amount of ω 1 light incident on the sample, and the 1064 nm half-wave plate was used to confirm the polarization dependence of SHG active molecules described later.
 さらに、ω光は中心波長1064nm以外にもその短波長側に微弱な成分を含んでおり、検出するCARS光の以外のω光に含まれる余分なスペクトル成分を効率的にカットするために1064nm narrow Band Pass Filter(1064.1-1 OD7 Ultra Narrow Bandpass; Alluxa)(F)を用いた。前記バンドパスフィルターは、中心波長1064.1nm、半値幅1nmのスペクトル成分のみを透過させる超狭帯域バンドパスフィルターを用いた。 Furthermore, the ω 1 light contains a weak component on the short wavelength side in addition to the central wavelength of 1064 nm, and in order to efficiently cut the extra spectral components contained in the ω 1 light other than the CARS light to be detected. A 1064 nm narrow band pass filter (1064.1-1 OD7 Ultra Narrow Bandpass; Alluxa) (F) was used. The bandpass filter used was an ultra-narrow bandpass filter that transmits only a spectral component having a center wavelength of 1064.1 nm and a half-value width of 1 nm.
 ω光はPCFによって可視域から近赤外域まで緩やかに伸びるブロードなバンドを持っている。ω光の中心波長1064 nmに対してCARS光の測定に必要なω光の波長域は1064~1650nm程度までである。そこで、ω光のコリメート直後に可視光の成分をカットする二つのフィルター1050 nm long Pass Filter(G)、赤外透過フィルター(IR80N; ケンコー光学社製)(H)によってω光の近赤外域に広がるスペクトル成分のみを十分に透過させた。そして、ω光とω光の合波後、二つの光を顕微鏡へと伝搬させた。 ω 2 light has a broad band that slowly extends from the visible region to the near infrared region by PCF. The wavelength range of ω 2 light required for measuring CARS light is about 1064 to 1650 nm with respect to the central wavelength of 1064 nm of ω 1 light. Accordingly, two filters 1050 nm cuts components of visible light immediately after collimation of the omega 2 light long Pass Filter (G), infrared transmission filter (IR80N; Kenko manufactured optical Ltd.) (H) near red omega 2 light by Only the spectral components that spread to the outer region were sufficiently transmitted. Then, after combining the ω 1 light and the ω 2 light, the two lights were propagated to the microscope.
 顕微鏡としては、倒立顕微鏡(eclipse Ti-U、株式会社Nikon社製)をカスタムメイドした正倒立顕微鏡を使用した。顕微鏡の倒立側から対物レンズ(Water immersion, Plan, ×60, 1.27NA; Nikon社製)(J)に入射し、試料に集光されたω光とω光によりCARSやSHGといった非線形光学現象が発生する。対物レンズで絞られているため、これらの非線形光学現象は位相整合条件から前方方向に効率よく発生する。焦点で発生した信号光は顕微鏡正立側の対物レンズ(Dry, S Plan Fluor, ×40, 0.60NA; Nikon社製)(K)によって集光、コリメートされた。 As the microscope, an upside down microscope (eclipse Ti-U, manufactured by Nikon Co., Ltd.) that is custom-made is used. Nonlinear optics such as CARS and SHG by ω 1 light and ω 2 light incident on the objective lens (Water immersion, Plan, ×60, 1.27NA; Nikon) (J) from the inverted side of the microscope and focused on the sample. The phenomenon occurs. Since they are focused by the objective lens, these nonlinear optical phenomena efficiently occur in the forward direction due to the phase matching condition. The signal light generated at the focal point was condensed and collimated by an objective lens (Dry, S Plan Fluor, ×40, 0.60NA; manufactured by Nikon) on the upright side of the microscope (K).
 倒立側対物レンズにより試料面で集光された位置でパワーメーターを用いて測定した平均パワーはそれぞれω光が最大55 mW、ω光が最大20 mWであった。実際の測定ではこのうちパワーの高いω光に前述のVND Filterを用いることでサンプル信号強度の調節を行った。 The average power measured with a power meter at the position where the light was focused on the sample surface by the inverted objective lens was ω 1 light of maximum 55 mW and ω 2 light of maximum 20 mW, respectively. In the actual measurement, the sample signal intensity was adjusted by using the above-mentioned VND filter for the ω 1 light with high power.
 顕微鏡にはハロゲンランプが備え付けられており、試料の光学像をCCDカメラで撮影可能である。顕微鏡内ではω光とω光がハロゲンランプの光と同軸に存在するため、倒立側対物レンズ直前のダイクロイックビームスプリッター(FF825-SDi01-25×36×2.0シングルエッジショートパスDichroicビームスプリッター; オプトライン社製)(L)と、正立側対物レンズの直後のダイクロイックミラー(TFMS-30C05-3/20超広帯域誘多膜平面ミラー; シグマ光機社製)(M)とを使用した。 The microscope is equipped with a halogen lamp, and an optical image of the sample can be taken with a CCD camera. In the microscope, ω 1 light and ω 2 light exist coaxially with the light of the halogen lamp, so the dichroic beam splitter (FF825-SDi01-25×36×2.0 single edge short path Dichroic beam splitter; opt (Manufactured by Line Co., Ltd.) (L) and a dichroic mirror (TFMS-30C05-3/20 ultra-wide band induction multilayer flat mirror; manufactured by Sigma Optical Co., Ltd.) (M) immediately after the erecting side objective lens were used.
 顕微鏡に設置したステージは二軸の微小位置決め装置によって制御されるステップモータ式MicroStage(Micro-Stage(2 axis); Mad City Labs)(N)を利用した。さらに前記MicroStageの上に動作範囲75 μm×75 μm×50 μmのピエゾステージ(Nano-LPQ; Mad City Labs社製)(O)を設置し、ミリ単位での面内幅広いストロークに加え、さらに細かいストロークの面内ステージ制御と光軸Z方向、すなわち試料に対しての奥行方向のスキャンを可能とした。MicroStageは非常に高精度の駆動装置により最小ステップサイズ95 nm、最大速度2 mm/secの制御が可能である。 The stage installed in the microscope used a step motor type MicroStage (Micro-Stage(2 axis); MadCityLabs)(N) controlled by a biaxial micro-positioning device. Furthermore, a piezo stage (Nano-LPQ; made by Mad City Labs) (O) with an operating range of 75 μm × 75 μm × 50 μm (O) is installed on the MicroStage, and in addition to a wide in-plane stroke in millimeters In-plane stage control of the stroke and scanning in the optical axis Z direction, that is, in the depth direction with respect to the sample are enabled. MicroStage can control a minimum step size of 95nm and a maximum speed of 2mm/sec with an extremely high precision drive.
 つぎに、検出器側の光学系は、以下の通りとした。顕微鏡の正立側対物レンズで集光された信号光は、直後のダイクロイックミラーによって反射され、その後ダイクロイックビームスプリッター(FF685-Di02-25×36 685 nm シングルエッジDichroicビームスプリッター; Semrock社製)(P)によって、近赤外域のCARS光を透過させ、可視域の光は反射させた。 Next, the optical system on the detector side was as follows. The signal light collected by the erecting objective lens of the microscope is reflected by the dichroic mirror immediately after, and then the dichroic beam splitter (FF685-Di02-25×36 685 nm  single-edge Dichroic beam splitter; manufactured by Semrock) (P ) Transmitted near-infrared CARS light and reflected visible light.
 可視域の光について、633nm short Pass Filter(Q)により可視域外の励起光由来のバックグラウンドを遮断し、その後f=65 mmの平凸レンズ(R)により分光器(Z-300 Series; LUCIR社製)(S)に集光させた。前記分光器を接続したPC上でソフトウェア(Ementool; Zolix社製)によって制御を行った。本実施例では、Grating Groove 300本/mm、Grating Blaze 500 nm、分光器の中心波長410 nmに設定した。SHGの検出には電子冷却CCDカメラ(iVac300; Andor社製)(T)を用いた。 For light in the visible range, the 633 nm short pass filter (Q) blocks the background from excitation light outside the visible range, and then a plano-convex lens (R) with f=65 mm (Z-300 Series; manufactured by LUCIR) ) (S). Control was performed by software (Ementool; Zolix) on a PC connected to the spectroscope. In this embodiment, the grating Groove is set to 300 lines/mm, the grating Blaze is set to 500 nm, and the center wavelength of the spectroscope is set to 410 nm. An electronic cooling CCD camera (iVac300; manufactured by Andor) (T) was used to detect SHG.
 近赤外域の光はダイクロイックビームスプリッターを透過し、1064nm notch Filter(1064 Narrow ノッチフィルター; Iridian社製)(U)と1050nm short Pass Filter(3RD1050SP; Omega)(V)によってω光とω光を遮断し、CARS光のみを分光器へと導光した。 Light in the near-infrared region passes through the dichroic beam splitter, and ω 1 light and ω 2 light are transmitted by the 1064nm notch filter (1064 Narrow notch filter; manufactured by Iridian) (U) and the 1050nm short pass filter (3RD1050SP; Omega) (V). Was cut off, and only CARS light was guided to the spectroscope.
 1064nm notch Filterと1050nm short Pass Filterとを透過後、CARS光はf=25 mmの平凸レンズで分光器(Acton Series LS785; Princeton Instruments社製)(X)によって波長ごとに分光され、電子冷却CCDカメラ(PIXIS 100BR; Princeton Instruments社製)(Y)で検出した。PIXIS 100BR、iVac 316、およびiVac300は、それぞれPC上のソフトウェア(LightField; Princeton Instruments社製、Andor SOLIS; Andor社製)によって制御されている。 After passing through the 1064 nm notch filter and 1050 nm short pass filter, the CARS light is spectrally separated by wavelength with a spectroscope (Acton Series LS785; Princeton Instruments) (X) with a plano-convex lens of f=25 mm, and electronically cooled CCD camera (PIXIS 100BR; manufactured by Princeton Instruments) (Y). The PIXIS100BR, iVac316, and iVac300 are controlled by software (LightField; Princeton Instruments, AndorSOLIS; Andor) on the PC.
(2)被検細胞
 被検細胞としては、iPS細胞(HiPS-WTc11 (GM25256))と、前記iPS細胞から分化誘導した、外胚葉系細胞、中胚葉系細胞、および内胚葉系細胞とを用いた。各細胞は、24ウェルディッシュ内にプレパラートを配置し、プレパラート上で培養した。各細胞は以下のように調製した。iPS細胞はプレートに播種している細胞を回収し、再度2500細胞/cmとなるように播種した。iPS細胞の培養には、Supplement BおよびSupplement Cを添加したStem Fit AK02N(味の素社製)を使用した。また、外胚葉系細胞、中胚葉系細胞、および内胚葉系細胞は、iPS細胞を2500細胞/cmとなるように播種し、1日培養後、Supplement Cを含まないStem Fit AK02N培地に置換した。この際に、外胚葉系細胞を誘導する場合、前記培地に、10μmol/L SB431542(4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide(ALK阻害剤)、和光純薬工業)および10μmol/L DMH1(4-[6-(4-Isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline, 4-[6-[4-(1-Methylethoxy)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline(BMP阻害剤)、和光純薬工業)となるように、各化合物を添加した。また、中胚葉系細胞を誘導する場合は、前記培地に、3μmol/L CHIR99021(6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile(GSK3阻害剤)、和光純薬工業)および10ng/mL ヒトリコンビナントBone Morphogenetic Protein 4(和光純薬工業)となるように、化合物およびタンパク質を添加した。さらに、内胚葉系細胞を誘導する場合は、3μmol/L CHIR99021(和光純薬工業)および10ng/mL ヒトリコンビナントActivin A(和光純薬工業)となるように、化合物およびタンパク質を添加した。そして、各細胞について、4日間以上培養した。
(2) Test cells As test cells, iPS cells (HiPS-WTc11 (GM25256)) and ectodermal cells, mesodermal cells, and endodermal cells derived from the iPS cells are used. I was there. For each cell, a preparation was placed in a 24-well dish and cultured on the preparation. Each cell was prepared as follows. For iPS cells, the cells seeded on the plate were collected and seeded again at 2500 cells/cm 2 . Stem Fit AK02N (manufactured by Ajinomoto Co., Inc.) supplemented with Supplement B and Supplement C was used for culturing iPS cells. For ectodermal cells, mesodermal cells, and endodermal cells, iPS cells were seeded at 2500 cells/cm 2 , cultured for 1 day, and then replaced with Stem Fit AK02N medium containing no Supplement C. did. At this time, when inducing ectodermal cells, 10 μmol/L SB431542 (4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazole) was added to the medium. -2-yl]benzamide (ALK inhibitor), Wako Pure Chemical Industries, Ltd. and 10 μmol/L DMH1 (4-[6-(4-Isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline, 4 -Add each compound so that it becomes -[6-[4-(1-Methylethoxy)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline (BMP inhibitor, Wako Pure Chemical Industries) did. When inducing mesodermal cells, 3 μmol/L CHIR99021 (6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol- 2-yl)-2-pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile (GSK3 inhibitor), Wako Pure Chemical Industries, Ltd. and 10 ng/mL human recombinant Bone Morphogenetic Protein 4 (Wako Pure Chemical Industries, Ltd.) , Compound and protein were added. Furthermore, when inducing endoderm cells, the compound and the protein were added so that the concentration was 3 μmol/L CHIR99021 (Wako Pure Chemical Industries, Ltd.) and 10 ng/mL human recombinant Activin A (Wako Pure Chemical Industries, Ltd.). Then, each cell was cultured for 4 days or more.
(3)測定
 培養後の各細胞を含むプレパラートをスライドグラスにマウントし、前記実施例1(1)のCARS顕微鏡で、信号光を取得した。そして、得られたCH伸縮およびSHGの信号光を再構築し、CH対称伸縮振動の像(CH伸縮像)およびSHG像を作製した。これらの結果を図11に示す。
(3) Measurement The preparation containing each cell after culturing was mounted on a slide glass, and signal light was acquired with the CARS microscope of Example 1(1). Then, the obtained CH 2 stretching and SHG signal light was reconstructed, and an image of CH 2 symmetric stretching vibration (CH 2 stretching image) and an SHG image were prepared. The results are shown in FIG.
 図11は、CH伸縮像およびSHG像を示す写真である。図11において、(A)は、iPS細胞の結果を示し、(B)は、外胚葉系細胞の結果を示し、(C)は、中胚葉系細胞の結果を示し、(D)は、内胚葉系細胞の結果を示す。また、図11において、上段は、SHG像を示し、下段は、CH伸縮像を示す。図11(A)~(D)の上段において矢印Xで示すように、SHG像として、iPS細胞では、フィラメント状のSHG像が観察され、外胚葉系細胞では、シグナル強度が強い粒状のSHG像が観察され、中胚葉系細胞では、メッシュ状(網状)のSHG像が観察され、内胚葉系細胞では、SHG像が観察されなかった。このため、各細胞の細胞種について、SHG像のシグナル強度および形状に基づき、推定できることがわかった。また、図11(A)~(D)の下段に示すように、CH伸縮像として、iPS細胞では、広い範囲でCH伸縮像が観察され、かつCH伸縮像内に大きなシグナルの欠如する領域(細胞核)が観察され、外胚葉系細胞では、広い範囲でCH伸縮像が観察され、かつCH伸縮像内に中程度のシグナルの欠如する領域(細胞核)が観察され、中胚葉系細胞では、粒状のCH伸縮像が観察され、内胚葉系細胞では、シグナル強度が強い粒状のCH伸縮像が観察された。このため、各細胞の細胞種について、CH伸縮像のシグナル強度および形状に基づき、推定できることがわかった。 FIG. 11 is a photograph showing a CH 2 stretch image and an SHG image. 11, (A) shows the results of iPS cells, (B) shows the results of ectodermal cells, (C) shows the results of mesodermal cells, and (D) shows the internal endoderm cells. The result of a germ cell is shown. Further, in FIG. 11, the upper part shows an SHG image, and the lower part shows a CH 2 stretch image. As shown by the arrow X in the upper part of FIGS. 11A to 11D, as the SHG image, a filamentous SHG image is observed in iPS cells, and a granular SHG image with strong signal intensity in ectodermal cells. , A mesh-shaped (reticular) SHG image was observed in the mesodermal cells, and no SHG image was observed in the endodermal cells. Therefore, it was found that the cell type of each cell can be estimated based on the signal intensity and shape of the SHG image. Further, as shown in the lower part of FIGS. 11A to 11D, as the CH 2 stretch image, the CH 2 stretch image was observed in a wide range in the iPS cells, and the large signal was absent in the CH 2 stretch image. the region (nucleus) is observed, the ectodermal cells, a wide range CH 2 stretching image is observed in, and the area of lack of moderate signal in the CH 2 stretching images (cell nuclei) were observed, mesoderm the system cells, are CH 2 stretching images granular observation, the endodermal cells, CH 2 stretching image signal intensity is strong graininess was observed. Therefore, it was found that the cell type of each cell can be estimated based on the signal intensity and shape of the CH 2 stretch image.
 以上のことから、CARS顕微鏡により取得した信号光が、細胞種と関連性を有し、前記信号光に基づき、細胞種を推定できることがわかった。 From the above, it was found that the signal light obtained by the CARS microscope has a relationship with the cell type, and the cell type can be estimated based on the signal light.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2019年2月8日に出願された日本出願特願2019-022032を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2019-022032 filed on February 8, 2019, and incorporates all of the disclosure thereof.
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
前記信号光に基づき、前記被検細胞の細胞種を推定する推定工程とを含む、細胞種の推定方法。
(付記2)
前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、付記1記載の推定方法。
(付記3)
前記CH伸縮の信号光は、CH対称伸縮振動の信号光またはCHはさみ変角振動の信号光である、付記2記載の推定方法。
(付記4)
前記推定工程において、前記信号光におけるCH伸縮の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種を推定する、付記1から3のいずれかに記載の推定方法。
(付記5)
前記推定工程において、前記信号光における第二高調波の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種を推定する、付記1から4のいずれかに記載の推定方法。
(付記6)
前記推定工程において、前記被検細胞の細胞種として、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞であるかを推定する、付記1から5のいずれかに記載の推定方法。
(付記7)
前記推定工程において、前記信号光と下記条件(1)~(4)とに基づき、前記被検細胞の細胞種を推定する、付記1から6のいずれかに記載の推定方法:
(1)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以下である場合、前記被検細胞は多能性細胞であると推定する;
(2)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が粒状である場合、前記被検細胞は、外胚葉系細胞であると推定する;
(3)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が網状である場合、前記被検細胞は、中胚葉系細胞であると推定する;および
(4)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値未満である場合、前記被検細胞は、内胚葉系細胞であると推定する。
(付記8)
前記推定工程において、前記信号光に基づき、前記被検細胞の細胞種の推定結果を出力する機械学習により生成された学習済みモデルを用いて、前記被検細胞の細胞種を推定する、付記1から7のいずれかに記載の推定方法。
(付記9)
前記被検細胞は、多能性細胞または多能性細胞から誘導された分化細胞である、付記1から8のいずれかに記載の推定方法。
(付記10)
被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
前記信号光に基づき、前記被検細胞の細胞種を推定する推定手段とを含む、細胞種の推定装置。
(付記11)
前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、付記10記載の推定装置。
(付記12)
前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、付記11記載の推定装置。
(付記13)
前記推定手段では、前記信号光におけるCH伸縮の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種が推定される、付記10から12のいずれかに記載の推定装置。
(付記14)
前記推定手段では、前記信号光における第二高調波の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種が推定される、付記10から13のいずれかに記載の推定装置。
(付記15)
前記推定手段では、前記被検細胞の細胞種として、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞であるかが推定される、付記10から14のいずれかに記載の推定装置。
(付記16)
前記推定手段において、前記信号光と下記条件(1)~(4)とに基づき、前記被検細胞の細胞種が推定される、付記10から15のいずれかに記載の推定装置:
(1)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以下である場合、前記被検細胞は多能性細胞であると推定する;
(2)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が粒状である場合、前記被検細胞は、外胚葉系細胞であると推定する;
(3)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が網状である場合、前記被検細胞は、中胚葉系細胞であると推定する;および
(4)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値未満である場合、前記被検細胞は、内胚葉系細胞であると推定する。
(付記17)
前記推定手段では、前記信号光に基づき、前記被検細胞の細胞種の推定結果を出力する機械学習により生成された学習済みモデルを用いて、前記被検細胞の細胞種が推定される、付記10から16のいずれかに記載の推定装置。
(付記18)
前記被検細胞は、多能性細胞または多能性細胞から誘導された分化細胞である、付記10から17のいずれかに記載の推定装置。
(付記19)
被検細胞を観察する観察工程と、
前記被検細胞の細胞種を推定する推定工程と、
所定の細胞種の被検細胞を選抜する選抜工程とを含み、
前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
前記推定工程は、付記1から9のいずれかに記載の細胞種の推定方法により実施される、細胞の製造方法。
(付記20)
前記選抜工程は、前記所定の細胞種の被検細胞を回収する、または所定の細胞種以外の被検細胞を除去することにより、前記所定の細胞種の被検細胞を選抜する、付記19記載の細胞の製造方法。
(付記21)
被検細胞を観察可能な観察ユニットと、
前記被検細胞の細胞種を推定する推定ユニットと、
所定の細胞種の被検細胞を選抜する選抜ユニットとを含み、
前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
前記推定ユニットは、付記10から18のいずれかに記載の細胞種の推定装置を含む、細胞の製造装置。
(付記22)
前記選抜ユニットは、前記所定の細胞種の被検細胞もしくは、所定の細胞種以外の被検細胞を回収する回収手段、または前記所定の細胞種以外の被検細胞にレーザを照射可能なレーザ照射ユニットを含む、付記21記載の細胞の製造装置。
(付記23)
被検細胞を観察する観察工程と、
前記被検細胞の細胞種を推定する推定工程と、
所定の細胞種の被検細胞を再度観察する再観察工程とを含み、
前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
前記推定工程は、付記1から9のいずれかに記載の細胞種の推定方法により実施される、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いた観察方法。
(付記24)
被検細胞を観察可能な観察ユニットと、
前記被検細胞の細胞種を推定する推定ユニットと、
前記観察ユニットを制御可能な制御ユニットとを含み、
前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
前記推定ユニットは、付記10から18のいずれかに記載の細胞種の推定装置を含み、
前記制御ユニットは、前記被検細胞のうち、所定の細胞種と推定された細胞について、前記観察ユニットにより再観察を実施する、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いた観察装置。
(付記25)
被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から細胞の細胞種の推定結果を出力する学習済モデルを生成する学習工程とを含む、細胞種の推定に用いる学習済モデルの製造方法。
(付記26)
前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、付記25記載の製造方法。
(付記27)
前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、付記26記載の製造方法。
(付記28)
前記学習工程において、前記信号光として、CH伸縮の信号光の形状およびシグナル強度の少なくとも一方を用いる、付記25から27のいずれかに記載の製造方法。
(付記29)
前記学習工程において、前記信号光として、第二高調波の信号光の形状およびシグナル強度の少なくとも一方を用いる、付記25から28のいずれかに記載の製造方法。
(付記30)
前記被検細胞は、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞を含む、付記25から29のいずれかに記載の製造方法。
(付記31)
被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習手段とを含む、細胞種の推定に用いる学習済モデルの製造装置。
(付記32)
前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、付記31記載の製造装置。
(付記33)
前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、付記32記載の製造装置。
(付記34)
前記学習手段において、前記信号光として、CH伸縮の信号光の形状およびシグナル強度の少なくとも一方を用いる、付記31から33のいずれかに記載の製造装置。
(付記35)
前記学習手段において、前記信号光として、第二高調波の信号光の形状およびシグナル強度の少なくとも一方を用いる、付記31から34のいずれかに記載の製造装置。
(付記36)
前記被検細胞は、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞を含む、付記31から35のいずれかに記載の製造装置。
(付記37)
被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得処理と、
前記信号光に基づき、前記被検細胞の細胞種を推定する推定処理とを、コンピュータ上で実行可能であるプログラム。
(付記38)
被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得処理と、
前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
(付記39)
付記38または39に記載のプログラムを記録している、コンピュータ読み取り可能な記録媒体。
<Appendix>
The whole or part of the exemplary embodiments and examples described above can be described as, but not limited to, the following supplementary notes.
(Appendix 1)
An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
An estimation step of estimating the cell type of the test cell based on the signal light.
(Appendix 2)
The estimation method according to appendix 1, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
(Appendix 3)
The estimation method according to appendix 2, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light or CH 2 scissors bending vibration signal light.
(Appendix 4)
4. The estimation method according to any one of appendices 1 to 3, wherein in the estimation step, the cell type of the test cell is estimated based on at least one of the shape and signal intensity of the CH 2 stretching signal light in the signal light.
(Appendix 5)
The estimation method according to any one of appendices 1 to 4, wherein in the estimation step, the cell type of the test cell is estimated based on at least one of the shape and signal intensity of the second harmonic signal light in the signal light. ..
(Appendix 6)
6. In the estimation step, it is estimated whether the cell type of the test cell is a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell, in any one of appendixes 1 to 5. Estimation method.
(Appendix 7)
7. The estimation method according to any one of appendices 1 to 6, wherein in the estimation step, the cell type of the test cell is estimated based on the signal light and the following conditions (1) to (4):
(1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells;
(2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell;
(3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the second-harmonic signal light is reticulated, it is presumed that the test cell is a mesodermal cell; and (4) the signal intensity of the CH 2 stretching signal light in the signal light is a reference. When it is less than the value and the signal intensity of the signal light of the second harmonic in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell.
(Appendix 8)
In the estimating step, the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light. The estimation method according to any one of 1 to 7.
(Appendix 9)
9. The estimation method according to any one of appendices 1 to 8, wherein the test cell is a pluripotent cell or a differentiated cell derived from a pluripotent cell.
(Appendix 10)
Acquisition means for acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
A cell type estimation device comprising: an estimation unit that estimates the cell type of the test cell based on the signal light.
(Appendix 11)
The estimation device according to appendix 10, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
(Appendix 12)
The estimation device according to appendix 11, wherein the CH 2 expansion/contraction signal light is CH 2 symmetrical expansion/contraction vibration signal light.
(Appendix 13)
13. The estimation device according to any one of appendices 10 to 12, wherein the estimation unit estimates the cell type of the test cell based on at least one of the shape and signal intensity of CH 2 expansion and contraction signal light in the signal light. ..
(Appendix 14)
The estimation according to any one of appendices 10 to 13, wherein the estimation unit estimates the cell type of the test cell based on at least one of the shape and signal intensity of the signal light of the second harmonic in the signal light. apparatus.
(Appendix 15)
In any one of appendices 10 to 14, the estimation means estimates whether the cell type of the test cell is a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell. The estimation device described.
(Appendix 16)
16. The estimating device according to any one of appendices 10 to 15, wherein the estimating unit estimates the cell type of the test cell based on the signal light and the following conditions (1) to (4):
(1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells;
(2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell;
(3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the second-harmonic signal light is reticulated, it is presumed that the test cell is a mesodermal cell; and (4) the signal intensity of the CH 2 stretching signal light in the signal light is a reference. When it is less than the value and the signal intensity of the signal light of the second harmonic in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell.
(Appendix 17)
In the estimation means, the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light. The estimation device according to any one of 10 to 16.
(Appendix 18)
The estimation device according to any one of appendices 10 to 17, wherein the test cell is a pluripotent cell or a differentiated cell derived from the pluripotent cell.
(Appendix 19)
An observation step of observing the test cells,
An estimation step of estimating the cell type of the test cell,
And a selection step of selecting test cells of a predetermined cell type,
The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
The method for producing a cell, wherein the estimating step is performed by the method for estimating a cell type according to any one of appendices 1 to 9.
(Appendix 20)
20. The selection step selects test cells of the predetermined cell type by collecting test cells of the predetermined cell type or removing test cells other than the predetermined cell type. The method for producing cells.
(Appendix 21)
An observation unit capable of observing test cells,
An estimation unit for estimating the cell type of the test cell,
Including a selection unit for selecting test cells of a predetermined cell type,
The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
The said estimation unit is a cell manufacturing apparatus containing the estimation apparatus of the cell type in any one of appendixes 10-18.
(Appendix 22)
The selection unit is a collection means for collecting test cells of the predetermined cell type or test cells other than the predetermined cell type, or laser irradiation capable of irradiating the test cells other than the predetermined cell type with laser. 22. The cell manufacturing apparatus according to appendix 21, comprising a unit.
(Appendix 23)
An observation step of observing the test cells,
An estimation step of estimating the cell type of the test cell,
Including a re-observation step of observing the test cells of a predetermined cell type again,
The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
An observation method using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the estimation step is performed by the cell type estimation method according to any one of appendices 1 to 9.
(Appendix 24)
An observation unit capable of observing test cells,
An estimation unit for estimating the cell type of the test cell,
A control unit capable of controlling the observation unit,
The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
The estimation unit includes the cell type estimation device according to any one of appendices 10 to 18,
An observation apparatus using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the control unit re-observes cells estimated to be a predetermined cell type among the test cells by the observation unit.
(Appendix 25)
An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell;
Cell type estimation including a learning step of generating a learned model that outputs an estimation result of the cell type of the cell from the signal light, using a pair of the signal light and the cell type of the test cell as teaching data. Manufacturing method of trained model used for.
(Appendix 26)
26. The manufacturing method according to appendix 25, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
(Appendix 27)
27. The manufacturing method according to appendix 26, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light.
(Appendix 28)
28. The manufacturing method according to any one of appendices 25 to 27, wherein in the learning step, at least one of the shape and signal intensity of CH 2 expansion and contraction signal light is used as the signal light.
(Appendix 29)
29. The manufacturing method according to any one of appendices 25 to 28, wherein in the learning step, at least one of the shape and signal intensity of the second harmonic signal light is used as the signal light.
(Appendix 30)
30. The method according to any one of appendixes 25 to 29, wherein the test cell includes a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell.
(Appendix 31)
An acquisition means for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell;
A cell type including a learning unit that generates a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using a pair of the signal light and the cell type of the test cell as teaching data. Manufacturing device for trained model used for estimation.
(Appendix 32)
32. The manufacturing apparatus according to appendix 31, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
(Appendix 33)
33. The manufacturing apparatus according to appendix 32, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light.
(Appendix 34)
34. The manufacturing apparatus according to any one of appendices 31 to 33, wherein the learning unit uses at least one of the shape and signal intensity of CH 2 expansion and contraction signal light as the signal light.
(Appendix 35)
35. The manufacturing apparatus according to any one of appendices 31 to 34, wherein in the learning means, at least one of the shape and the signal intensity of the second harmonic signal light is used as the signal light.
(Appendix 36)
36. The manufacturing apparatus according to any one of appendices 31 to 35, wherein the test cell includes a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell.
(Appendix 37)
An acquisition process for acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
A program capable of executing, on a computer, an estimation process of estimating the cell type of the test cell based on the signal light.
(Appendix 38)
An acquisition process for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell;
On the computer, a learning process of generating a learned model that outputs an estimation result of the cell type of the test cell from the signal light using the pair of the signal light and the cell type of the test cell as teaching data. A program that is executable.
(Appendix 39)
A computer-readable recording medium recording the program according to appendix 38 or 39.
 以上のように、本発明によれば、対象細胞が生きた状態で、細胞種を推定可能である。このため、本発明は、細胞、組織等の加工を行なう生命科学分野、再生医療等において、極めて有用である。 As described above, according to the present invention, it is possible to estimate the cell type while the target cell is alive. Therefore, the present invention is extremely useful in the fields of life science, processing of cells and tissues, regenerative medicine and the like.
10      推定装置
11      データ処理手段
111     取得手段
112     推定手段
113     観察ユニット
114     選抜ユニット
115     制御ユニット
116     学習手段
20      製造装置
30      観察装置
31      推定ユニット
40      学習装置
10 Estimating device 11 Data processing means 111 Acquisition means 112 Estimating means 113 Observation unit 114 Selection unit 115 Control unit 116 Learning means 20 Manufacturing device 30 Observation device 31 Estimating unit 40 Learning device

Claims (38)

  1. 被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
    前記信号光に基づき、前記被検細胞の細胞種を推定する推定工程とを含む、細胞種の推定方法。
    An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
    An estimation step of estimating the cell type of the test cell based on the signal light.
  2. 前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、請求項1記載の推定方法。 The estimation method according to claim 1, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  3. 前記CH伸縮の信号光は、CH対称伸縮振動の信号光またはCHはさみ変角振動の信号光である、請求項2記載の推定方法。 The estimation method according to claim 2, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light or CH 2 scissor bending vibration signal light.
  4. 前記推定工程において、前記信号光におけるCH伸縮の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種を推定する、請求項1から3のいずれか一項に記載の推定方法。 4. The cell type of the test cell is estimated based on at least one of the shape and signal intensity of CH 2 expansion and contraction signal light in the signal light in the estimation step. Estimation method.
  5. 前記推定工程において、前記信号光における第二高調波の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種を推定する、請求項1から4のいずれか一項に記載の推定方法。 5. The cell type of the test cell is estimated based on at least one of the shape and signal intensity of the second-harmonic signal light in the signal light in the estimation step. Estimation method.
  6. 前記推定工程において、前記被検細胞の細胞種として、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞であるかを推定する、請求項1から5のいずれか一項に記載の推定方法。 The estimation step of estimating whether the cell type of the test cell is a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell. The estimation method described in the section.
  7. 前記推定工程において、前記信号光と下記条件(1)~(4)とに基づき、前記被検細胞の細胞種を推定する、請求項1から6のいずれか一項に記載の推定方法:
    (1)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以下である場合、前記被検細胞は多能性細胞であると推定する;
    (2)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が粒状である場合、前記被検細胞は、外胚葉系細胞であると推定する;
    (3)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が網状である場合、前記被検細胞は、中胚葉系細胞であると推定する;および
    (4)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値未満である場合、前記被検細胞は、内胚葉系細胞であると推定する。
    7. The estimating method according to claim 1, wherein in the estimating step, the cell type of the test cell is estimated based on the signal light and the following conditions (1) to (4):
    (1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells;
    (2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell;
    (3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the second-harmonic signal light is reticulated, it is presumed that the test cell is a mesodermal cell; and (4) the signal intensity of the CH 2 stretching signal light in the signal light is a reference. When it is less than the value and the signal intensity of the signal light of the second harmonic in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell.
  8. 前記推定工程において、前記信号光に基づき、前記被検細胞の細胞種の推定結果を出力する機械学習により生成された学習済みモデルを用いて、前記被検細胞の細胞種を推定する、請求項1から7のいずれか一項に記載の推定方法。 In the estimation step, the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light. The estimation method according to any one of 1 to 7.
  9. 前記被検細胞は、多能性細胞または多能性細胞から誘導された分化細胞である、請求項1から8のいずれか一項に記載の推定方法。 The estimation method according to any one of claims 1 to 8, wherein the test cell is a pluripotent cell or a differentiated cell derived from a pluripotent cell.
  10. 被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
    前記信号光に基づき、前記被検細胞の細胞種を推定する推定手段とを含む、細胞種の推定装置。
    Acquisition means for acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
    A cell type estimation device comprising: an estimation unit that estimates the cell type of the test cell based on the signal light.
  11. 前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、請求項10記載の推定装置。 The estimation device according to claim 10, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  12. 前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、請求項11記載の推定装置。 The estimation device according to claim 11, wherein the CH 2 stretching signal light is CH 2 symmetrical stretching vibration signal light.
  13. 前記推定手段では、前記信号光におけるCH伸縮の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種が推定される、請求項10から12のいずれか一項に記載の推定装置。 13. The cell type of the test cell is estimated by the estimation means based on at least one of the shape and signal intensity of CH 2 expansion and contraction signal light in the signal light. Estimation device.
  14. 前記推定手段では、前記信号光における第二高調波の信号光の形状およびシグナル強度の少なくとも一方に基づき、前記被検細胞の細胞種が推定される、請求項10から13のいずれか一項に記載の推定装置。 14. The cell type of the test cell is estimated by the estimation means based on at least one of the shape and signal intensity of the second-harmonic signal light in the signal light, according to any one of claims 10 to 13. The estimation device described.
  15. 前記推定手段では、前記被検細胞の細胞種として、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞であるかが推定される、請求項10から14のいずれか一項に記載の推定装置。 15. The estimating means estimates whether the cell type of the test cell is a pluripotent cell, an ectodermal cell, a mesodermal cell, or an endodermal cell. The estimation device according to one item.
  16. 前記推定手段において、前記信号光と下記条件(1)~(4)とに基づき、前記被検細胞の細胞種が推定される、請求項10から15のいずれか一項に記載の推定装置:
    (1)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以下である場合、前記被検細胞は多能性細胞であると推定する;
    (2)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値以上であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が粒状である場合、前記被検細胞は、外胚葉系細胞であると推定する;
    (3)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値以上である、または前記信号光における第二高調波の信号光の形状が網状である場合、前記被検細胞は、中胚葉系細胞であると推定する;および
    (4)前記信号光におけるCH伸縮の信号光のシグナル強度が基準値未満であり、かつ前記信号光における第二高調波の信号光のシグナル強度が基準値未満である場合、前記被検細胞は、内胚葉系細胞であると推定する。
    The estimation device according to any one of claims 10 to 15, wherein the estimation means estimates the cell type of the test cell based on the signal light and the following conditions (1) to (4):
    (1) When the signal intensity of the CH 2 expansion/contraction signal light in the signal light is a reference value or more and the signal intensity of the second harmonic signal light in the signal light is a reference value or less, the test cell Are presumed to be pluripotent cells;
    (2) The signal intensity of the CH 2 expansion and contraction signal light in the signal light is equal to or higher than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or higher than the reference value, or in the signal light When the shape of the second harmonic signal light is granular, the test cell is presumed to be an ectodermal cell;
    (3) The signal intensity of the CH 2 expansion/contraction signal light in the signal light is less than a reference value, and the signal intensity of the second harmonic signal light in the signal light is equal to or greater than the reference value, or in the signal light When the shape of the second-harmonic signal light is reticulated, it is presumed that the test cell is a mesodermal cell; and (4) the signal intensity of the CH 2 stretching signal light in the signal light is a reference. When it is less than the value and the signal intensity of the signal light of the second harmonic in the signal light is less than the reference value, it is estimated that the test cell is an endoderm cell.
  17. 前記推定手段では、前記信号光に基づき、前記被検細胞の細胞種の推定結果を出力する機械学習により生成された学習済みモデルを用いて、前記被検細胞の細胞種が推定される、請求項10から16のいずれか一項に記載の推定装置。 In the estimating means, the cell type of the test cell is estimated using a learned model generated by machine learning that outputs an estimation result of the cell type of the test cell based on the signal light. The estimation device according to any one of items 10 to 16.
  18. 前記被検細胞は、多能性細胞または多能性細胞から誘導された分化細胞である、請求項10から17のいずれか一項に記載の推定装置。 The estimation device according to claim 10, wherein the test cell is a pluripotent cell or a differentiated cell derived from the pluripotent cell.
  19. 被検細胞を観察する観察工程と、
    前記被検細胞の細胞種を推定する推定工程と、
    所定の細胞種の被検細胞を選抜する選抜工程とを含み、
    前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
    前記推定工程は、請求項1から9のいずれか一項に記載の細胞種の推定方法により実施される、細胞の製造方法。
    An observation step of observing the test cells,
    An estimation step of estimating the cell type of the test cell,
    And a selection step of selecting test cells of a predetermined cell type,
    The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
    The said estimation process is a manufacturing method of a cell implemented by the estimation method of the cell type as described in any one of Claims 1-9.
  20. 前記選抜工程は、前記所定の細胞種の被検細胞を回収する、または所定の細胞種以外の被検細胞を除去することにより、前記所定の細胞種の被検細胞を選抜する、請求項19記載の細胞の製造方法。 20. The selection step selects test cells of the predetermined cell type by collecting test cells of the predetermined cell type or removing test cells other than the predetermined cell type. A method for producing the described cell.
  21. 被検細胞を観察可能な観察ユニットと、
    前記被検細胞の細胞種を推定する推定ユニットと、
    所定の細胞種の被検細胞を選抜する選抜ユニットとを含み、
    前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
    前記推定ユニットは、請求項10から18のいずれか一項に記載の細胞種の推定装置を含む、細胞の製造装置。
    An observation unit capable of observing test cells,
    An estimation unit for estimating the cell type of the test cell,
    Including a selection unit for selecting test cells of a predetermined cell type,
    The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
    The said estimation unit is a cell manufacturing apparatus containing the cell type estimation apparatus as described in any one of Claims 10-18.
  22. 前記選抜ユニットは、前記所定の細胞種の被検細胞もしくは、所定の細胞種以外の被検細胞を回収する回収手段、または前記所定の細胞種以外の被検細胞にレーザを照射可能なレーザ照射ユニットを含む、請求項21記載の細胞の製造装置。 The selection unit is a collection means for collecting test cells of the predetermined cell type or test cells other than the predetermined cell type, or laser irradiation capable of irradiating the test cells other than the predetermined cell type with laser. The cell manufacturing apparatus according to claim 21, which comprises a unit.
  23. 被検細胞を観察する観察工程と、
    前記被検細胞の細胞種を推定する推定工程と、
    所定の細胞種の被検細胞を再度観察する再観察工程とを含み、
    前記観察工程は、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて実施され、
    前記推定工程は、請求項1から9のいずれか一項に記載の細胞種の推定方法により実施される、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いた観察方法。
    An observation step of observing the test cells,
    An estimation step of estimating the cell type of the test cell,
    Including a re-observation step of observing the test cells of a predetermined cell type again,
    The observing step is performed using a coherent anti-Stokes Raman scattering (CARS) microscope,
    An observation method using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the estimation step is performed by the cell type estimation method according to any one of claims 1 to 9.
  24. 被検細胞を観察可能な観察ユニットと、
    前記被検細胞の細胞種を推定する推定ユニットと、
    前記観察ユニットを制御可能な制御ユニットとを含み、
    前記観察ユニットは、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を含み、
    前記推定ユニットは、請求項10から18のいずれか一項に記載の細胞種の推定装置を含み、
    前記制御ユニットは、前記被検細胞のうち、所定の細胞種と推定された細胞について、前記観察ユニットにより再観察を実施する、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いた観察装置。
    An observation unit capable of observing test cells,
    An estimation unit for estimating the cell type of the test cell,
    A control unit capable of controlling the observation unit,
    The observation unit includes a coherent anti-Stokes Raman scattering (CARS) microscope,
    The estimation unit includes the cell type estimation device according to any one of claims 10 to 18,
    An observation apparatus using a coherent anti-Stokes Raman scattering (CARS) microscope, wherein the control unit re-observes cells estimated to be a predetermined cell type among the test cells by the observation unit.
  25. 被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得工程と、
    前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習工程とを含む、細胞種の推定に用いる学習済モデルの製造方法。
    An acquisition step of acquiring signal light obtained by using a coherent anti-Stokes Raman scattering (CARS) microscope of a test cell;
    A cell type including a learning step of generating a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teaching data. A method of manufacturing a trained model used for estimating.
  26. 前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、請求項25記載の製造方法。 26. The manufacturing method according to claim 25, wherein the signal light is at least one of CH 2 expansion and contraction signal light and second harmonic signal light.
  27. 前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、請求項26記載の製造方法。 27. The manufacturing method according to claim 26, wherein the CH 2 stretching signal light is CH 2 symmetric stretching vibration signal light.
  28. 前記学習工程において、前記信号光として、CH伸縮の信号光の形状およびシグナル強度の少なくとも一方を用いる、請求項25から27のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 25 to 27, wherein in the learning step, at least one of the shape and signal intensity of CH 2 expansion and contraction signal light is used as the signal light.
  29. 前記学習工程において、前記信号光として、第二高調波の信号光の形状およびシグナル強度の少なくとも一方を用いる、請求項25から28のいずれか一項に記載の製造方法。 29. The manufacturing method according to claim 25, wherein in the learning step, at least one of the shape and signal intensity of the second harmonic signal light is used as the signal light.
  30. 前記被検細胞は、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞を含む、請求項25から29のいずれか一項に記載の製造方法。 30. The production method according to claim 25, wherein the test cells include pluripotent cells, ectodermal cells, mesodermal cells, or endodermal cells.
  31. 被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得手段と、
    前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習手段とを含む、細胞種の推定に用いる学習済モデルの製造装置。
    An acquisition means for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell;
    A cell type including a learning unit that generates a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using a pair of the signal light and the cell type of the test cell as teaching data. Manufacturing device for trained model used for estimation.
  32. 前記信号光は、CH伸縮の信号光および第二高調波の信号光の少なくとも一方である、請求項31記載の製造装置。 32. The manufacturing apparatus according to claim 31, wherein the signal light is at least one of CH 2 expansion/contraction signal light and second harmonic signal light.
  33. 前記CH伸縮の信号光は、CH対称伸縮振動の信号光である、請求項32記載の製造装置。 33. The manufacturing apparatus according to claim 32, wherein the CH 2 expansion/contraction signal light is CH 2 symmetrical expansion/contraction vibration signal light.
  34. 前記学習手段において、前記信号光として、CH伸縮の信号光の形状およびシグナル強度の少なくとも一方を用いる、請求項31から33のいずれか一項に記載の製造装置。 34. The manufacturing apparatus according to claim 31, wherein the learning unit uses at least one of a shape and a signal intensity of CH 2 expansion and contraction signal light as the signal light.
  35. 前記学習手段において、前記信号光として、第二高調波の信号光の形状およびシグナル強度の少なくとも一方を用いる、請求項31から34のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 31 to 34, wherein the learning unit uses at least one of a shape and a signal intensity of signal light of a second harmonic as the signal light.
  36. 前記被検細胞は、多能性細胞、外胚葉系細胞、中胚葉系細胞、または内胚葉系細胞を含む、請求項31から35のいずれか一項に記載の製造装置。 36. The manufacturing apparatus according to claim 31, wherein the test cells include pluripotent cells, ectodermal cells, mesodermal cells, or endodermal cells.
  37. 被検細胞について、コヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得処理と、
    前記信号光に基づき、前記被検細胞の細胞種を推定する推定処理とを、コンピュータ上で実行可能であるプログラム。
    An acquisition process for acquiring a signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope for the test cell;
    A program capable of executing, on a computer, an estimation process of estimating the cell type of the test cell based on the signal light.
  38. 被検細胞のコヒーレント反ストークスラマン散乱(CARS)顕微鏡を用いて取得された信号光を取得する取得処理と、
    前記信号光と、前記被検細胞の細胞種との組を教師データとして、前記信号光から被検細胞の細胞種の推定結果を出力する学習済モデルを生成する学習処理とを、コンピュータ上で実行可能であるプログラム。
    An acquisition process for acquiring signal light acquired by using a coherent anti-Stokes Raman scattering (CARS) microscope of the test cell;
    On the computer, a learning process for generating a learned model that outputs an estimation result of the cell type of the test cell from the signal light, using the pair of the signal light and the cell type of the test cell as teaching data. A program that is executable.
PCT/JP2020/004830 2019-02-08 2020-02-07 Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device WO2020162601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-022032 2019-02-08
JP2019022032A JP2022049724A (en) 2019-02-08 2019-02-08 Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device

Publications (1)

Publication Number Publication Date
WO2020162601A1 true WO2020162601A1 (en) 2020-08-13

Family

ID=71948058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004830 WO2020162601A1 (en) 2019-02-08 2020-02-07 Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device

Country Status (2)

Country Link
JP (1) JP2022049724A (en)
WO (1) WO2020162601A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358984B2 (en) 2018-08-27 2022-06-14 Regeneran Pharmaceuticals, Inc. Use of Raman spectroscopy in downstream purification
WO2023136308A1 (en) * 2022-01-17 2023-07-20 国立大学法人大阪大学 Method for evaluating cardiocytes using raman scattering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023387A (en) * 2004-07-06 2006-01-26 Olympus Corp Microscope
JP2009222531A (en) * 2008-03-14 2009-10-01 Univ Of Tokyo Light source device for nonlinear spectroscopic measuring system, and nonlinear spectroscopic measuring system and method
WO2015004917A1 (en) * 2013-07-10 2015-01-15 株式会社ニコン Observation method, observation device, method for producing cell sheet and device for producing cell sheet
WO2015181872A1 (en) * 2014-05-26 2015-12-03 株式会社日立製作所 Optical analysis device
JP2018077059A (en) * 2016-11-07 2018-05-17 株式会社日立製作所 Optical apparatus and optical measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023387A (en) * 2004-07-06 2006-01-26 Olympus Corp Microscope
JP2009222531A (en) * 2008-03-14 2009-10-01 Univ Of Tokyo Light source device for nonlinear spectroscopic measuring system, and nonlinear spectroscopic measuring system and method
WO2015004917A1 (en) * 2013-07-10 2015-01-15 株式会社ニコン Observation method, observation device, method for producing cell sheet and device for producing cell sheet
WO2015181872A1 (en) * 2014-05-26 2015-12-03 株式会社日立製作所 Optical analysis device
JP2018077059A (en) * 2016-11-07 2018-05-17 株式会社日立製作所 Optical apparatus and optical measurement method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITA KATSUMASA: "Label-free molecular imaging by using Raman scattering", NIPPON LASER IGAKKAISHI, vol. 30, no. 4, 2010, pages 416 - 420, XP055730442 *
FUJITA KATSUMASA: "Label-free molecular imaging of living cells", vol. 43, 2008, pages 268 - 272, XP007908784 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358984B2 (en) 2018-08-27 2022-06-14 Regeneran Pharmaceuticals, Inc. Use of Raman spectroscopy in downstream purification
WO2023136308A1 (en) * 2022-01-17 2023-07-20 国立大学法人大阪大学 Method for evaluating cardiocytes using raman scattering

Also Published As

Publication number Publication date
JP2022049724A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
Downes et al. Optical spectroscopy for noninvasive monitoring of stem cell differentiation
Papagiakoumou et al. Functional patterned multiphoton excitation deep inside scattering tissue
WO2020162601A1 (en) Cell type estimation method, cell type estimation device, cell production method, cell production device, monitoring method, monitoring device, learned model production method, and learned model production device
Sinjab et al. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging
Tan et al. Comparative study using Raman microspectroscopy reveals spectral signatures of human induced pluripotent cells more closely resemble those from human embryonic stem cells than those from differentiated cells
US11698520B2 (en) Systems and methods for laser scissors and tweezers with a quantitative phase microscope (QPM)
De Angelis et al. Combined Raman spectroscopy and digital holographic microscopy for sperm cell quality analysis
Pfeffer et al. Multimodal nonlinear optical imaging of collagen arrays
Gu Femtosecond biophotonics: core technology and applications
Difato et al. Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks
Patel et al. Compact and low-cost instrument for digital holographic microscopy of immobilized micro-particles
Restall et al. In vivo combined virtual histology and vascular imaging with dual-wavelength photoacoustic remote sensing microscopy
Mirecki et al. Low-intensity illumination for lensless digital holographic microscopy with minimized sample interaction
Hilzenrat et al. Imaging approaches for monitoring three‐dimensional cell and tissue culture systems
Ilina et al. From zygote to blastocyst: Application of ultrashort lasers in the field of assisted reproduction and developmental biology
Li et al. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics
Macias-Romero et al. Endogenous SHG and 2PEF coherence imaging of substructures in neurons in 3D
Verrier et al. Raman micro-spectroscopy as a non-invasive cell viability test
Ishigane et al. Mid-infrared photothermal single-live-cell imaging beyond video rate
WO2020162595A1 (en) Method for determining sensitivity to test substance, device for determining sensitivity to test substance, anticancer agent screening method, anticancer agent candidate substance production method, learned model production method, learned model production device, and selection method
Ogi et al. Label-free classification of neurons and glia in neural stem cell cultures using a hyperspectral imaging microscopy combined with machine learning
Yang et al. Multi-color ultrafast laser platform for nonlinear optical imaging based on independently tunable optical parametric oscillators
Gibbs et al. Imaging embryonic development with ultrashort pulse microscopy
Lien et al. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation
Lim et al. Adaptive Optical Coherent Raman Imaging of Axons through Mouse Cranial Bone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP