JPWO2020154649A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020154649A5
JPWO2020154649A5 JP2021543300A JP2021543300A JPWO2020154649A5 JP WO2020154649 A5 JPWO2020154649 A5 JP WO2020154649A5 JP 2021543300 A JP2021543300 A JP 2021543300A JP 2021543300 A JP2021543300 A JP 2021543300A JP WO2020154649 A5 JPWO2020154649 A5 JP WO2020154649A5
Authority
JP
Japan
Prior art keywords
plaque
radiodensity
coronary
quantified
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021543300A
Other languages
Japanese (ja)
Other versions
JP2022523489A (en
Publication date
Priority claimed from US16/750,278 external-priority patent/US10813612B2/en
Application filed filed Critical
Publication of JP2022523489A publication Critical patent/JP2022523489A/en
Publication of JPWO2020154649A5 publication Critical patent/JPWO2020154649A5/ja
Pending legal-status Critical Current

Links

Claims (33)

血管に沿ったコンピュータ断層撮影(CT)スキャンから集められた画像データを使用し、画像情報は、冠動脈プラーク及び冠動脈プラークに隣接して位置する血管周囲組織のラジオデンシティ値を含んでいる、冠動脈プラーク組織データ及び血管周囲組織データの性状評価のための方法であって、
前記画像データにおいて、冠動脈プラークの領域内のラジオデンシティを定量化するステップと、
前記画像データにおいて、前記冠動脈プラークに隣接する対応する血管周囲組織の少なくとも1つの領域内のラジオデンシティを定量化するステップと、
前記冠動脈プラーク内の前記定量化されたラジオデンシティ値及び前記対応する血管周囲組織内の前記定量化されたラジオデンシティ値の勾配を決定するステップと、
前記冠動脈プラーク及び前記対応する血管周囲組織内の前記定量化されたラジオデンシティ値の比率を決定するステップと、
前記冠動脈プラーク及び前記対応する血管周囲組織内の前記定量化されたラジオデンシティ値の前記勾配、又は
前記冠動脈プラークの前記ラジオデンシティ値及び前記対応する血管周囲組織の前記ラジオデンシティ値の前記比率
のうちの1つ以上を分析することによって、前記冠動脈プラークの性状を評価するステップと
を含んでおり、
非一時的コンピュータ記憶媒体上のコンピュータ実行可能命令を実行するように構成された1つ以上のコンピュータハードウェアプロセッサによって実行される、方法。
Coronary artery plaque using image data collected from computed tomography (CT) scans along blood vessels, the image information including radiodensity values of coronary artery plaque and perivascular tissue located adjacent to the coronary artery plaque. A method for characterization of tissue data and perivascular tissue data, comprising:
quantifying radiodensity within regions of coronary artery plaque in the image data;
quantifying radiodensity in at least one region of corresponding perivascular tissue adjacent to the coronary artery plaque in the image data;
determining a slope of the quantified radiodensity values within the coronary artery plaque and the quantified radiodensity values within the corresponding perivascular tissue;
determining a ratio of the quantified radiodensity values within the coronary artery plaque and the corresponding perivascular tissue;
said gradient of said quantified radiodensity values in said coronary plaque and said corresponding perivascular tissue, or said ratio of said radiodensity value of said coronary plaque and said radiodensity value of said corresponding perivascular tissue; assessing the quality of the coronary artery plaque by analyzing one or more of
A method performed by one or more computer hardware processors configured to execute computer-executable instructions on a non-transitory computer storage medium.
前記血管周囲組織は、冠動脈管腔、脂肪、冠動脈プラーク、又は心筋のうちの少なくとも1つを含む、請求項1に記載の方法。 2. The method of claim 1, wherein the perivascular tissue comprises at least one of coronary lumen, fat, coronary plaque, or myocardium. ネットワークを介してデータ記憶構成要素において前記画像データを受信するステップ
をさらに含む、請求項1に記載の方法。
2. The method of claim 1 , further comprising: receiving the image data at a data storage component over a network.
前記冠動脈プラークの前記性状評価に基づいて患者に関する診断、予後診断、又は推奨される処置のうちの少なくとも1つを含む患者レポートを生成するステップ
をさらに含む、請求項1に記載の方法。
2. The method of claim 1 , further comprising generating a patient report including at least one of a diagnosis, prognosis, or recommended treatment for the patient based on the characterization of the coronary plaque.
血管周囲組織の少なくとも1つの領域内のラジオデンシティを定量化するステップは、血管周囲組織の1つ以上の領域又は層の各々における冠動脈プラーク及び脂肪組織に関して前記スキャン情報のラジオデンシティを定量化するステップを含む、請求項1~のいずれか一項に記載の方法。 Quantifying the radiodensity within at least one region of perivascular tissue comprises quantifying the radiodensity of the scan information for coronary artery plaque and fatty tissue in each of one or more regions or layers of perivascular tissue. A method according to any one of claims 1 to 4 , comprising 前記スキャン情報のラジオデンシティは、冠動脈プラークの1つ以上の領域又は層の各々における低ラジオデンシティプラークに関して定量化される、請求項1~のいずれか一項に記載の方法。 The method of any one of claims 1-4 , wherein the radiodensity of the scan information is quantified for low radiodensity plaques in each of one or more regions or layers of coronary artery plaque. 前記冠動脈プラークのラジオデンシティ値及び前記血管周囲組織のラジオデンシティ値は、平均ラジオデンシティである、請求項1に記載の方法。 2. The method of claim 1, wherein the coronary plaque radiodensity value and the perivascular tissue radiodensity value are average radiodensities. 前記冠動脈プラークのラジオデンシティ値及び前記血管周囲組織のラジオデンシティ値は、最大ラジオデンシティである、請求項1に記載の方法。 2. The method of claim 1, wherein the coronary plaque radiodensity value and the perivascular tissue radiodensity value are maximum radiodensities. 前記冠動脈プラークのラジオデンシティ値及び前記血管周囲組織のラジオデンシティ値は、最小ラジオデンシティである、請求項1に記載の方法。 2. The method of claim 1, wherein the coronary plaque radiodensity value and the perivascular tissue radiodensity value are minimal radiodensities. 前記定量化されたラジオデンシティは、前記画像データの変換された数字によるラジオデンシティ値である、請求項1に記載の方法。 2. The method of claim 1, wherein the quantified radiodensity is a transformed numerical radiodensity value of the image data. 前記定量化されたラジオデンシティは、ヨード造影剤、造影剤の種類、注入レート、大動脈造影剤不透明化、左心室血液プール不透明化、信号対ノイズ、造影剤対ノイズ、管電圧、ミリアンペア、心臓ゲーティングの方法、シングル及びマルチエネルギ画像取得、CTスキャナの種類、心拍数、心調律、又は血圧のうちの1つ以上を含む患者及びCTごとのパラメータを考慮する、請求項1に記載の方法。 The quantified radiodensity was measured by iodinated contrast agent, contrast agent type, injection rate, aortic contrast agent opacification, left ventricular blood pool opacification, signal-to-noise, contrast-to-noise, tube voltage, milliamps, cardiac gating 2. The method of claim 1, which considers patient- and CT-specific parameters including one or more of scanning method, single and multi-energy image acquisition, CT scanner type, heart rate, cardiac rhythm, or blood pressure. 前記冠動脈プラーク及び前記血管周囲組織の前記定量化されたラジオデンシティを勾配としてレポートするステップ
をさらに含む、請求項1に記載の方法。
2. The method of claim 1, further comprising: reporting the quantified radiodensities of the coronary plaque and the perivascular tissue as a gradient.
前記冠動脈プラーク及び前記血管周囲組織の前記定量化されたラジオデンシティは、前記冠動脈プラークに隣接する血管周囲組織に対する前記冠動脈プラークからの前記勾配の傾きの比率としてレポートされる、請求項1~4のいずれか一項に記載の方法。 The quantified radiodensities of the coronary plaque and the perivascular tissue are reported as a ratio of the slope of the gradient from the coronary plaque to the perivascular tissue adjacent to the coronary plaque . A method according to any one of paragraphs . 前記冠動脈プラーク及び前記血管周囲組織の前記定量化されたラジオデンシティは、前記血管周囲組織に対する前記冠動脈プラークからのラジオデンシティ値の差としてレポートされる、請求項1~4のいずれか一項に記載の方法。 5. The method of any one of claims 1-4 , wherein the quantified radiodensities of the coronary plaque and the perivascular tissue are reported as the difference in radiodensity values from the coronary plaque relative to the perivascular tissue. the method of. 前記画像データは、右冠動脈、左前下行動脈、左回旋動脈、又はそれらの枝、又は大動脈、又は頸動脈、又は大腿動脈、又は腎動脈のうちの少なくとも1つの長さに沿ったCTスキャンから集められる、請求項1に記載の方法。 The image data is collected from a CT scan along the length of at least one of the right coronary artery, the left anterior descending artery, the left circumflex artery, or branches thereof, or the aorta, or the carotid artery, or the femoral artery, or the renal artery. 2. The method of claim 1, wherein: 前記データは、非冠リファレンス血管の長さに沿ったCTスキャンからのデータである、請求項1に記載の方法。 2. The method of claim 1, wherein the data is data from a CT scan along the length of a non-coronary reference vessel. 前記非冠リファレンス血管は、大動脈である、請求項20に記載の方法。 21. The method of claim 20, wherein the non-coronary reference vessel is the aorta. 前記ラジオデンシティは、ハンスフィールド単位にて定量化される、請求項1に記載の方法。 2. The method of claim 1 , wherein the radio density is quantified in Hounsfield units. ラジオデンシティは、マルチエネルギCTが実行されるときに絶対材料デンシティにて定量化される、請求項1に記載の方法。 2. The method of claim 1, wherein radio density is quantified in absolute material density when multi-energy CT is performed. 血管周囲組織の1つ以上の領域又は層が、血管の外壁から或る端部距離まで延び、前記端部距離は、脂肪組織のラジオデンシティが(i)健康な血管においてスキャンされた解剖学的領域における最小値に達し、あるいは(ii)少なくとも10%の相対割合だけ低下し、あるいは(iii)疾患のない同じ種類の血管におけるベースラインのラジオデンシティ値に対して或る相対割合だけ低下する固定の距離である、請求項1に記載の方法。 One or more regions or layers of perivascular tissue extend from the outer wall of the vessel to an edge distance, said edge distance being the radiodensity of the adipose tissue (i) anatomically scanned in a healthy vessel A fixation that reaches a minimum value in the area, or (ii) decreases by a relative percentage of at least 10%, or (iii) decreases by some relative percentage relative to the baseline radiodensity value in the same vessel type without disease. 2. The method of claim 1, wherein the distance is 前記冠動脈プラークの1つ以上の領域又は層が、血管の外壁から或る端部距離まで延び、前記端部距離は、脂肪組織のラジオデンシティが(i)前記プラーク内の最大値に達し、あるいは(ii)少なくとも10%の相対割合だけ上昇し、あるいは(iii)前記プラーク内の最低のラジオデンシティ値に対して或る相対割合だけ変化する固定の距離である、請求項1に記載の方法。 one or more regions or layers of said coronary artery plaque extend from the outer wall of the vessel to an edge distance, said edge distance at which adipose tissue radiodensity (i) reaches a maximum within said plaque, or 2. The method of claim 1, wherein (ii) increases by a relative percentage of at least 10%, or (iii) is a fixed distance that varies by a relative percentage relative to the lowest radiodensity value within the plaque. 前記ベースラインのラジオデンシティ値は、厚さ、面積、又は体積によって測定された外側血管壁を取り囲む固定の層又は領域内に位置する血管周囲組織の層において定量化された平均ラジオデンシティである、請求項20に記載の方法。 The baseline radiodensity value is the average radiodensity quantified in a layer of perivascular tissue located within a fixed layer or region surrounding the outer vessel wall measured by thickness, area, or volume. 21. The method of claim 20 . 前記ベースラインの血管周囲組織のラジオデンシティは、血管の外壁の近位にある血管周囲組織の層における脂肪組織に関して定量化されたラジオデンシティである、請求項20に記載の方法。 21. The method of claim 20 , wherein the baseline perivascular tissue radiodensity is the radiodensity quantified for adipose tissue in a layer of perivascular tissue proximal to the outer wall of the vessel. 前記ベースラインの血管周囲組織のラジオデンシティは、血管の外壁の近位にある血管周囲組織の層における水に関して定量化されたラジオデンシティである、請求項20に記載の方法。 21. The method of claim 20 , wherein the baseline perivascular tissue radiodensity is the quantified radiodensity for water in a layer of perivascular tissue proximal to the outer wall of the vessel. 血管の外壁から端部距離までの距離に対して、血管周囲組織の1つ以上の同心層の各々におけるベースラインのラジオデンシティに対する定量化されたラジオデンシティの変化のプロットを決定するステップと、
血管の外壁から端部距離までの距離に対して、定量化されたラジオデンシティの変化のプロット及びベースラインのラジオデンシティのプロットによって境界付けられる領域の面積を決定するステップと、
前記面積を、血管の外壁からの或る距離において測定された前記定量化されたラジオデンシティで除算するステップと
をさらに含み、
前記距離は、血管の半径よりも小さく、あるいはそれを超えると脂肪組織の前記定量化されたラジオデンシティが疾患のない同じ種類の血管における脂肪組織のベースラインのラジオデンシティと比べて5%よりも大きく低下する血管の外面からの距離である、請求項1に記載の方法。
determining a plot of the change in quantified radiodensity versus baseline radiodensity in each of the one or more concentric layers of perivascular tissue versus distance from the outer wall of the vessel to the edge distance;
determining the area of the region bounded by the plot of quantified change in radiodensity and the plot of baseline radiodensity versus the distance from the outer wall of the vessel to the edge distance;
dividing the area by the quantified radiodensity measured at a distance from the outer wall of the vessel;
The distance is less than or greater than the radius of the vessel such that the quantified radiodensity of adipose tissue is less than 5% compared to the baseline radiodensity of adipose tissue in the same type of vessel without disease. 2. The method of claim 1, wherein the distance from the outer surface of the blood vessel is greatly reduced.
血管の外壁からプラークの内面までの距離に対して、冠動脈プラーク組織の1つ以上の同心層の各々におけるベースラインのラジオデンシティに対する定量化されたラジオデンシティの変化のプロットを決定するステップと、
血管の外壁からプラークの内面までの距離に対して、定量化されたラジオデンシティの変化のプロット及びベースラインのラジオデンシティのプロットによって境界付けられる領域の面積を決定するステップと、
前記面積を、血管の外壁からの或る距離において測定された前記定量化されたラジオデンシティで除算するステップと
をさらに含み、
前記距離は、血管の半径よりも小さく、あるいはそれを超えると脂肪組織の前記定量化されたラジオデンシティが疾患のない同じ種類の血管における脂肪組織のベースラインのラジオデンシティと比べて5%よりも大きく低下する血管の外面からの距離である、請求項1に記載の方法。
determining a plot of change in quantified radiodensity versus baseline radiodensity in each of the one or more concentric layers of coronary artery plaque tissue versus the distance from the outer wall of the vessel to the inner surface of the plaque;
determining the area of the region bounded by the quantified change in radiodensity plot and the baseline radiodensity plot against the distance from the outer wall of the vessel to the inner surface of the plaque;
dividing the area by the quantified radiodensity measured at a distance from the outer wall of the vessel;
The distance is less than or greater than the radius of the vessel such that the quantified radiodensity of adipose tissue is less than 5% compared to the baseline radiodensity of adipose tissue in the same type of vessel without disease. 2. The method of claim 1, wherein the distance from the outer surface of the blood vessel is greatly reduced.
前記冠動脈プラーク及び前記血管周囲組織の前記定量化されたラジオデンシティを、ヨード造影剤、造影剤の種類、注入レート、大動脈造影剤不透明化、左心室血液プール不透明化、信号対ノイズ、造影剤対ノイズ、管電圧、ミリアンペア、心臓ゲーティングの方法、シングル及びマルチエネルギ画像取得、CTスキャナの種類、心拍数、心調律、又は血圧のうちの1つ以上を含むCTスキャンパラメータへと正規化するステップと、
冠動脈プラーク関連の血管周囲脂肪の前記定量化されたラジオデンシティを遠方の血管周囲脂肪へと正規化するステップと、
前記冠動脈プラークの前記定量化されたラジオデンシティを遠方の冠動脈プラークへと正規化するステップと
をさらに含む、請求項1に記載の方法。
The quantified radiodensities of the coronary artery plaque and the perivascular tissue were measured using iodinated contrast agent, contrast agent type, injection rate, aortic contrast agent opacification, left ventricular blood pool opacification, signal to noise, contrast agent to normalizing to CT scan parameters including one or more of noise, tube voltage, milliamps, methods of cardiac gating, single and multi-energy image acquisition, CT scanner type, heart rate, cardiac rhythm, or blood pressure. When,
normalizing the quantified radiodensity of coronary plaque-associated perivascular fat to distant perivascular fat;
and normalizing the quantified radiodensity of the coronary plaque to distant coronary plaque.
リモデリング、体積、斑状石灰化、などの他の高リスクプラーク特徴を定量化し、前記高リスクプラーク特徴のうちの1つ以上に基づいて前記高リスクプラークをさらに性状評価するステップ
をさらに含む、請求項1に記載の方法。
quantifying other high-risk plaque characteristics such as remodeling, volume, patchy calcification, etc., and further characterizing said high-risk plaque based on one or more of said high-risk plaque characteristics. Item 1. The method according to item 1.
前記冠動脈プラークの性状を評価するステップは、カルシウム及び非石灰化プラーク混合物を含むプラーク異種性に部分的に基づく、請求項1に記載の方法。 2. The method of claim 1, wherein assessing the coronary plaque quality is based in part on plaque heterogeneity comprising a mixture of calcium and non-calcified plaque. 前記冠動脈プラークの性状を評価するステップは、前記冠動脈プラークが、事前に分類された患者画像データとの比較に基づいて、虚血を引き起こす可能性が高い場合に、前記冠動脈プラークを高リスクプラークとして識別するステップを含む、請求項1に記載の方法。 The step of evaluating a property of the coronary artery plaque includes identifying the coronary artery plaque as a high-risk plaque if the coronary artery plaque has a high likelihood of causing ischemia based on comparison with pre-classified patient image data. 2. The method of claim 1, comprising identifying. 前記冠動脈プラークの性状を評価するステップは、前記冠動脈プラークが、事前に分類された患者画像データとの比較に基づいて、急激に進行する可能性が高い場合に、前記冠動脈プラークを高リスクプラークとして識別するステップを含む、請求項1に記載の方法。 The step of evaluating the properties of the coronary artery plaque includes determining the coronary artery plaque as a high-risk plaque if the coronary artery plaque has a high possibility of rapidly progressing based on comparison with pre-classified patient image data. 2. The method of claim 1, comprising identifying. 前記冠動脈プラークの性状を評価するステップは、前記冠動脈プラークが、事前に分類された患者画像データとの比較に基づいて、石灰化しない可能性が高い場合に、前記冠動脈プラークを高リスクプラークとして識別するステップを含む、請求項1に記載の方法。 The step of assessing the quality of the coronary artery plaque identifies the coronary artery plaque as high-risk plaque if the coronary artery plaque is likely not to calcify based on comparison with pre-classified patient imaging data. 2. The method of claim 1, comprising the step of: 前記冠動脈プラークの性状を評価するステップは、前記冠動脈プラークが、事前に分類された患者画像データとの比較に基づいて、医療に対して反応せず、旧態に復帰せず、あるいは安定化しない可能性が高い場合に、前記冠動脈プラークを高リスクプラークとして識別するステップを含む、請求項1に記載の方法。 Assessing the quality of the coronary artery plaque includes determining whether the coronary artery plaque is non-responsive to medical treatment, non-reversible, or non-stabilizing based on comparison to pre-classified patient imaging data. 2. The method of claim 1, comprising identifying the coronary artery plaque as high risk plaque if the risk is high.
JP2021543300A 2019-01-25 2020-01-24 High-risk plaque property assessment system and method Pending JP2022523489A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962797024P 2019-01-25 2019-01-25
US62/797,024 2019-01-25
US16/750,278 2020-01-23
US16/750,278 US10813612B2 (en) 2019-01-25 2020-01-23 Systems and method of characterizing high risk plaques
PCT/US2020/015035 WO2020154649A1 (en) 2019-01-25 2020-01-24 Systems and method of characterizing high risk plaques

Publications (2)

Publication Number Publication Date
JP2022523489A JP2022523489A (en) 2022-04-25
JPWO2020154649A5 true JPWO2020154649A5 (en) 2022-12-27

Family

ID=71733101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021543300A Pending JP2022523489A (en) 2019-01-25 2020-01-24 High-risk plaque property assessment system and method

Country Status (6)

Country Link
US (7) US10813612B2 (en)
EP (1) EP3914158A4 (en)
JP (1) JP2022523489A (en)
KR (1) KR20210120021A (en)
CN (1) CN113507888A (en)
WO (1) WO2020154649A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813612B2 (en) 2019-01-25 2020-10-27 Cleerly, Inc. Systems and method of characterizing high risk plaques
US11508063B2 (en) * 2019-08-05 2022-11-22 Elucid Bioimaging Inc. Non-invasive measurement of fibrous cap thickness
US11026749B1 (en) * 2019-12-05 2021-06-08 Board Of Regents Of The University Of Nebraska Computational simulation platform for planning of interventional procedures
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
JP2023509514A (en) 2020-01-07 2023-03-08 クリールリー、 インコーポレーテッド Systems, Methods, and Devices for Medical Image Analysis, Diagnosis, Severity Classification, Decision Making, and/or Disease Tracking
US11969280B2 (en) 2020-01-07 2024-04-30 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
CN112712507B (en) * 2020-12-31 2023-12-19 杭州依图医疗技术有限公司 Method and device for determining calcified region of coronary artery
CN112927275B (en) * 2021-02-22 2022-03-01 北京安德医智科技有限公司 Image processing method and device, electronic equipment and storage medium
US11869186B2 (en) * 2021-06-10 2024-01-09 Elucid Bioimaging Inc. Non-invasive determination of likely response to combination therapies for cardiovascular disease
US11887734B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Systems and methods for clinical decision support for lipid-lowering therapies for cardiovascular disease
US11887701B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Non-invasive determination of likely response to anti-inflammatory therapies for cardiovascular disease
US11887713B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Non-invasive determination of likely response to anti-diabetic therapies for cardiovascular disease
CN114049282B (en) * 2022-01-07 2022-05-24 浙江大学 Coronary artery construction method, device, terminal and storage medium
WO2023132523A1 (en) * 2022-01-10 2023-07-13 주식회사 온택트헬스 Method and device for assisting diagnosis of calcification on basis of artificial intelligence model
US20230289963A1 (en) 2022-03-10 2023-09-14 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
EP4252664A1 (en) * 2022-03-31 2023-10-04 Koninklijke Philips N.V. Contrast agent attenuation gradient
WO2024074309A1 (en) * 2022-10-03 2024-04-11 Koninklijke Philips N.V. Systems and methods for planning coronary interventions

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
WO1997010748A1 (en) 1995-09-20 1997-03-27 Texas Heart Institute Detecting thermal discrepancies in vessel walls
DE19541500A1 (en) 1995-11-07 1997-05-15 Siemens Ag Image generation for medical use
US6047080A (en) 1996-06-19 2000-04-04 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US5891030A (en) 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
US6591004B1 (en) 1998-09-21 2003-07-08 Washington University Sure-fit: an automated method for modeling the shape of cerebral cortex and other complex structures using customized filters and transformations
US8639009B2 (en) 2000-10-11 2014-01-28 Imatx, Inc. Methods and devices for evaluating and treating a bone condition based on x-ray image analysis
EP1361896A2 (en) 2001-01-23 2003-11-19 Boston Scientific Corporation Localized myocardial injection method for treating ischemic myocardium
JP2003150703A (en) 2001-11-09 2003-05-23 Sanyo Electric Co Ltd Medical office work equipment
US20110206247A1 (en) 2001-11-21 2011-08-25 Dachille Frank C Imaging system and methods for cardiac analysis
EP1451753A2 (en) 2001-11-24 2004-09-01 Image Analysis, Inc. Automatic detection and quantification of coronary and aortic calcium
US7418123B2 (en) 2002-07-12 2008-08-26 University Of Chicago Automated method and system for computerized image analysis for prognosis
JP4619781B2 (en) 2002-07-23 2011-01-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー System for detecting plaque components
US20040133100A1 (en) 2002-08-23 2004-07-08 Morteza Naghavi Novel risk assessment method based upon coronary calcification distribution pattern imaged by computed tomography
DE10249643A1 (en) 2002-10-24 2004-05-13 Siemens Ag Coronary heart disease diagnosis and treatment method in which plaque deposition in blood vessels of interest is monitored over time and compared with reference values stored in the memory of a data processing unit
US7912528B2 (en) 2003-06-25 2011-03-22 Siemens Medical Solutions Usa, Inc. Systems and methods for automated diagnosis and decision support for heart related diseases and conditions
WO2005020790A2 (en) 2003-08-21 2005-03-10 Ischem Corporation Automated methods and systems for vascular plaque detection and analysis
US20050118632A1 (en) 2003-11-06 2005-06-02 Jian Chen Polynucleotides and polypeptides encoding a novel metalloprotease, Protease-40b
US20050110791A1 (en) 2003-11-26 2005-05-26 Prabhu Krishnamoorthy Systems and methods for segmenting and displaying tubular vessels in volumetric imaging data
EP1702302B1 (en) 2003-12-08 2008-02-13 Philips Intellectual Property & Standards GmbH Image segmentation in a volume data set
US8046488B2 (en) 2004-05-21 2011-10-25 Intel Corporation Dynamically modulating link width
US20060036167A1 (en) 2004-07-03 2006-02-16 Shina Systems Ltd. Vascular image processing
US20060101075A1 (en) 2004-11-10 2006-05-11 Peter Lehel Method and system for prospectively acquiring ROI based data for retrospective re-analysis
WO2006054271A2 (en) 2004-11-19 2006-05-26 Koninklijke Philips Electronics, N.V. False positive reduction in computer -assisted detection ( cad)
US7715626B2 (en) 2005-03-23 2010-05-11 Siemens Medical Solutions Usa, Inc. System and method for vascular segmentation by Monte-Carlo sampling
WO2006118100A1 (en) 2005-04-28 2006-11-09 Hitachi Medical Corporation Image display device and program
US7922352B2 (en) 2005-07-21 2011-04-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Device and method for emitting output light using multiple light sources with photoluminescent material
US20070019778A1 (en) 2005-07-22 2007-01-25 Clouse Melvin E Voxel histogram analysis for measurement of plaque
US7711165B2 (en) 2005-07-28 2010-05-04 Siemens Medical Solutions Usa, Inc. System and method for coronary artery segmentation of cardiac CT volumes
EP1927081B1 (en) * 2005-09-06 2017-04-26 Koninklijke Philips N.V. Data handling and analysis in computed tomography with multiple energy windows
US20100278405A1 (en) 2005-11-11 2010-11-04 Kakadiaris Ioannis A Scoring Method for Imaging-Based Detection of Vulnerable Patients
DE102006035677A1 (en) 2006-02-01 2007-08-16 Siemens Ag Method and CT system for detecting and differentiating plaque in vascular structures of a patient
US8009793B2 (en) 2006-02-24 2011-08-30 Mayo Foundation For Medical Education And Research Method for imaging plaque using dual energy CT
WO2007109771A2 (en) 2006-03-22 2007-09-27 Volcano Corporation Automated lesion analysis based upon automatic plaque characterization according to a classification criterion
US7805385B2 (en) 2006-04-17 2010-09-28 Siemens Medical Solutions Usa, Inc. Prognosis modeling from literature and other sources
US7860290B2 (en) 2006-04-21 2010-12-28 Siemens Medical Solutions Usa, Inc. Three-dimensional (3D) modeling of coronary arteries
EP2024935A1 (en) 2006-05-11 2009-02-18 Philips Intellectual Property & Standards GmbH Method and apparatus for reconstructing an image
US7940977B2 (en) 2006-10-25 2011-05-10 Rcadia Medical Imaging Ltd. Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies
US7860283B2 (en) 2006-10-25 2010-12-28 Rcadia Medical Imaging Ltd. Method and system for the presentation of blood vessel structures and identified pathologies
US7990379B2 (en) 2006-10-25 2011-08-02 Siemens Aktiengesellschaft System and method for coronary segmentation and visualization
US7940974B2 (en) 2006-11-21 2011-05-10 General Electric Company Method and system for adjusting 3D CT vessel segmentation
US7993274B2 (en) 2006-11-22 2011-08-09 General Electric Company Method, system, and computer product for automatically extracting and tracking cardiac calcifications and determining a tracking centerline
FR2908976B1 (en) 2006-11-24 2009-02-20 Gen Electric METHOD FOR MEASURING DIMENSIONS OF A VESSEL
US7907766B2 (en) 2007-01-02 2011-03-15 General Electric Company Automatic coronary artery calcium detection and labeling system
US7953262B2 (en) 2007-02-05 2011-05-31 General Electric Company Vascular image extraction and labeling system and method
US7953266B2 (en) 2007-02-06 2011-05-31 Siemens Medical Solutions Usa, Inc. Robust vessel tree modeling
US7899764B2 (en) 2007-02-16 2011-03-01 Siemens Aktiengesellschaft Medical ontologies for machine learning and decision support
US8290247B2 (en) 2007-05-16 2012-10-16 Siemens Aktiengesellschaft Method and system for segmentation of tubular structures in 3D images
US20090012382A1 (en) 2007-07-02 2009-01-08 General Electric Company Method and system for detection of obstructions in vasculature
US8144949B2 (en) 2007-11-15 2012-03-27 Carestream Health, Inc. Method for segmentation of lesions
US9235887B2 (en) 2008-02-19 2016-01-12 Elucid Bioimaging, Inc. Classification of biological tissue by multi-mode data registration, segmentation and characterization
US8774479B2 (en) 2008-02-19 2014-07-08 The Trustees Of The University Of Pennsylvania System and method for automated segmentation, characterization, and classification of possibly malignant lesions and stratification of malignant tumors
US8409104B2 (en) 2008-05-02 2013-04-02 Conopco Inc. Heart age assessment
US8073227B2 (en) 2008-05-09 2011-12-06 Siemens Aktiengesellschaft System and method for geometric modeling of tubular structures
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
US8582854B2 (en) 2008-09-15 2013-11-12 Siemens Aktiengesellschaft Method and system for automatic coronary artery detection
US9761004B2 (en) 2008-09-22 2017-09-12 Siemens Healthcare Gmbh Method and system for automatic detection of coronary stenosis in cardiac computed tomography data
JP5305821B2 (en) 2008-10-10 2013-10-02 株式会社東芝 Medical image processing apparatus and medical image diagnostic apparatus
FR2938957B1 (en) * 2008-11-21 2011-01-21 Univ Joseph Fourier Grenoble I IMAGE PROCESSING METHOD FOR ESTIMATING HAZARD OF ATENOME PLATE BREAK
WO2010068486A1 (en) 2008-11-25 2010-06-17 Trustees Of Boston University Apparatus and method of analyzing arterial plaque
EP2377095B1 (en) 2008-12-10 2016-05-25 Koninklijke Philips N.V. Vessel analysis
JP2010158452A (en) 2009-01-09 2010-07-22 Fujifilm Corp Image processing device and method, and program
US9603546B2 (en) 2009-01-26 2017-03-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Phantom for diffusion MRI imaging
WO2010089699A2 (en) 2009-02-03 2010-08-12 Hadasit Medical Research Services And Development Ltd. Ct perfusion phantom
WO2010130040A1 (en) 2009-05-14 2010-11-18 University Health Network Phantom for contrast imaging calibration
CN102648482B (en) 2009-09-11 2017-09-12 斯特拉克斯联合控股有限公司 Method and system for the graphical analysis of selected institutional framework
DE102009053471B4 (en) 2009-11-16 2018-08-02 Siemens Healthcare Gmbh Method and device for identifying and assigning coronary calculus to a coronary vessel and computer program product
US8831319B2 (en) 2009-11-16 2014-09-09 Arineta Ltd. Method and system for calibrating CT images
WO2011069120A1 (en) 2009-12-03 2011-06-09 Cedars-Sinai Medical Center Method and system for plaque characterization
JP5670045B2 (en) * 2009-12-07 2015-02-18 株式会社日立メディコ Image analysis apparatus, image analysis method, and image analysis program
JP5417158B2 (en) * 2009-12-25 2014-02-12 株式会社東芝 Image processing apparatus, medical image diagnostic apparatus, and image processing program
US8526699B2 (en) 2010-03-12 2013-09-03 Siemens Aktiengesellschaft Method and system for automatic detection and classification of coronary stenoses in cardiac CT volumes
WO2011115576A2 (en) 2010-03-15 2011-09-22 Singapore Health Services Pte Ltd Method of predicting the survivability of a patient
US20110245650A1 (en) 2010-04-02 2011-10-06 Kerwin William S Method and System for Plaque Lesion Characterization
US7904977B1 (en) 2010-06-18 2011-03-15 Neeraj Singh Safety sheet
US9965592B2 (en) 2010-07-16 2018-05-08 The University Of Houston System Methods of computing pericardial and abdominal fat and methods for motion compensation
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8494244B2 (en) 2010-09-27 2013-07-23 General Electric Company System and method for blood vessel stenosis visualization and quantification using spectral CT analysis
US20120158432A1 (en) 2010-12-15 2012-06-21 Uday Jain Patient Information Documentation And Management System
CN102812380B (en) 2011-03-09 2016-01-20 株式会社东芝 Medical image-processing apparatus
US8777854B2 (en) 2011-09-06 2014-07-15 General Electric Company Method and system for ultrasound based automated detection, quantification and tracking of pathologies
CA2776186C (en) 2011-09-09 2021-10-12 Calgary Scientific Inc. Image display of a centerline of tubular structure
US8849005B2 (en) 2011-09-28 2014-09-30 Siemens Aktiengesellschaft Coronary artery motion modeling
US9715562B2 (en) 2011-12-06 2017-07-25 Personics Holdings, Llc Methods and systems for ear device design using computerized tomography (CT)-collected anthropomorphic data
ITTO20120030A1 (en) 2012-01-17 2013-07-18 Consiglio Nazionale Ricerche PROCEDURE AND SYSTEM FOR THE DETERMINATION OF THE VOLUME OF EPICARDIC CARDIAC FAT FROM VOLUMETRIC IMAGES, AND ITS PROGRAM FOR PROCESSOR
CA2861979C (en) 2012-01-23 2022-05-24 Tomowave Laboratories, Inc. Laser optoacoustic ultrasonic imaging system (louis) and methods of use
US9129417B2 (en) 2012-02-21 2015-09-08 Siemens Aktiengesellschaft Method and system for coronary artery centerline extraction
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US9603826B2 (en) 2012-06-29 2017-03-28 Amarin Pharmaceuticals Ireland Limited Methods of reducing the risk of a cardiovascular event in a subject on statin therapy
US10398386B2 (en) 2012-09-12 2019-09-03 Heartflow, Inc. Systems and methods for estimating blood flow characteristics from vessel geometry and physiology
US10433740B2 (en) 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
US9675301B2 (en) 2012-10-19 2017-06-13 Heartflow, Inc. Systems and methods for numerically evaluating vasculature
US11450431B2 (en) 2012-11-16 2022-09-20 Siemens Healthcare Gmbh Method to identify optimum coronary artery disease treatment
WO2014107402A1 (en) 2013-01-02 2014-07-10 The Trustees Of The University Of Pennsylvania Classification of biological tissue by multi-mode data registration, segmentation and characterization
CN104968276B (en) * 2013-02-28 2018-02-27 株式会社日立制作所 Image processing apparatus and region extraction method
US9042613B2 (en) 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
US9424395B2 (en) 2013-03-04 2016-08-23 Heartflow, Inc. Method and system for sensitivity analysis in modeling blood flow characteristics
US8824752B1 (en) 2013-03-15 2014-09-02 Heartflow, Inc. Methods and systems for assessing image quality in modeling of patient anatomic or blood flow characteristics
JP6201255B2 (en) 2013-04-11 2017-09-27 ザイオソフト株式会社 Medical image processing system and medical image processing program
US9430827B2 (en) 2013-05-31 2016-08-30 Siemens Aktiengesellschaft Segmentation of a calcified blood vessel
US9295397B2 (en) 2013-06-14 2016-03-29 Massachusetts Institute Of Technology Method and apparatus for beat-space frequency domain prediction of cardiovascular death after acute coronary event
US9913616B2 (en) 2013-07-30 2018-03-13 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
WO2015023732A1 (en) 2013-08-13 2015-02-19 H. Lee Moffitt Cancer Center And Research Institute, Inc. Systems, methods and devices for analyzing quantitative information obtained from radiological images
US9043191B2 (en) 2013-08-16 2015-05-26 Heartflow, Inc. Systems and methods for identifying personalized vascular implants from patient-specific anatomic data
US9805463B2 (en) 2013-08-27 2017-10-31 Heartflow, Inc. Systems and methods for predicting location, onset, and/or change of coronary lesions
US9655563B2 (en) 2013-09-25 2017-05-23 Siemens Healthcare Gmbh Early therapy response assessment of lesions
EP3451343B1 (en) 2013-09-25 2021-02-24 Heartflow, Inc. Systems and methods for validating and correcting automated medical image annotations
WO2015048178A2 (en) 2013-09-25 2015-04-02 Heartflow, Inc. Systems and methods for visualizing elongated structures and detecting branches therein
US9700219B2 (en) 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
US20150164451A1 (en) 2013-12-18 2015-06-18 Heartflow, Inc. Systems and methods for predicting coronary plaque vulnerability from patient-specific anatomic image data
US20150187025A1 (en) 2014-01-01 2015-07-02 International Business Machines Corporation Optimization platform for water distribution networks
US9152761B2 (en) 2014-01-10 2015-10-06 Heartflow, Inc. Systems and methods for identifying medical image acquisition parameters
US8917925B1 (en) 2014-03-28 2014-12-23 Heartflow, Inc. Systems and methods for data and model-driven image reconstruction and enhancement
US9087147B1 (en) 2014-03-31 2015-07-21 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
US9773219B2 (en) 2014-04-01 2017-09-26 Heartflow, Inc. Systems and methods for using geometry sensitivity information for guiding workflow
US9058692B1 (en) 2014-04-16 2015-06-16 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
US8958623B1 (en) 2014-04-29 2015-02-17 Heartflow, Inc. Systems and methods for correction of artificial deformation in anatomic modeling
US9754082B2 (en) 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
US9195801B1 (en) 2014-08-05 2015-11-24 Heartflow, Inc. Systems and methods for treatment planning based on plaque progression and regression curves
GB201414496D0 (en) 2014-08-15 2014-10-01 Isis Innovation Method
US9642586B2 (en) 2014-08-18 2017-05-09 Siemens Aktiengesellschaft Computer-aided analysis of medical images
US9668700B2 (en) 2014-09-09 2017-06-06 Heartflow, Inc. Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease
WO2016040775A2 (en) 2014-09-12 2016-03-17 Research Development Foundation Apparatus and methods for identifyhing and evaluating bright spot indications observed through optical coherence tomography
US10082553B2 (en) 2014-10-16 2018-09-25 National Institute Of Standards And Technology MRI phantom, method for making same and acquiring an MRI image
US9292659B1 (en) 2014-10-29 2016-03-22 Heartflow, Inc. Systems and methods for vessel reactivity to guide diagnosis or treatment of cardiovascular disease
US9594876B2 (en) 2014-11-04 2017-03-14 Heartflow, Inc. Systems and methods for simulation of occluded arteries and optimization of occlusion-based treatments
US9349178B1 (en) 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
US9704043B2 (en) 2014-12-16 2017-07-11 Irobot Corporation Systems and methods for capturing images and annotating the captured images with information
EP3242605A4 (en) 2015-01-06 2018-08-29 CardioVascular BioTherapeutics, Inc. Angiogenic treatment of ischemic heart disease
EP3043318B1 (en) 2015-01-08 2019-03-13 Imbio Analysis of medical images and creation of a report
WO2016115206A1 (en) 2015-01-14 2016-07-21 Heartflow, Inc. Systems and methods for embolism prediction using embolus source and destination probabilities
US10987010B2 (en) 2015-02-02 2021-04-27 Heartflow, Inc. Systems and methods for vascular diagnosis using blood flow magnitude and/or direction
US10478130B2 (en) 2015-02-13 2019-11-19 Siemens Healthcare Gmbh Plaque vulnerability assessment in medical imaging
JP2016151827A (en) 2015-02-16 2016-08-22 キヤノン株式会社 Information processing unit, information processing method, information processing system and program
JP6476041B2 (en) 2015-03-31 2019-02-27 株式会社Aze MEDICAL IMAGE DIAGNOSIS DEVICE, ITS CONTROL METHOD, AND PROGRAM
US10405925B2 (en) 2015-04-02 2019-09-10 Heartflow, Inc. Systems and methods for determining and visualizing a functional relationship between a vascular network and perfused tissue
WO2016168474A1 (en) 2015-04-17 2016-10-20 Heartflow, Inc. Systems and methods for assessment of tissue function based on vascular disease
US9839483B2 (en) 2015-04-21 2017-12-12 Heartflow, Inc. Systems and methods for risk assessment and treatment planning of arterio-venous malformation
KR20160143178A (en) 2015-06-04 2016-12-14 삼성전자주식회사 APPARATUS AND method FOR PROCESSING MEDICAL IMAGE
AU2016274961A1 (en) 2015-06-10 2018-01-04 Biogen Ma Inc. Adipate forms and compositions of biaryl inhibitors of Bruton's tyrosine kinase
US9785748B2 (en) 2015-07-14 2017-10-10 Heartflow, Inc. Systems and methods for estimating hemodynamic forces acting on plaque and monitoring patient risk
JP6679709B2 (en) 2015-07-17 2020-04-15 ハートフロー, インコーポレイテッド System and method for assessing plaque and / or stenotic lesion severity using contrast agent distribution prediction and measurement
US11113812B2 (en) 2015-08-14 2021-09-07 Elucid Bioimaging Inc. Quantitative imaging for detecting vulnerable plaque
US11094058B2 (en) 2015-08-14 2021-08-17 Elucid Bioimaging Inc. Systems and method for computer-aided phenotyping (CAP) using radiologic images
US11071501B2 (en) 2015-08-14 2021-07-27 Elucid Bioiwaging Inc. Quantitative imaging for determining time to adverse event (TTE)
US10755810B2 (en) 2015-08-14 2020-08-25 Elucid Bioimaging Inc. Methods and systems for representing, storing, and accessing computable medical imaging-derived quantities
US10176408B2 (en) 2015-08-14 2019-01-08 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
US11676359B2 (en) 2015-08-14 2023-06-13 Elucid Bioimaging Inc. Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology
US11087459B2 (en) 2015-08-14 2021-08-10 Elucid Bioimaging Inc. Quantitative imaging for fractional flow reserve (FFR)
WO2017049197A1 (en) 2015-09-16 2017-03-23 Heartflow, Inc. Systems and methods for patient-specific imaging and modeling of drug delivery
US10517678B2 (en) 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
DK3357000T3 (en) 2015-10-02 2021-02-01 Curemetrix Inc CANCER DETECTION SYSTEMS AND METHODS
US10909675B2 (en) 2015-10-09 2021-02-02 Mayo Foundation For Medical Education And Research System and method for tissue characterization based on texture information using multi-parametric MRI
JP6918794B2 (en) 2015-11-10 2021-08-11 ハートフロー, インコーポレイテッド Anatomical modeling system and how it works
JP6858773B2 (en) 2015-11-23 2021-04-14 ハートフロー, インコーポレイテッド Systems and Methods for Evaluating Organ Transplants and / or Tissue Transplants by Simulating One or More Transplant Properties
JP6993334B2 (en) 2015-11-29 2022-01-13 アーテリーズ インコーポレイテッド Automated cardiac volume segmentation
EP3352663B1 (en) 2015-12-04 2020-10-28 St. Jude Medical, Cardiology Division, Inc. Methods and systems for statistically analyzing electrograms for local abnormal ventricular activities and mapping the same
WO2017106819A1 (en) 2015-12-18 2017-06-22 Elucid Bioimaging Inc. Methods and systems for representing, storing, and accessing computable medical imaging-derived quantities
AU2017222617B2 (en) 2016-02-25 2019-06-27 Sas Institute Inc. Cybersecurity system
WO2017147500A1 (en) 2016-02-26 2017-08-31 Heartflow, Inc. Systems and methods for identifying and modeling unresolved vessels in image-based patient-specific hemodynamic models
US10206646B2 (en) 2016-03-10 2019-02-19 Siemens Healthcare Gmbh Method and system for extracting centerline representation of vascular structures in medical images via optimal paths in computational flow fields
EP4162870B1 (en) 2016-03-16 2024-01-31 HeartFlow, Inc. System and method for estimating a healthy lumen diameter and stenosis quantification in coronary arteries
US9767557B1 (en) 2016-06-23 2017-09-19 Siemens Healthcare Gmbh Method and system for vascular disease detection using recurrent neural networks
CA3029264C (en) 2016-06-28 2023-07-25 Heartflow, Inc. Systems and methods for anonymization of health data and transmission of health data for analysis across geographic regions
US10492755B2 (en) 2016-07-13 2019-12-03 Carestream Health, Inc. Calibration phantom comprising a reflectance calibration target and a plurality of radio-opaque markers
WO2018031663A1 (en) 2016-08-10 2018-02-15 Heartflow, Inc. Systems and methods for modeling nutrient transport and/or predicting weight change
JP7100627B2 (en) 2016-09-20 2022-07-13 ハートフロー, インコーポレイテッド Systems and methods for estimating blood flow characteristics using order reduction models and / or machine learning
WO2018057507A1 (en) 2016-09-20 2018-03-29 Heartflow, Inc. Systems and methods for monitoring and updating blood flow calculations with user-specific anatomic and physiologic sensor data
EP3985557B1 (en) 2016-09-23 2023-11-08 Curemetrix, Inc. Mapping of breast arterial calcifications
WO2018057990A1 (en) 2016-09-23 2018-03-29 Curemetrix, Inc. Removal of masking structures in images for the detection of anomalies
CA3040391A1 (en) * 2016-10-31 2018-05-03 Oxford University Innovation Limited Method for predicting cardiovascular risk
JP2018081520A (en) 2016-11-17 2018-05-24 東芝テック株式会社 Information processing device and program
EP3332710B1 (en) 2016-12-12 2020-09-16 Siemens Healthcare GmbH Characterisation of plaque
JP7077319B2 (en) 2016-12-23 2022-05-30 ハートフロー, インコーポレイテッド Machine learning of anatomical model parameters
JP7134962B2 (en) 2016-12-23 2022-09-12 ハートフロー, インコーポレイテッド Systems and methods for probabilistic segmentation in anatomical imaging
US10740880B2 (en) 2017-01-18 2020-08-11 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
WO2018156961A1 (en) 2017-02-24 2018-08-30 Heartflow, Inc. Systems and methods for identifying anatomically relevant blood flow characteristics in a patient
EP4068203A1 (en) 2017-05-09 2022-10-05 HeartFlow, Inc. Systems and methods for anatomic structure segmentation in image analysis
US10483006B2 (en) 2017-05-19 2019-11-19 Siemens Healthcare Gmbh Learning based methods for personalized assessment, long-term prediction and management of atherosclerosis
EP3431005A1 (en) 2017-07-19 2019-01-23 Koninklijke Philips N.V. Inflammation estimation from x-ray image data
WO2019033098A2 (en) 2017-08-11 2019-02-14 Elucid Bioimaging Inc. Quantitative medical imaging reporting
WO2019046309A1 (en) 2017-08-29 2019-03-07 Heartflow, Inc. Systems and methods for generating an anonymous interactive display in an extended timeout period
CN107730540B (en) 2017-10-09 2020-11-17 全景恒升(北京)科学技术有限公司 Coronary parameter calculation method based on high-precision matching model
EP3701543A4 (en) 2017-10-24 2021-08-11 Adventia Technology, LLC Systems, methods, and devices for aggregated health data processing and treatment recommendation generation platforms
JP7031262B2 (en) 2017-12-04 2022-03-08 富士通株式会社 Imaging processing program, imaging processing method, and imaging processing device
US10932741B2 (en) 2017-12-07 2021-03-02 Ohio State Innovation Foundation Assessing a condition of a subject using non-contrast dual energy computed tomography
WO2019126372A1 (en) 2017-12-20 2019-06-27 Heartflow, Inc. Systems and methods for performing computer-simulated evaluation of treatments on a target population
US11062489B2 (en) 2018-02-13 2021-07-13 Wisconsin Alumni Research Foundation System and method for multi-architecture computed tomography pipeline
WO2019165432A1 (en) 2018-02-26 2019-08-29 Children's Medical Center Corporation Extended reality medical report generating system
WO2019175032A1 (en) 2018-03-14 2019-09-19 Koninklijke Philips N.V. Scoring intravascular lesions and stent deployment in medical intraluminal ultrasound imaging
US10699407B2 (en) 2018-04-11 2020-06-30 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
US11399779B2 (en) 2018-05-16 2022-08-02 Case Western Reserve University System-independent quantitative perfusion imaging
CN108898626B (en) 2018-06-21 2019-09-27 清华大学 A kind of autoegistration method coronarius
US11462329B2 (en) 2018-10-17 2022-10-04 Heartflow, Inc. Systems and methods for assessing cardiovascular disease and treatment effectiveness from adipose tissue
US10813612B2 (en) 2019-01-25 2020-10-27 Cleerly, Inc. Systems and method of characterizing high risk plaques
US11250842B2 (en) 2019-01-27 2022-02-15 Min Ku Kim Multi-dimensional parsing method and system for natural language processing
WO2020172544A1 (en) 2019-02-22 2020-08-27 Heartflow, Inc. Systems and methods for managing, validating, and transmitting health data across geographic regions
WO2020206338A1 (en) 2019-04-04 2020-10-08 Centerline Biomedical, Inc. Modeling regions of interest of an anatomic structure
US11705226B2 (en) 2019-09-19 2023-07-18 Tempus Labs, Inc. Data based cancer research and treatment systems and methods
US11508063B2 (en) 2019-08-05 2022-11-22 Elucid Bioimaging Inc. Non-invasive measurement of fibrous cap thickness
CN116884580A (en) 2019-08-05 2023-10-13 光实验成像公司 Apparatus and method for providing a longitudinal display of coronary calcium loading
EP4035179A4 (en) 2019-09-27 2023-10-25 Vitaa Medical Solutions Inc. Method and system for determining regional rupture potential of blood vessel
US11969280B2 (en) 2020-01-07 2024-04-30 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
JP2023509514A (en) 2020-01-07 2023-03-08 クリールリー、 インコーポレーテッド Systems, Methods, and Devices for Medical Image Analysis, Diagnosis, Severity Classification, Decision Making, and/or Disease Tracking
WO2021141135A1 (en) 2020-01-09 2021-07-15 学校法人東京女子医科大学 Functional ischemia detection technique by coronary artery ct4d flow imaging
GB2608075B (en) 2020-02-28 2024-01-24 Artrya Pty Ltd A method of and system for calcium scoring of coronary arteries
KR102280902B1 (en) 2020-07-16 2021-07-26 주식회사 코어라인소프트 Apparatus and method for assisting chest medical images reading
US11593926B2 (en) 2021-02-09 2023-02-28 Elucid Bioimaging Inc. Systems and methods for improving soft tissue contrast, multiscale modeling and spectral CT
US20220359063A1 (en) 2021-05-05 2022-11-10 Heartflow, Inc. Systems and methods for processing electronic images to determine a planar mapping
KR20220155828A (en) 2021-05-17 2022-11-24 주식회사 코어라인소프트 Medical image analysis apparatus and method, medical image visualization apparatus and method
US20220415519A1 (en) 2021-06-10 2022-12-29 Elucid Bioimaging Inc. Systems and methods for patient-specific therapeutic recommendations for cardiovascular disease
US11887734B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Systems and methods for clinical decision support for lipid-lowering therapies for cardiovascular disease
US20220400963A1 (en) 2021-06-10 2022-12-22 Elucid Bioimaging Inc. Non-invasive determination of likely response to lipid lowering therapies for cardiovascular disease
US11869186B2 (en) 2021-06-10 2024-01-09 Elucid Bioimaging Inc. Non-invasive determination of likely response to combination therapies for cardiovascular disease
US11887713B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Non-invasive determination of likely response to anti-diabetic therapies for cardiovascular disease
US11887701B2 (en) 2021-06-10 2024-01-30 Elucid Bioimaging Inc. Non-invasive determination of likely response to anti-inflammatory therapies for cardiovascular disease

Similar Documents

Publication Publication Date Title
Hunold et al. Prevalence and clinical significance of accidental findings in electron-beam tomographic scans for coronary artery calcification
JPWO2020154649A5 (en)
Becker et al. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT
Nakaura et al. Myocardial bridging is associated with coronary atherosclerosis in the segment proximal to the site of bridging
Di Cesare et al. Image quality and radiation dose of single heartbeat 640-slice coronary CT angiography: a comparison between patients with chronic atrial fibrillation and subjects in normal sinus rhythm by propensity analysis
Lu et al. What is the best contrast injection protocol for 64-row multi-detector cardiac computed tomography?
Hell et al. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography
Ma et al. Assessment of myocardial bridge and mural coronary artery using ECG-gated 256-slice CT angiography: a retrospective study
Khalique et al. Practical considerations for optimizing cardiac computed tomography protocols for comprehensive acquisition prior to transcatheter aortic valve replacement
Bamberg et al. Predictors of image quality of coronary computed tomography in the acute care setting of patients with chest pain
Tatsugami et al. Feasibility of low-volume injections of contrast material with a body weight–adapted iodine-dose protocol in 320-detector row coronary CT angiography
Kopp et al. Multislice CT in cardiac and coronary angiography
Dey et al. Image quality and artifacts in coronary CT angiography with dual-source CT: initial clinical experience
Lu et al. Comparison of myocardial bridging by dual-source CT with conventional coronary angiography
Yamaguchi et al. A new contrast enhancement protocol for subtraction coronary computed tomography requiring a short breath-holding time
De Feyter et al. Spiral multislice computed tomography coronary angiography: a current status report
Meyer et al. Radiation dose levels of retrospectively ECG-gated coronary CT angiography using 70-kVp tube voltage in patients with high or irregular heart rates
Funabashi et al. New acquisition method to exclusively enhance the left side of the heart by a small amount of contrast material achieved by multislice computed tomography with 64 data acquisition system
Tacelli et al. High-pitch, dual-source chest computed tomography angiography without electrocardiographic synchronization: evaluation of cardiac motion artifacts on pulmonary circulation
Froelich et al. Relationship between pulmonary artery volumes at computed tomography and pulmonary artery pressures in patients with-and without pulmonary hypertension
Tomizawa et al. Effect of saline flush on enhancement of proximal and distal segments using 320-row coronary CT angiography
US20190133540A1 (en) Epicardial adipose tissue inflammatory index prediction of lesion-specific ischemia as assessed by fractional flow reserve
Sato et al. Detection of Atherosclerotic Coronary Artery Plaques by Multislice Spiral Computed Tomography in Patients With Acute Coronary Syndrome Report of 2 Cases
Nguyen et al. Influence of cardiac function on image quality in coronary computed tomography angiography
Tantawy et al. Evaluation of Coronary Artery Disease among Population with Fatty Liver Disease Using Multi-Slice Computed Tomography.