CN114049282B - Coronary artery construction method, device, terminal and storage medium - Google Patents
Coronary artery construction method, device, terminal and storage medium Download PDFInfo
- Publication number
- CN114049282B CN114049282B CN202210015014.5A CN202210015014A CN114049282B CN 114049282 B CN114049282 B CN 114049282B CN 202210015014 A CN202210015014 A CN 202210015014A CN 114049282 B CN114049282 B CN 114049282B
- Authority
- CN
- China
- Prior art keywords
- cloud data
- point cloud
- coronary artery
- coronary
- tissue density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004351 coronary vessel Anatomy 0.000 title claims abstract description 213
- 238000010276 construction Methods 0.000 title claims abstract description 14
- 210000000115 thoracic cavity Anatomy 0.000 claims abstract description 26
- 238000004364 calculation method Methods 0.000 claims description 66
- 230000002792 vascular Effects 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 48
- 230000015654 memory Effects 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 18
- 238000003325 tomography Methods 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 86
- 238000010586 diagram Methods 0.000 description 20
- 230000011218 segmentation Effects 0.000 description 15
- 238000002591 computed tomography Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 210000000988 bone and bone Anatomy 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 230000017531 blood circulation Effects 0.000 description 5
- 238000002059 diagnostic imaging Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 208000029078 coronary artery disease Diseases 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 238000002583 angiography Methods 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000000877 morphologic effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 206010057469 Vascular stenosis Diseases 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
技术领域technical field
本申请涉及但不限于医学图像处理技术领域,尤其涉及一种冠状动脉的构建方法、装置、终端及存储介质。The present application relates to, but is not limited to, the technical field of medical image processing, and in particular, relates to a method, device, terminal and storage medium for constructing a coronary artery.
背景技术Background technique
在医疗图像的识别处理技术中,电子计算机断层扫描(Computed Tomography,CT)影像,核磁共振影像(Magnetic Resonance Imaging,MRI)等数字图像的后处理分析已经被广泛地应用于临床的病症诊断中,尤其是针对冠状动脉疾病而言,目前医生都比较认可计算冠状动脉血流储备系数(Fractional Flow Reserve,FFR)来衡量病变程度,进而给病人提出合适的建议如是否需要通过手术治愈冠状动脉疾病,而FFR的计算是通过冠状动脉模型来分配分支的供血量。因此,如何在医疗影像中,准确的高效的提取冠状动脉对FFR计算有着重要的意义。In the recognition and processing technology of medical images, the post-processing analysis of digital images such as Computed Tomography (CT) images and Magnetic Resonance Imaging (MRI) images has been widely used in clinical disease diagnosis. Especially for coronary artery disease, doctors currently agree to calculate the Fractional Flow Reserve (FFR) to measure the degree of disease, and then give patients appropriate advice, such as whether to cure coronary artery disease through surgery, The calculation of FFR is to allocate the blood supply of the branches through the coronary artery model. Therefore, how to accurately and efficiently extract coronary arteries in medical imaging is of great significance for FFR calculation.
相关技术中对冠状动脉的重构方法是,利用深度学习方法或机器学习方法如区域生长、滤波处理或形态学处理等,从CT图像出发利用中心线指导重构冠状动脉,或直接利用空间关联信息重构冠状动脉,或利用测量创建模拟模型匹配等。然而,上述方法中,至少存在由于钙化斑块造成的伪影,导致最终构建的冠状动脉的不准确的问题。Coronary reconstruction methods in the related art are to use deep learning methods or machine learning methods such as region growth, filtering processing or morphological processing, etc., starting from CT images and using centerline guidance to reconstruct coronary arteries, or directly using spatial correlation. information to reconstruct coronary arteries, or use measurements to create simulated model matches, etc. However, in the above method, there is at least an artifact caused by calcified plaque, which leads to the inaccuracy of the finally constructed coronary artery.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种冠状动脉的构建方法、装置、终端及存储介质,以解决相关技术中由于钙化斑块造成的伪影,导致最终构建的冠状动脉的不准确的问题。Embodiments of the present application provide a method, device, terminal, and storage medium for constructing a coronary artery, so as to solve the problem of inaccuracy in the final constructed coronary artery caused by artifacts caused by calcified plaque in the related art.
本申请实施例的技术方案是这样实现的:The technical solutions of the embodiments of the present application are implemented as follows:
第一方面,本申请实施例提供一种冠状动脉的构建方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for constructing a coronary artery, the method comprising:
基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于所述第一点云数据,计算动态阈值;Calculate the dynamic threshold based on the first point cloud data of the coronary artery reconstructed from the collected multiple thoracic tomographic images, and based on the first point cloud data;
基于所述动态阈值确定所述第一点云数据上钙化斑块的预测位置;determining the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold;
在所述第一点云数据上,确定所述预测位置所在的冠状动脉段,并沿着所述冠状动脉段内的中心点的位置生成横截面;On the first point cloud data, determine the coronary artery segment where the predicted position is located, and generate a cross-section along the position of the center point in the coronary artery segment;
在所述横截面中重构冠状动脉血管流道区域;reconstructing a coronary vascular flow channel region in said cross-section;
基于所述冠状动脉血管流道区域,构建所述冠状动脉的第二点云数据。Based on the coronary vessel flow channel region, second point cloud data of the coronary arteries are constructed.
第二方面,本申请实施例提供一种冠状动脉的构建装置,所述装置包括:In a second aspect, an embodiment of the present application provides a device for constructing a coronary artery, the device comprising:
处理模块,用于基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于所述第一点云数据,计算动态阈值;a processing module, configured to calculate the dynamic threshold based on the first point cloud data of the coronary artery reconstructed based on the collected multiple thoracic tomographic images, and based on the first point cloud data;
确定模块,用于基于所述动态阈值确定所述第一点云数据上钙化斑块的预测位置;a determination module, configured to determine the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold;
所述确定模块,还用于在所述第一点云数据上,确定所述预测位置所在的冠状动脉段;The determining module is further configured to determine, on the first point cloud data, the coronary artery segment where the predicted position is located;
生成模块,用于沿着所述冠状动脉段内的中心点的位置生成横截面;a generation module for generating a cross-section along the position of a center point within the coronary artery segment;
重构模块,用于在所述横截面中重构冠状动脉血管流道区域;a reconstruction module for reconstructing a coronary vessel flow channel region in the cross-section;
构建模块,用于基于所述冠状动脉血管流道区域,构建所述冠状动脉的第二点云数据。a building module for building second point cloud data of the coronary artery based on the coronary vessel flow channel region.
第三方面,本申请实施例提供一种终端,所述终端包括:处理器、存储器和通信总线;In a third aspect, an embodiment of the present application provides a terminal, where the terminal includes: a processor, a memory, and a communication bus;
所述通信总线用于实现处理器和存储器之间的通信连接;The communication bus is used to realize the communication connection between the processor and the memory;
所述处理器用于执行存储器中存储的冠状动脉的构建程序,以实现上述的冠状动脉的构建方法的步骤。The processor is configured to execute the coronary artery construction program stored in the memory, so as to realize the steps of the above-mentioned coronary artery construction method.
第三方面,本申请实施例提供一种存储介质,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述的冠状动脉的构建方法的步骤。In a third aspect, embodiments of the present application provide a storage medium, where one or more programs are stored in the storage medium, and the one or more programs can be executed by one or more processors to implement the above-mentioned coronary arteries Steps to build a method.
应用本申请实施例实现以下有益效果:以医学冠状动脉模型为基础,提高动态阈值对动脉模型中的钙化斑块进行识别,并对存在钙化斑块的冠状动脉段的血管流道区域进行修复,为对冠状动脉建立准确的三维模型提供更加准确的依据,进而为计算FFR提供精确的血流分配。The following beneficial effects are achieved by applying the embodiments of the present application: based on the medical coronary model, the dynamic threshold is increased to identify the calcified plaque in the arterial model, and the vascular flow channel region of the coronary artery segment with the calcified plaque is repaired, It provides a more accurate basis for establishing an accurate three-dimensional model of coronary arteries, and then provides accurate blood flow distribution for calculating FFR.
本申请实施例提供的冠状动脉的构建方法、装置、终端及存储介质,通过基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值;基于动态阈值确定第一点云数据上钙化斑块的预测位置;在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面;在横截面中重构冠状动脉血管流道区域;基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据;也就是说,本申请基于冠状动脉的第一点云数据,自适应化的计算与胸腔断层图像对应的动态阈值,进而基于动态阈值准确识别三维冠状动脉模型红的钙化斑块,同时,对存在钙化斑块的冠状动脉段的血管流道区域进行修复,以基于修复后的血管流道区域对冠状动脉建立准确的三维模型;如此,解决了相关技术中由于钙化斑块造成的伪影,导致最终构建的冠状动脉的不准确的问题,提高了对冠状动脉进行精准建模,从而为计算FFR提供精确的血流分配,同时,该方案具有较好的鲁棒性和可扩展性。The coronary artery construction method, device, terminal, and storage medium provided by the embodiments of the present application use the first point cloud data of the coronary artery reconstructed based on the collected multiple thoracic tomographic images, and based on the first point cloud data, calculate Dynamic threshold; determine the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold; on the first point cloud data, determine the coronary artery segment where the predicted position is located, and generate along the position of the center point in the coronary artery segment cross section; reconstruct the coronary vascular flow channel area in the cross section; based on the coronary vascular flow channel area, construct the second point cloud data of the coronary artery; that is, the present application is based on the first point cloud data of the coronary artery, The dynamic threshold corresponding to the thoracic tomographic image is adaptively calculated, and then based on the dynamic threshold, the red calcified plaque of the three-dimensional coronary model can be accurately identified. An accurate three-dimensional model of the coronary artery is established based on the repaired vascular flow channel area; in this way, the artifact caused by the calcified plaque in the related art is solved, which leads to the inaccuracy of the finally constructed coronary artery, which improves the understanding of the coronary artery. Accurate modeling is performed to provide accurate blood flow distribution for calculating FFR. At the same time, the scheme has good robustness and scalability.
附图说明Description of drawings
图1为本申请实施例提供的一种冠状动脉的构建方法的流程示意图;1 is a schematic flowchart of a method for constructing a coronary artery according to an embodiment of the present application;
图2为本申请实施例提供的一种重构的冠状动脉的第一点云数据的示意图;FIG. 2 is a schematic diagram of a reconstructed first point cloud data of a coronary artery according to an embodiment of the present application;
图3为本申请实施例提供的另一种冠状动脉的构建方法的流程示意图;3 is a schematic flowchart of another method for constructing a coronary artery according to an embodiment of the present application;
图4为本申请实施例提供的又一种冠状动脉的构建方法的流程示意图;4 is a schematic flowchart of another method for constructing a coronary artery according to an embodiment of the present application;
图5为本申请实施例提供的一种基于动态阈值确定的钙化斑块的预测位置的示意图;5 is a schematic diagram of a predicted position of a calcified plaque determined based on a dynamic threshold according to an embodiment of the present application;
图6为本申请实施例提供的一种手动选取的冠状动脉中的钙化斑块的位置的示意图;6 is a schematic diagram of a manually selected position of a calcified plaque in a coronary artery according to an embodiment of the present application;
图7为本申请另一实施例提供的一种冠状动脉的构建方法的流程示意图;7 is a schematic flowchart of a method for constructing a coronary artery according to another embodiment of the present application;
图8为本申请实施例提供的一种冠状动脉的中轴线上的点的示意图;FIG. 8 is a schematic diagram of a point on the central axis of a coronary artery according to an embodiment of the present application;
图9为本申请实施例提供的一种在冠状动脉段中生成的截面的示意图;FIG. 9 is a schematic diagram of a cross section generated in a coronary artery segment according to an embodiment of the present application;
图10为本申请实施例提供的一种横截面水平集分割结果的示意图;10 is a schematic diagram of a cross-sectional level set segmentation result provided by an embodiment of the present application;
图11为本申请另一实施例提供的另一种冠状动脉的构建方法的流程示意图;11 is a schematic flowchart of another method for constructing a coronary artery according to another embodiment of the present application;
图12为本申请实施例提供的一种三维空间中展示的水平集分割结果的示意图;12 is a schematic diagram of a level set segmentation result displayed in a three-dimensional space according to an embodiment of the present application;
图13为本申请实施例提供的一种按照距离入口点的顺序对冠状动脉血管流道区域中的所有目标点进行遍历的结果的示意图;13 is a schematic diagram of a result of traversing all target points in a coronary vascular flow channel region in order of distance from an entry point according to an embodiment of the present application;
图14为本申请实施例提供的一种基于修复后的血管流道区域得到的冠状动脉模型的示意图;14 is a schematic diagram of a coronary artery model obtained based on a repaired vascular flow channel region provided by an embodiment of the present application;
图15为本申请实施例提供的一种冠状动脉的构建装置的结构示意图;15 is a schematic structural diagram of a coronary artery construction device provided in an embodiment of the application;
图16为本申请实施例提供的一种终端的结构示意图。FIG. 16 is a schematic structural diagram of a terminal according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the present application will be described in further detail below with reference to the accompanying drawings. All other embodiments obtained under the premise of creative work fall within the scope of protection of the present application.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terms used herein are only for the purpose of describing the embodiments of the present application, and are not intended to limit the present application.
相关技术中,随着图像大数据的爆发,图像处理技术表现出处理精度高、再现性好、灵活性高,通用性强等优点,在军工、农业、医疗等各个领域都依靠图像处理技术对物体进行形状分析和识别起着愈发重要的作用。其中主要思想是通过关键点定位来判定物体,而一个物体形态的绘制必定离不开其骨骼的提取。In related technologies, with the explosion of image big data, image processing technology shows the advantages of high processing accuracy, good reproducibility, high flexibility, and strong versatility. Shape analysis and recognition of objects play an increasingly important role. The main idea is to determine the object through key point positioning, and the drawing of an object's shape must be inseparable from the extraction of its bones.
一般来说,获取图像的骨骼的过程就是对该图像进行‘细化’的过程,它可以有效地反映出原物体形状的连通性和拓扑结构。目前骨骼提取的算法就是从边界开始反复迭代计算,逐层均匀剥掉图形的边界,直至剩下最里层的一维骨骼。Generally speaking, the process of obtaining the bones of an image is the process of 'refining' the image, which can effectively reflect the connectivity and topology of the original object shape. The current bone extraction algorithm is to iteratively calculate from the boundary, and evenly peel off the boundary of the graph layer by layer until the innermost one-dimensional bone remains.
图像的骨骼提取技术在图像分析与形状描述中都是一个非常重要的变换,是图像几何形态中重要的拓扑描述。骨骼提取技术在图像目标的形状分析、特征提取、模式识别等应用的前提。在虚拟导航、形态匹配、指纹识别、医学影像处理等领域中曲线骨骼提取算法早已成为研究的热点。Image skeleton extraction technology is a very important transformation in image analysis and shape description, and it is an important topological description in image geometry. The premise of the application of bone extraction technology in image target shape analysis, feature extraction, pattern recognition, etc. In the fields of virtual navigation, shape matching, fingerprint recognition, medical image processing and other fields, the curve bone extraction algorithm has already become a research hotspot.
在医学影像领域中,有彩超心血管成像,核磁共振成像MRI以及数字减影血管造影技术(Digital subtraction angiography,DSA)、形态学技术、机器学习技术等多项技术相继出现。使得医学影像数字化程度越来越高,种类也更加多样化。医学影像技术已不仅只是提供各类人体器官的重构模型,还通过时间序列的血流速度场体现血流动力学的变化。这些技术的发展极大地提高了医生诊断的效率和准确性,同时也为病人减少不必要的手术风险。In the field of medical imaging, color Doppler cardiovascular imaging, magnetic resonance imaging MRI, digital subtraction angiography (DSA), morphological technology, and machine learning technology have emerged one after another. The degree of digitization of medical images is getting higher and higher, and the types are more diverse. Medical imaging technology has not only provided reconstructed models of various human organs, but also reflected the changes in hemodynamics through time-series blood flow velocity fields. The development of these technologies has greatly improved the efficiency and accuracy of doctors' diagnosis, while also reducing unnecessary surgical risks for patients.
在医疗图像的识别处理技术中,电子计算机断层扫描(Computed Tomography,CT)影像,核磁共振影像(Magnetic Resonance Imaging,MRI)等数字图像的后处理分析已经被广泛地应用于临床的病症诊断中,尤其是针对冠状动脉疾病而言,目前医生都比较认可计算冠状动脉血流储备系数(Fractional Flow Reserve,FFR)来衡量病变程度,进而给病人提出合适的建议如是否需要通过手术治愈冠状动脉疾病,而FFR的计算是通过冠状动脉模型来分配分支的供血量。因此,如何在医疗影像中,准确的高效的提取冠状动脉对FFR计算有着重要的意义。In the recognition and processing technology of medical images, the post-processing analysis of digital images such as Computed Tomography (CT) images and Magnetic Resonance Imaging (MRI) images has been widely used in clinical disease diagnosis. Especially for coronary artery disease, doctors currently agree to calculate the Fractional Flow Reserve (FFR) to measure the degree of disease, and then give patients appropriate advice, such as whether to cure coronary artery disease through surgery, The calculation of FFR is to allocate the blood supply of the branches through the coronary artery model. Therefore, how to accurately and efficiently extract coronary arteries in medical imaging is of great significance for FFR calculation.
相关技术中对冠状动脉的重构方法是,利用深度学习方法或机器学习方法如区域生长、滤波处理或形态学处理等,从CT图像出发利用中心线指导重构冠状动脉,或直接利用空间关联信息重构冠状动脉,或利用测量创建模拟模型匹配等。然而,上述方法中,至少存在由于钙化斑块造成的伪影和/或血管狭窄造成的造影剂不充分,导致最终构建的冠状动脉模型的不准确,若构建的冠状动脉模型无法无语钙化斑块以及造成的血管狭窄,则至少对FFR的计算造成巨大影响。Coronary reconstruction methods in the related art are to use deep learning methods or machine learning methods such as region growth, filtering processing or morphological processing, etc., starting from CT images and using centerline guidance to reconstruct coronary arteries, or directly using spatial correlation. information to reconstruct coronary arteries, or use measurements to create simulated model matches, etc. However, in the above methods, at least there are artifacts caused by calcified plaque and/or insufficient contrast agent caused by vascular stenosis, which leads to inaccuracy of the final coronary model constructed. And the resulting vascular stenosis, at least have a huge impact on the calculation of FFR.
本申请实施例提供一种冠状动脉的构建方法,该方法应用于终端,参照图1所示,该方法包括:An embodiment of the present application provides a method for constructing a coronary artery. The method is applied to a terminal. Referring to FIG. 1 , the method includes:
步骤101、基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值。Step 101: Calculate the dynamic threshold based on the first point cloud data of the coronary artery reconstructed based on the collected multiple thoracic tomographic images, and based on the first point cloud data.
本申请实施例中,多张胸腔断层图像可以是基于CT技术得到的多张CT图像,这里,CT图像可以是通过静脉注射适当造影剂后,利用多排螺旋CT机对冠状动脉进行扫描,从而得到的冠状动脉CT图像。多张胸腔断层图像也可以是基于冠状动脉造影技术获得的血管造影图像;多张胸腔断层图像还可以是基于X射线技术获得的血管造影图像,可见,本申请实施例对采集到的多张胸腔断层图像可以基于任一种能够体现冠状动脉的医疗影像信息确定出来,本申请实施例对采集到的多张胸腔断层图像的数据来源不做具体地限定,以能实现本申请提供的冠状动脉的构建方法为准。In the embodiment of the present application, the multiple thoracic tomographic images may be multiple CT images obtained based on CT technology. Here, the CT images may be the coronary arteries scanned by a multi-slice spiral CT machine after intravenous injection of an appropriate contrast agent, thereby Obtained coronary CT images. The multiple thoracic tomographic images can also be angiography images obtained based on coronary angiography; the multiple thoracic tomographic images can also be angiography images obtained based on X-ray technology. The tomographic images can be determined based on any medical imaging information that can reflect the coronary arteries. The data sources of the multiple thoracic tomographic images collected are not specifically limited in the embodiments of the present application, so as to realize the coronary arteries provided by the present application. The build method prevails.
本申请实施例中,冠状动脉的第一点云数据可以是终端基于采集到的多张胸腔断层图像进行三维重构,得到初始冠状动脉模型,并基于初始冠状动脉模型获取到的数据。这里,第一点云数据中包括冠状动脉所在区域中的每一目标点对应的组织密度值。In the embodiment of the present application, the first point cloud data of the coronary arteries may be data obtained by the terminal performing three-dimensional reconstruction based on multiple collected thoracic tomographic images to obtain an initial coronary artery model, and based on the initial coronary artery model. Here, the first point cloud data includes a tissue density value corresponding to each target point in the region where the coronary arteries are located.
这里,点云数据可以以空间体坐标(x,y,z)的存储方式,为H行3列的二维数组(H是点云数据包含的点的个数)。本申请实施例中,首先,终端获取到点云数据之后,可以将点云数组转化为具有一定大小的二值化三维矩阵。Here, the point cloud data can be a two-dimensional array with H rows and 3 columns in the form of spatial volume coordinates (x, y, z) (H is the number of points contained in the point cloud data). In this embodiment of the present application, first, after acquiring the point cloud data, the terminal can convert the point cloud array into a binarized three-dimensional matrix with a certain size.
本申请实施例中,动态阈值用于预测第一点云数据上钙化斑块的位置。In this embodiment of the present application, the dynamic threshold is used to predict the position of the calcified plaque on the first point cloud data.
本申请实施例中,终端获取采集到的多张胸腔断层图像,并基于多张胸腔断层图像进行三维重构,得到初始冠状动脉模型;进一步地,终端基于初始冠状动脉模型生成重构的冠状动脉的第一点云数据,并基于第一点云数据,计算用于预测第一点云数据上钙化斑块的位置的动态阈值。In the embodiment of the present application, the terminal acquires multiple thoracic tomographic images, and performs three-dimensional reconstruction based on the multiple thoracic tomographic images to obtain an initial coronary artery model; further, the terminal generates a reconstructed coronary artery based on the initial coronary artery model and based on the first point cloud data, a dynamic threshold for predicting the position of the calcified plaque on the first point cloud data is calculated.
在一种可实现的应用场景中,参照图2所示,图2示出的是重构的冠状动脉的第一点云数据的示意图。首先,终端获取采集到的多张胸腔断层图像,并将多张胸腔断层图像按照空间上的顺序排列成三维的形式,得到三维图像Image3d;其次,终端对三维图像Image3d进行处理,得到重构的初始冠状动脉模型;进一步地,终端基于初始冠状动脉模型,获取重构的冠状动脉的第一点云数据,即冠状动脉的重构结果。最后,终端基于第一点云数据Coronary,计算冠状动脉所在区域的中用于预测第一点云数据上钙化斑块的位置的动态阈值。In an achievable application scenario, referring to FIG. 2 , FIG. 2 shows a schematic diagram of the reconstructed first point cloud data of the coronary artery. First, the terminal acquires multiple thoracic tomographic images collected, and arranges the multiple thoracic tomographic images into a three-dimensional form in a spatial order to obtain a three-dimensional image Image3d; secondly, the terminal processes the three-dimensional image Image3d to obtain a reconstructed image. The initial coronary model; further, the terminal obtains the first point cloud data of the reconstructed coronary artery, that is, the reconstruction result of the coronary artery, based on the initial coronary model. Finally, the terminal calculates, based on the first point cloud data Coronary, a dynamic threshold in the region where the coronary artery is located for predicting the position of the calcified plaque on the first point cloud data.
步骤102、基于动态阈值确定第一点云数据上钙化斑块的预测位置。Step 102: Determine the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold.
步骤103、在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面。Step 103: On the first point cloud data, determine the coronary artery segment where the predicted position is located, and generate a cross section along the position of the center point in the coronary artery segment.
本申请实施例中,冠状动脉段为钙化斑块所在位置对应的冠状动脉分段,需要说明的是,冠状动脉包括右冠状动脉近端、右冠状动脉中段、右冠状动脉远段、右冠状动脉后降支(posterior-descending-artery,PDA)、左主干(Left main,LM)、左前降支近段、左前降支中段、左前降支远端、第一对角支、第二对角支、左回旋支近段、钝缘支、左回旋支远端。In the embodiment of the present application, the coronary artery segment is the coronary artery segment corresponding to the location of the calcified plaque. It should be noted that the coronary artery includes the proximal right coronary artery, the middle right coronary artery, the distal right coronary artery, and the right coronary artery. Posterior-descending-artery (PDA), left main (LM), proximal left anterior descending artery, middle left anterior descending artery, distal left anterior descending artery, first diagonal branch, second diagonal branch , proximal left circumflex branch, blunt marginal branch, distal left circumflex branch.
本申请实施例中,终端基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值的情况下,基于动态阈值确定第一点云数据上钙化斑块的预测位置;进一步地,终端在第一点云数据上,确定预测位置所在的冠状动脉段,即从多个冠状动脉段中确定钙化斑块所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面。In the embodiment of the present application, the terminal determines the first point based on the dynamic threshold when the terminal calculates the dynamic threshold based on the first point cloud data of the coronary artery reconstructed based on the collected multiple thoracic tomographic images, and based on the first point cloud data The predicted position of the calcified plaque on the cloud data; further, on the first point cloud data, the terminal determines the segment of the coronary artery where the predicted location is located, that is, determines the segment of the coronary artery where the calcified plaque is located from multiple coronary segments, and Cross-sections are generated along the location of the center point within the coronary segment.
步骤104、在横截面中重构冠状动脉血管流道区域。
本申请实施例中,在横截面中重构冠状动脉血管流道区域可以理解为在横截面中分割出冠状动脉中的钙化斑块区域和冠状动脉中的血管流道区域,基于分割出的冠状动脉中的血管流道区域,在横截面中重构冠状动脉血管流道区域。In the embodiments of the present application, reconstructing the coronary vascular flow channel region in the cross-section can be understood as segmenting the calcified plaque region in the coronary artery and the vascular flow channel region in the coronary artery in the cross-section, based on the segmented coronary vascular flow channel region. A vascular flow channel area in an artery, reconstructing a coronary vascular flow channel area in cross-section.
步骤105、基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据。
本申请实施例中,第二点云数据可以理解为冠状动脉中的血管流道修复后的点云数据。In the embodiment of the present application, the second point cloud data may be understood as point cloud data after repair of the blood vessel flow channel in the coronary artery.
本申请实施例中,终端在横截面中重构冠状动脉血管流道区域的情况下,基于重构的冠状动脉血管流道区域,构建冠状动脉的第二点云数据,即根据第二点云数据,构建血管流道修复后的目标冠状动脉模型。In the embodiment of the present application, when the terminal reconstructs the coronary blood vessel flow channel region in the cross section, the terminal constructs the second point cloud data of the coronary artery based on the reconstructed coronary blood vessel flow channel region, that is, according to the second point cloud data to construct a target coronary model after vascular flow channel repair.
本申请实施例提供的冠状动脉的构建方法,通过基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值;基于动态阈值确定第一点云数据上钙化斑块的预测位置;在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面;在横截面中重构冠状动脉血管流道区域;基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据;也就是说,本申请基于冠状动脉的第一点云数据,自适应化的计算与胸腔断层图像对应的动态阈值,进而基于动态阈值准确识别三维冠状动脉模型红的钙化斑块,同时,对存在钙化斑块的冠状动脉段的血管流道区域进行修复,以基于修复后的血管流道区域对冠状动脉建立准确的三维模型;如此,解决了相关技术中由于钙化斑块造成的伪影,导致最终构建的冠状动脉的不准确的问题,提高了对冠状动脉进行精准建模,从而为计算FFR提供精确的血流分配,同时,该方案具有较好的鲁棒性和可扩展性。The coronary artery construction method provided by the embodiment of the present application uses the first point cloud data of the coronary artery reconstructed based on the collected multiple thoracic tomographic images, and calculates the dynamic threshold based on the first point cloud data; The predicted location of the calcified plaque on the first point cloud data; on the first point cloud data, determine the coronary segment where the predicted location is located, and generate a cross-section along the position of the center point within the coronary segment; in the cross-section Reconstruct the coronary vascular flow channel area; based on the coronary vascular flow channel area, construct the second point cloud data of the coronary artery; that is to say, this application is based on the first point cloud data of the coronary artery, adaptive calculation and thoracic cavity The dynamic threshold corresponding to the tomographic image, and then based on the dynamic threshold to accurately identify the red calcified plaque of the three-dimensional coronary model, and at the same time, repair the vascular flow channel area of the coronary artery segment with calcified plaque, based on the repaired vascular flow channel. In this way, the artifact caused by calcified plaque in the related art is solved, which leads to the inaccuracy of the final coronary artery, and the accurate modeling of the coronary artery is improved. Computational FFR provides accurate blood flow distribution, and at the same time, the scheme has good robustness and scalability.
本申请实施例提供一种冠状动脉的构建方法,该方法应用于终端,参照图3所示,该方法包括:An embodiment of the present application provides a method for constructing a coronary artery. The method is applied to a terminal. Referring to FIG. 3 , the method includes:
步骤201、基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据。
步骤202、获取第一点云数据中每一目标点对应的组织密度值。Step 202: Acquire a tissue density value corresponding to each target point in the first point cloud data.
本申请实施例中,组织密度值可以理解为冠状动脉所在区域中的组织或者器官中对于X光的吸收率。组织密度值又可以成为CT值,CT值的单位为亨氏单位(hounsfieldunit,HU)。需要说明的是,根据组织或器官的CT值,可以对冠状动脉中的斑块进行分型,从而将斑块分为软斑块、纤维斑块以及钙化斑块,这里,软斑块和纤维斑块统称为非钙化斑块。In the embodiment of the present application, the tissue density value can be understood as the absorption rate of X-rays in the tissue or organ in the region where the coronary artery is located. The tissue density value can also become the CT value, and the unit of the CT value is the Hounsfield unit (HU). It should be noted that plaques in coronary arteries can be classified according to the CT values of tissues or organs, so that plaques can be divided into soft plaques, fibrous plaques and calcified plaques. Here, soft plaques and fibrous plaques The plaques are collectively referred to as non-calcified plaques.
步骤203、确定所有组织密度值的均值,为冠状动脉所在区域的组织密度均值。Step 203: Determine the mean value of all tissue density values, which is the mean value of tissue density in the region where the coronary arteries are located.
步骤204、选择与组织密度均值对应的阈值计算公式,计算动态阈值。
本申请实施例中,终端获取第一点云数据中每一目标点对应的组织密度值之后,计算所有组织密度值的均值,并将该均值作为冠状动脉所在区域的组织密度均值;进一步地,终端选择与组织密度均值对应的阈值计算公式,计算用于预测第一点云数据上钙化斑块的位置的动态阈值。In the embodiment of the present application, after acquiring the tissue density value corresponding to each target point in the first point cloud data, the terminal calculates the mean value of all tissue density values, and uses the mean value as the tissue density mean value of the region where the coronary arteries are located; further, The terminal selects a threshold calculation formula corresponding to the mean tissue density, and calculates a dynamic threshold for predicting the position of the calcified plaque on the first point cloud data.
本申请实施例中,参照图4所示,步骤204选择与组织密度均值对应的阈值计算公式,计算动态阈值,可以通过如下步骤实现:In the embodiment of the present application, as shown in FIG. 4 ,
步骤A1、基于组织密度均值所属的组织密度值范围,选择与组织密度值范围对应的阈值计算公式。Step A1: Based on the tissue density value range to which the mean tissue density value belongs, select a threshold value calculation formula corresponding to the tissue density value range.
本申请实施例中,步骤A1基于组织密度均值所属的组织密度值范围,选择与组织密度值范围对应的阈值计算公式,可以通过如下方式实现:In the embodiment of the present application, step A1 selects the threshold value calculation formula corresponding to the tissue density value range based on the tissue density value range to which the tissue density mean value belongs, which can be implemented in the following manner:
若组织密度均值小于等于第一参数,选择第一阈值计算公式。If the mean tissue density is less than or equal to the first parameter, select the first threshold calculation formula.
若组织密度均值大于第一参数小于第二参数,选择第二阈值计算公式。If the mean tissue density is greater than the first parameter and less than the second parameter, the second threshold calculation formula is selected.
若组织密度均值大于等于第二参数,选择第三阈值计算公式。If the mean tissue density is greater than or equal to the second parameter, select the third threshold calculation formula.
其中,第一阈值计算公式为,;第二阈值计算公式为,;第三阈值计算公式为,。Among them, the first threshold calculation formula is, ; The second threshold calculation formula is, ; The third threshold calculation formula is, .
其中,为动态阈值,为组织密度均值,为第一参数,为第二参数,为第三参数,为第四参数,为第五参数,均为正数。in, is the dynamic threshold, is the mean tissue density, is the first parameter, is the second parameter, is the third parameter, is the fourth parameter, is the fifth parameter, All are positive numbers.
本申请实施例中,第一参数、第二参数,第三参数、第四参数、第五参数通过分析处理大量病例数据后得到的经验阈值范围。In the embodiment of the present application, the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter are the empirical threshold ranges obtained by analyzing and processing a large amount of case data.
步骤A2、基于组织密度均值和阈值计算公式,计算动态阈值。Step A2: Calculate the dynamic threshold based on the tissue density mean and the threshold calculation formula.
本申请实施例中,阈值计算公式包括第一阈值计算公式、第二阈值计算公式和第三阈值计算公式。In this embodiment of the present application, the threshold calculation formula includes a first threshold calculation formula, a second threshold calculation formula, and a third threshold calculation formula.
在一种可实现的应用场景中,以第一参数、第二参数、第三参数,第四参数,第五参数为例进行说明。终端基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据之后,获取第一点云数据中每一目标点对应的组织密度值,计算所有组织密度值的均值,并确定该均值为冠状动脉所在区域的组织密度均值。这里,组织密度均值可以通过如下公式计算得到:In an achievable application scenario, the first parameter , the second parameter , the third parameter , the fourth parameter , the fifth parameter Take an example to illustrate. The terminal reconstructs the first point cloud data of the coronary artery based on the collected multiple thoracic tomographic images After that, the tissue density value corresponding to each target point in the first point cloud data is obtained, the mean value of all tissue density values is calculated, and the mean value is determined as the mean tissue density value of the region where the coronary arteries are located. Here, the mean tissue density can be calculated by the following formula:
其中,为组织密度均值,表示计算矩阵中所有组织密度值的平均值的函数,为第一点云数据。in, is the mean tissue density, represents a function that computes the mean of all tissue density values in the matrix, is the first point cloud data.
进一步地,终端确定组织密度均值所属的组织密度值范围,即判断组织密度均值是否小于等于第一参数,或判断组织密度均值是否大于第一参数小于第二参数,或判断组织密度均值是否大于等于第二参数;若终端确定若组织密度均值小于等于第一参数,选择第一阈值计算公式;若终端确定组织密度均值大于第一参数小于第二参数,选择第二阈值计算公式;若终端确定组织密度均值大于等于第二参数,选择第三阈值计算公式。如此,根据冠状动脉中的组织密度均值动态的选择动态阈值,以便准确快速地预测出第一点云数据上钙化斑块所在的位置;同时,选择动态阈值的方法是在完全的自动化的流程下实现的,全程无需人工干预或其他操作,且避免了使用复杂的计算方法如深度学习,导致结果不可控、不稳定的方法。同时,该方法计算速度快,准确率高、可靠性和可扩展性,易于应用到各个领域。Further, the terminal determines the mean tissue density The range of tissue density values to which it belongs, that is, to determine whether the mean value of tissue density is less than or equal to the first parameter , or determine whether the mean tissue density is greater than the first parameter less than the second parameter , or determine whether the mean tissue density is greater than or equal to the second parameter ; If the terminal determines that if the mean value of tissue density is less than or equal to the first parameter, select the first threshold calculation formula ; If the terminal determines that the mean value of tissue density is greater than the first parameter and less than the second parameter, select the second threshold calculation formula ; If the terminal determines that the mean value of tissue density is greater than or equal to the second parameter, select the third threshold calculation formula . In this way, the dynamic threshold is dynamically selected according to the mean tissue density in the coronary arteries, so as to accurately and quickly predict the location of the calcified plaque on the first point cloud data; at the same time, the method of selecting the dynamic threshold is under a completely automated process. It is realized without manual intervention or other operations in the whole process, and avoids the use of complex computing methods such as deep learning, resulting in uncontrollable and unstable results. At the same time, the method has fast calculation speed, high accuracy, reliability and scalability, and is easy to apply to various fields.
步骤205、从所有组织密度值中,确定组织密度值大于动态阈值的目标点所在的位置,为在第一点云数据上钙化斑块的预测位置。Step 205: From all the tissue density values, determine the position of the target point whose tissue density value is greater than the dynamic threshold, which is the predicted position of the calcified plaque on the first point cloud data.
这里,参照图5所示,图5示出的是一种基于动态阈值确定的钙化斑块的预测位置的示意图。Here, referring to FIG. 5 , FIG. 5 shows a schematic diagram of a predicted position of a calcified plaque determined based on a dynamic threshold.
本申请其他实施例中,终端还可以预先指定或本地选取的阈值来预测斑块位置。在一种情况下,终端根据重构的冠状动脉的第一点云数据,在三维空间中根据冠状动脉的形态,轮廓,以及钙化斑块可能出现的高概率的位置,手动选取对应位置,获取该位置的三维坐标。参照图6所示,图6示出的是手动选取的冠状动脉中的右冠状动脉的一处明显突起的钙化斑块的位置的三维坐标如(206,358,157)。In other embodiments of the present application, the terminal may also predict the patch position with a pre-specified or locally selected threshold. In one case, according to the reconstructed first point cloud data of the coronary artery, the terminal manually selects the corresponding position in the three-dimensional space according to the shape and contour of the coronary artery, and the position with high probability that calcified plaque may appear, and obtains The three-dimensional coordinates of this location. Referring to FIG. 6 , FIG. 6 shows the manually selected three-dimensional coordinates of the position of a clearly protruding calcified plaque in the right coronary artery in the coronary artery, such as (206, 358, 157).
步骤206、在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面。
本申请实施例中,参照图7所示,步骤206中在第一点云数据上,确定预测位置所在的冠状动脉段,可以通过如下步骤实现:In the embodiment of the present application, referring to FIG. 7 , in
步骤B1、基于第一点云数据确定中心线点集和冠状动脉的分段信息。Step B1: Determine the centerline point set and the segmentation information of the coronary arteries based on the first point cloud data.
其中,中心线点集包括第一点云数据的中轴线上的点。Wherein, the centerline point set includes points on the centerline of the first point cloud data.
本申请实施例中,中心线点集可以理解为利用冠状动脉骨骼提取算法直接提取冠状动脉的中轴线上的点,中心线点集也可以理解为一个树结构的表示该冠状动脉所有点云数据的中轴线上的点,示例性的,利用脚本语言如Python语言中的三维中心线提取算法直接提取冠状动脉的中轴线上的点,参照图8所示,图8示出的是冠状动脉的中轴线上的点的示意图。这里冠状动脉的中轴线上的点又可以称为组成骨骼的龙骨点。In the embodiment of the present application, the centerline point set can be understood as the point on the central axis of the coronary artery that is directly extracted by the coronary bone extraction algorithm, and the centerline point set can also be understood as a tree structure representing all the point cloud data of the coronary artery The points on the central axis of the coronary arteries, exemplarily, use a script language such as the three-dimensional centerline extraction algorithm in the Python language to directly extract the points on the central axis of the coronary arteries, as shown in FIG. Schematic diagram of a point on the central axis. Here, the point on the central axis of the coronary artery can also be called the keel point of the bone.
本申请实施例中,冠状动脉的分段信息是将冠状动脉通过医学的命名法将其命名以达到分段的目的。In the embodiment of the present application, the segmentation information of the coronary arteries is to name the coronary arteries through medical nomenclature to achieve the purpose of segmentation.
步骤B2、基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段。Step B2: Based on the segmentation information, from the centerline point set, determine the position of the center point closest to the predicted position as the coronary artery segment where the predicted position is located.
本申请实施例中,终端基于第一点云数据确定中心线点集和冠状动脉的分段信息之后,基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段,也就是定位到当前存在钙化斑块的冠状动脉段。参照图5所示,图5示出的是通过动态阈值确定钙化斑块的预测位置的示意图,这里,第一点云数据上钙化斑块的预测位置有三个P1、P2和P3,且三个预测位置分别处于左前降支和右冠状动脉。In the embodiment of the present application, after the terminal determines the centerline point set and the segment information of the coronary arteries based on the first point cloud data, based on the segment information, from the centerline point set, it is determined that the location of the center point closest to the predicted position is: The coronary artery segment where the predicted position is located, that is, the coronary artery segment where the calcified plaque is currently located is located. Referring to Fig. 5, Fig. 5 shows a schematic diagram of determining the predicted positions of calcified plaques through dynamic thresholds. Here, the predicted positions of calcified plaques on the first point cloud data have three P1, P2 and P3, and three The predicted locations are in the left anterior descending and right coronary arteries, respectively.
本申请实施例中,终端基于第一点云数据确定中心线点集和冠状动脉的分段信息,基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段之后,沿着冠状动脉段内的中心点的位置生成多个横截面,且该横截面的范围包括预测位置的冠状动脉的横截范围。参照图9所示,图9中的A示出的是在冠状动脉段中生成的横截面的示意图,图9中的B示出的是限定在冠状动脉所在区域的冠状动脉段中生成的横截面的示意图,图9中的C示出的是在冠状动脉段中生成的纵截面的示意图。In this embodiment of the present application, the terminal determines the centerline point set and the segment information of the coronary arteries based on the first point cloud data, and based on the segment information, from the centerline point set, determines the location of the center point closest to the predicted position as the prediction After the coronary artery segment where the location is located, a plurality of cross-sections are generated along the location of the center point within the coronary artery segment, and the extent of the cross-section includes the cross-sectional extent of the coronary artery at the predicted location. Referring to FIG. 9, A in FIG. 9 shows a schematic diagram of a cross section generated in a coronary artery segment, and B in FIG. Schematic representation of the cross section, C in FIG. 9 shows a schematic representation of a longitudinal section generated in a coronary artery segment.
步骤207、去除横截面中钙化斑块对应的目标点,得到重构的冠状动脉血管流道区域。Step 207: Remove the target points corresponding to the calcified plaques in the cross-section to obtain the reconstructed coronary vessel flow channel area.
本申请实施例中,终端在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面之后,利用距离正则化水平集方法(DRLSE,Distance Regularized Level Set Evolution)将每一个横截面进行图像分割,得到钙化斑块区域和冠状动脉血管流道区域;进一步地,终端去除去除横截面中钙化斑块所在区域的目标点,得到重构的冠状动脉血管流道区域,即在横截面中重构的冠状动脉血管流道区域。参照图10所示,图10中的A示出的是横截面水平集分割结果,图10中的B示出的是限定的冠状动脉所在区域的水平集分割结果。In the embodiment of the present application, the terminal determines the coronary artery segment where the predicted position is located on the first point cloud data, and generates a cross-section along the position of the center point in the coronary artery segment, and uses the distance regularization level set method (DRLSE). , Distance Regularized Level Set Evolution) image segmentation of each cross section to obtain the calcified plaque area and the coronary vessel flow channel area; further, the terminal removes the target point in the area where the calcified plaque is located in the cross section to obtain a reconstruction The coronary vascular flow channel region, that is, the coronary vascular flow channel region reconstructed in cross-section. Referring to FIG. 10 , A in FIG. 10 shows the level set segmentation result of the cross-section, and B in FIG. 10 shows the level set segmentation result of the limited coronary artery region.
步骤208、基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据。
本申请实施例中,参照图11所示,步骤208基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据,可以通过如下步骤实现:In the embodiment of the present application, as shown in FIG. 11 ,
步骤C1、以冠状动脉血管流道区域中的入口点的位置为起点,按照距离入口点由近到远的顺序,遍历冠状动脉血管流道区域中的所有目标点,得到冠状动脉段的闭合区域的目标点云数据。Step C1: Take the position of the entry point in the coronary vascular flow channel region as the starting point, and traverse all the target points in the coronary vascular flow channel region in the order of distance from the entry point from near to far to obtain the closed region of the coronary artery segment target point cloud data.
步骤C2、将第一点云数据的冠状动脉段对应的点云数据替换成目标点云数据,得到第二点云数据。Step C2: Replace the point cloud data corresponding to the coronary artery segment of the first point cloud data with the target point cloud data to obtain the second point cloud data.
本申请实施例中,冠状动脉血管流道区域即为上述重构的冠状动脉血管流道区域。In the embodiment of the present application, the coronary vascular flow channel region is the above-mentioned reconstructed coronary vascular flow channel region.
本申请实施例中,终端确定冠状动脉血管流道区域中的入口点,并以入口点的位置为起点,按照距离入口点由近到远的顺序,遍历冠状动脉血管流道区域中的所有目标点,得到冠状动脉段的闭合区域的目标点云数据;进一步地,终端获取第一点云数据的冠状动脉段对应的点云数据,并将冠状动脉段对应的点云数据替换成目标点云数据,得到第二点云数据,进而基于根据第二点云数据,构建血管流道修复后的目标冠状动脉模型,参照图12、图13和图14所示,图12示出的是三维空间中展示的水平集分割结果的示意图,图13示出的是按照距离入口点的顺序对冠状动脉血管流道区域中的所有目标点进行遍历的结果的示意图,图14中的A示出的是冠状动脉闭合区域的第二点云数据的示意图,图14中的B示出的是基于修复后的血管流道区域得到的目标冠状动脉模型的示意图。In the embodiment of the present application, the terminal determines the entry point in the coronary vascular flow channel region, and takes the position of the entry point as the starting point, and traverses all the targets in the coronary vascular flow channel region in order of distance from the entry point from near to far point to obtain the target point cloud data of the closed area of the coronary artery segment; further, the terminal acquires the point cloud data corresponding to the coronary artery segment of the first point cloud data, and replaces the point cloud data corresponding to the coronary artery segment with the target point cloud data to obtain the second point cloud data, and then based on the second point cloud data, the target coronary model after the repair of the vascular flow channel is constructed, as shown in Figure 12, Figure 13 and Figure 14, Figure 12 shows the three-dimensional space A schematic diagram of the level set segmentation results shown in Figure 13 is a schematic diagram of the results of traversing all target points in the coronary vessel flow channel region in the order of distance from the entry point, A in Figure 14 shows the A schematic diagram of the second point cloud data of the coronary artery closure region, B in FIG. 14 shows a schematic diagram of the target coronary artery model obtained based on the repaired vascular flow channel region.
由上述可知,本申请实施例中,终端基于冠状动脉的第一点云数据计算冠状动脉的组织密度均值,基于组织密度均值所属范围,自适应化的计算与胸腔断层图像对应的动态阈值,进而基于动态阈值准确识别三维冠状动脉模型红的钙化斑块,进一步地,对存在钙化斑块的冠状动脉段,沿着中心点的位置生成多个横截面,对横截面中的钙化斑块区域和血管流道区域进行分割,去除横截面中的钙化斑块区域对应的目标点,以修复冠状动脉的血管流道区域,进而基于修复后的血管流道区域对冠状动脉建立准确的三维模型;如此,解决了相关技术中由于钙化斑块造成的伪影,导致最终构建的冠状动脉的不准确的问题,提高了对冠状动脉进行精准建模,从而为计算FFR提供精确的血流分配,同时,该方案具有较好的鲁棒性和可扩展性。It can be seen from the above that in the embodiment of the present application, the terminal calculates the average tissue density of the coronary artery based on the first point cloud data of the coronary artery, and based on the range to which the average tissue density belongs, adaptively calculates the dynamic threshold corresponding to the thoracic tomographic image, and further. Accurately identify the red calcified plaques in the three-dimensional coronary model based on dynamic thresholds. Further, for the coronary segments with calcified plaques, multiple cross-sections are generated along the position of the center point, and the calcified plaque areas in the cross-sections and The vascular flow channel area is segmented, and the target points corresponding to the calcified plaque area in the cross section are removed to repair the vascular flow channel region of the coronary artery, and then an accurate three-dimensional model of the coronary artery is established based on the repaired vascular flow channel region; , which solves the inaccurate problem of the final constructed coronary artery caused by the artifact caused by calcified plaque in the related art, and improves the accurate modeling of the coronary artery, thereby providing accurate blood flow distribution for the calculation of FFR. At the same time, The scheme has good robustness and scalability.
需要说明的是,本实施例中与其它实施例中相同步骤和相同内容的说明,可以参照其它实施例中的描述,此处不再赘述。It should be noted that, for the description of the same steps and the same content in this embodiment as in other embodiments, reference may be made to the descriptions in other embodiments, and details are not repeated here.
基于前述实施例,本申请提供一种冠状动脉的构建装置,该冠状动脉的构建装置可以用于实施图1、图3~图4、图7和图11对应提供的一种冠状动脉的构建方法,参照图15所示,该冠状动脉的构建装置15包括:Based on the foregoing embodiments, the present application provides a coronary artery construction device, which can be used to implement a coronary artery construction method corresponding to FIG. 1 , FIG. 3 to FIG. 4 , FIG. 7 and FIG. 11 . , as shown in FIG. 15 , the coronary
处理模块1501,用于基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值;The
确定模块1502,还用于基于动态阈值确定第一点云数据上钙化斑块的预测位置;The determining
确定模块1502,还用于在第一点云数据上,确定预测位置所在的冠状动脉段;The determining
生成模块1503,用于沿着冠状动脉段内的中心点的位置生成横截面;a
重构模块1504,用于在横截面中重构冠状动脉血管流道区域;a
构建模块1505,用于基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据。The
本申请其他实施例中,处理模块1501,还用于获取第一点云数据中每一目标点对应的组织密度值;确定所有组织密度值的均值,为冠状动脉所在区域的组织密度均值;选择与组织密度均值对应的阈值计算公式,计算动态阈值。In other embodiments of the present application, the
本申请其他实施例中,处理模块1501,还用于基于组织密度均值所属的组织密度值范围,选择与组织密度值范围对应的阈值计算公式;基于组织密度均值和阈值计算公式,计算动态阈值。In other embodiments of the present application, the
本申请其他实施例中,处理模块1501,还用于若组织密度均值小于等于第一参数,选择第一阈值计算公式;若组织密度均值大于第一参数小于第二参数,选择第二阈值计算公式;若组织密度均值大于等于第二参数,选择第三阈值计算公式;其中,第一阈值计算公式为,;第二阈值计算公式为,;第三阈值计算公式为,;其中,为动态阈值,为组织密度均值,为第一参数,为第二参数,为第三参数,为第四参数,为第五参数,均为正数。In other embodiments of the present application, the
本申请其他实施例中,确定模块1502,还用于从所有组织密度值中,确定组织密度值大于动态阈值的目标点所在的位置,为在第一点云数据上钙化斑块的预测位置。In other embodiments of the present application, the determining
本申请其他实施例中,确定模块1502,还用于基于第一点云数据确定中心线点集和冠状动脉的分段信息;其中,中心线点集包括第一点云数据的中轴线上的点;基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段。In other embodiments of the present application, the determining
本申请其他实施例中,重构模块1504,还用于去除横截面中钙化斑块对应的目标点,得到重构的冠状动脉血管流道区域;构建模块1505,还用于以冠状动脉血管流道区域中的入口点的位置为起点,按照距离入口点由近到远的顺序,遍历冠状动脉血管流道区域中的所有目标点,得到冠状动脉段的闭合区域的目标点云数据;将第一点云数据的冠状动脉段对应的点云数据替换成目标点云数据,得到第二点云数据。In other embodiments of the present application, the
本申请的实施例提供一种终端,该终端可以用于实施图1、图3~图4、图7和图11对应的实施例提供的一种冠状动脉的构建方法,参照图16所示,该终端16(图16中的终端16对应图15中的冠状动脉的构建装置15)包括:处理器1601、存储器1602和通信总线1603,其中:An embodiment of the present application provides a terminal, which can be used to implement a method for constructing a coronary artery provided by the embodiments corresponding to FIG. 1 , FIG. 3 to FIG. 4 , FIG. 7 , and FIG. 11 . Referring to FIG. 16 , The terminal 16 (the terminal 16 in FIG. 16 corresponds to the coronary
通信总线1603用于实现处理器1601和存储器1602之间的通信连接。The
处理器1601用于执行存储器1602中存储的冠状动脉的构建程序,以实现以下步骤:The
基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值;Based on the first point cloud data of the coronary artery reconstructed from the collected multiple thoracic tomographic images, and based on the first point cloud data, the dynamic threshold is calculated;
基于动态阈值确定第一点云数据上钙化斑块的预测位置;Determine the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold;
在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面;On the first point cloud data, determine the coronary artery segment where the predicted position is located, and generate a cross-section along the position of the center point in the coronary artery segment;
在横截面中重构冠状动脉血管流道区域;Reconstructing the coronary vascular flow channel region in cross-section;
基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据。Based on the coronary vessel flow channel area, the second point cloud data of the coronary arteries are constructed.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
获取第一点云数据中每一目标点对应的组织密度值;确定所有组织密度值的均值,为冠状动脉所在区域的组织密度均值;选择与组织密度均值对应的阈值计算公式,计算动态阈值。Obtain the tissue density value corresponding to each target point in the first point cloud data; determine the mean value of all tissue density values, which is the tissue density mean value of the area where the coronary arteries are located; select the threshold value calculation formula corresponding to the tissue density mean value, and calculate the dynamic threshold value.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
基于组织密度均值所属的组织密度值范围,选择与组织密度值范围对应的阈值计算公式;基于组织密度均值和阈值计算公式,计算动态阈值。Based on the tissue density value range to which the tissue density mean value belongs, the threshold value calculation formula corresponding to the tissue density value range is selected; the dynamic threshold value is calculated based on the tissue density mean value and the threshold value calculation formula.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
若组织密度均值小于等于第一参数,选择第一阈值计算公式;若组织密度均值大于第一参数小于第二参数,选择第二阈值计算公式;若组织密度均值大于等于第二参数,选择第三阈值计算公式;其中,第一阈值计算公式为,;第二阈值计算公式为,;第三阈值计算公式为,;其中,为动态阈值,为组织密度均值,为第一参数,为第二参数,为第三参数,为第四参数,为第五参数,均为正数。If the mean tissue density is less than or equal to the first parameter, select the first threshold calculation formula; if the mean tissue density is greater than the first parameter and less than the second parameter, select the second threshold calculation formula; if the mean tissue density is greater than or equal to the second parameter, select the third threshold Threshold calculation formula; wherein, the first threshold calculation formula is, ; The second threshold calculation formula is, ; The third threshold calculation formula is, ;in, is the dynamic threshold, is the mean tissue density, is the first parameter, is the second parameter, is the third parameter, is the fourth parameter, is the fifth parameter, All are positive numbers.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
从所有组织密度值中,确定组织密度值大于动态阈值的目标点所在的位置,为在第一点云数据上钙化斑块的预测位置。From all the tissue density values, determine the position of the target point whose tissue density value is greater than the dynamic threshold as the predicted position of the calcified plaque on the first point cloud data.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
基于第一点云数据确定中心线点集和冠状动脉的分段信息;其中,中心线点集包括第一点云数据的中轴线上的点;基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段。The centerline point set and the segmentation information of the coronary arteries are determined based on the first point cloud data; wherein, the centerline point set includes points on the central axis of the first point cloud data; based on the segmentation information, from the centerline point set, determine The position of the center point closest to the predicted position is the coronary artery segment where the predicted position is located.
本申请其他实施例中,处理器1601用于执行存储器1602中存储的程序,以实现以下步骤:In other embodiments of the present application, the
去除横截面中钙化斑块对应的目标点,得到重构的冠状动脉血管流道区域;以冠状动脉血管流道区域中的入口点的位置为起点,按照距离入口点由近到远的顺序,遍历冠状动脉血管流道区域中的所有目标点,得到冠状动脉段的闭合区域的目标点云数据;将第一点云数据的冠状动脉段对应的点云数据替换成目标点云数据,得到第二点云数据。Remove the target points corresponding to the calcified plaques in the cross-section to obtain the reconstructed coronary vascular flow channel area; take the position of the entry point in the coronary vascular flow channel area as the starting point, and in the order of distance from the entry point from near to far, Traverse all the target points in the coronary vascular flow channel area to obtain the target point cloud data of the closed area of the coronary artery segment; replace the point cloud data corresponding to the coronary artery segment of the first point cloud data with the target point cloud data, and obtain the first point cloud data. Two point cloud data.
本申请的实施例提供一种存储介质,该存储介质存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行,以实现如下步骤:Embodiments of the present application provide a storage medium, where one or more programs are stored in the storage medium, and the one or more programs can be executed by one or more processors to implement the following steps:
基于采集到的多张胸腔断层图像重构的冠状动脉的第一点云数据,并基于第一点云数据,计算动态阈值;Based on the first point cloud data of the coronary artery reconstructed from the collected multiple thoracic tomographic images, and based on the first point cloud data, the dynamic threshold is calculated;
基于动态阈值确定第一点云数据上钙化斑块的预测位置;Determine the predicted position of the calcified plaque on the first point cloud data based on the dynamic threshold;
在第一点云数据上,确定预测位置所在的冠状动脉段,并沿着冠状动脉段内的中心点的位置生成横截面;On the first point cloud data, determine the coronary artery segment where the predicted position is located, and generate a cross-section along the position of the center point in the coronary artery segment;
在横截面中重构冠状动脉血管流道区域;Reconstructing the coronary vascular flow channel region in cross-section;
基于冠状动脉血管流道区域,构建冠状动脉的第二点云数据。Based on the coronary vessel flow channel area, the second point cloud data of the coronary arteries are constructed.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
获取第一点云数据中每一目标点对应的组织密度值;确定所有组织密度值的均值,为冠状动脉所在区域的组织密度均值;选择与组织密度均值对应的阈值计算公式,计算动态阈值。Obtain the tissue density value corresponding to each target point in the first point cloud data; determine the mean value of all tissue density values, which is the tissue density mean value of the area where the coronary arteries are located; select the threshold value calculation formula corresponding to the tissue density mean value, and calculate the dynamic threshold value.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
基于组织密度均值所属的组织密度值范围,选择与组织密度值范围对应的阈值计算公式;基于组织密度均值和阈值计算公式,计算动态阈值。Based on the tissue density value range to which the tissue density mean value belongs, the threshold value calculation formula corresponding to the tissue density value range is selected; the dynamic threshold value is calculated based on the tissue density mean value and the threshold value calculation formula.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
若组织密度均值小于等于第一参数,选择第一阈值计算公式;若组织密度均值大于第一参数小于第二参数,选择第二阈值计算公式;若组织密度均值大于等于第二参数,选择第三阈值计算公式;其中,第一阈值计算公式为,;第二阈值计算公式为,;第三阈值计算公式为,;其中,为动态阈值,为组织密度均值,为第一参数,为第二参数,为第三参数,为第四参数,为第五参数,均为正数。If the mean tissue density is less than or equal to the first parameter, select the first threshold calculation formula; if the mean tissue density is greater than the first parameter and less than the second parameter, select the second threshold calculation formula; if the mean tissue density is greater than or equal to the second parameter, select the third threshold Threshold calculation formula; wherein, the first threshold calculation formula is, ; The second threshold calculation formula is, ; The third threshold calculation formula is, ;in, is the dynamic threshold, is the mean tissue density, is the first parameter, is the second parameter, is the third parameter, is the fourth parameter, is the fifth parameter, All are positive numbers.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
从所有组织密度值中,确定组织密度值大于动态阈值的目标点所在的位置,为在第一点云数据上钙化斑块的预测位置。From all the tissue density values, determine the position of the target point whose tissue density value is greater than the dynamic threshold as the predicted position of the calcified plaque on the first point cloud data.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
基于第一点云数据确定中心线点集和冠状动脉的分段信息;其中,中心线点集包括第一点云数据的中轴线上的点;基于分段信息,从中心线点集中,确定与预测位置距离最近的中心点所在位置为预测位置所在的冠状动脉段。The centerline point set and the segmentation information of the coronary arteries are determined based on the first point cloud data; wherein, the centerline point set includes points on the central axis of the first point cloud data; based on the segmentation information, from the centerline point set, determine The position of the center point closest to the predicted position is the coronary artery segment where the predicted position is located.
在本申请的其他实施例中,该一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:In other embodiments of the present application, the one or more programs may be executed by one or more processors to implement the following steps:
去除横截面中钙化斑块对应的目标点,得到重构的冠状动脉血管流道区域;以冠状动脉血管流道区域中的入口点的位置为起点,按照距离入口点由近到远的顺序,遍历冠状动脉血管流道区域中的所有目标点,得到冠状动脉段的闭合区域的目标点云数据;将第一点云数据的冠状动脉段对应的点云数据替换成目标点云数据,得到第二点云数据。Remove the target points corresponding to the calcified plaques in the cross-section to obtain the reconstructed coronary vascular flow channel area; take the position of the entry point in the coronary vascular flow channel area as the starting point, and in the order of distance from the entry point from near to far, Traverse all the target points in the coronary vascular flow channel area to obtain the target point cloud data of the closed area of the coronary artery segment; replace the point cloud data corresponding to the coronary artery segment of the first point cloud data with the target point cloud data, and obtain the first point cloud data. Two point cloud data.
需要说明的是,上述计算机存储介质/存储器可以是只读存储器(Read OnlyMemory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM)等存储器;也可以是包括上述存储器之一或任意组合的各种终端,如移动电话、计算机、平板设备、个人数字助理等。It should be noted that the above-mentioned computer storage medium/memory may be a read-only memory (Read OnlyMemory, ROM), a programmable read-only memory (Programmable Read-Only Memory, PROM), an erasable programmable read-only memory (Erasable Programmable Read Only Memory, ROM) -Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory (Flash Memory), Magnetic surface memory, optical disk, or memory such as Compact Disc Read-Only Memory (CD-ROM); it can also be various terminals including one or any combination of the above memories, such as mobile phones, computers, tablet devices, Personal digital assistants, etc.
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. The device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored, or not implemented. In addition, the coupling, or direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms. of.
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, each functional unit in each embodiment of the present application may all be integrated into one processing module, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above integration The unit can be implemented either in the form of hardware or in the form of hardware plus software functional units. Those of ordinary skill in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by program instructions related to hardware, the aforementioned program may be stored in a computer-readable storage medium, and when the program is executed, execute It includes the steps of the above method embodiments; and the aforementioned storage medium includes: a mobile storage device, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk and other various A medium on which program code can be stored.
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。The features disclosed in several method or device embodiments provided in this application can be combined arbitrarily without conflict to obtain new method embodiments or device embodiments.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. should be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be subject to the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210015014.5A CN114049282B (en) | 2022-01-07 | 2022-01-07 | Coronary artery construction method, device, terminal and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210015014.5A CN114049282B (en) | 2022-01-07 | 2022-01-07 | Coronary artery construction method, device, terminal and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114049282A CN114049282A (en) | 2022-02-15 |
CN114049282B true CN114049282B (en) | 2022-05-24 |
Family
ID=80213463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210015014.5A Active CN114049282B (en) | 2022-01-07 | 2022-01-07 | Coronary artery construction method, device, terminal and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114049282B (en) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110092808A1 (en) * | 2009-10-20 | 2011-04-21 | Magnetecs, Inc. | Method for acquiring high density mapping data with a catheter guidance system |
CN106447645B (en) * | 2016-04-05 | 2019-10-15 | 天津大学 | Device and method for detecting and quantifying coronary artery calcification in enhanced CT images |
CN107665737A (en) * | 2017-01-23 | 2018-02-06 | 上海联影医疗科技有限公司 | Vascular wall stress-strain state acquisition methods, computer-readable medium and system |
CN107871318B (en) * | 2017-11-16 | 2018-11-09 | 吉林大学 | A kind of coronary calcification plaque detection method based on model migration |
CN108960322B (en) * | 2018-07-02 | 2022-01-28 | 河南科技大学 | Coronary artery calcified plaque automatic detection method based on cardiac CT image |
CN109350089B (en) * | 2018-10-25 | 2022-03-08 | 杭州医学院 | Automatic thyroid region segmentation method based on CT (computed tomography) image |
CN109288537B (en) * | 2018-11-01 | 2022-08-09 | 杭州晟视科技有限公司 | System, method, apparatus and storage medium for assessing fractional flow reserve |
US10813612B2 (en) * | 2019-01-25 | 2020-10-27 | Cleerly, Inc. | Systems and method of characterizing high risk plaques |
US11357573B2 (en) * | 2019-04-25 | 2022-06-14 | International Business Machines Corporation | Optimum treatment planning during coronary intervention by simultaneous simulation of a continuum of outcomes |
CN110163872A (en) * | 2019-05-14 | 2019-08-23 | 西南科技大学 | A kind of method and electronic equipment of HRMR image segmentation and three-dimensional reconstruction |
CN111292314B (en) * | 2020-03-03 | 2024-05-24 | 上海联影智能医疗科技有限公司 | Coronary artery segmentation method, device, image processing system and storage medium |
CN111462267A (en) * | 2020-03-27 | 2020-07-28 | 上海联影医疗科技有限公司 | Method and system for acquiring X-ray projection data |
CN111862038B (en) * | 2020-07-17 | 2024-05-14 | 中国医学科学院阜外医院 | Plaque detection method, plaque detection device, plaque detection equipment and plaque detection medium |
CN112684458B (en) * | 2021-03-17 | 2021-05-14 | 中国人民解放军国防科技大学 | Photon point cloud denoising method and system based on laser radar channel line scanning characteristics |
CN113393427B (en) * | 2021-05-28 | 2023-04-25 | 上海联影医疗科技股份有限公司 | Plaque analysis method, plaque analysis device, computer equipment and storage medium |
CN113470060B (en) * | 2021-07-08 | 2023-03-21 | 西北工业大学 | Coronary artery multi-angle curved surface reconstruction visualization method based on CT image |
CN113724377B (en) * | 2021-11-01 | 2022-03-11 | 杭州晟视科技有限公司 | Three-dimensional reconstruction method and device of coronary vessels, electronic equipment and storage medium |
-
2022
- 2022-01-07 CN CN202210015014.5A patent/CN114049282B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114049282A (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12079921B2 (en) | System and method for image-based object modeling using multiple image acquisitions or reconstructions | |
AU2016213696B2 (en) | Systems and methods for numerically evaluating vasculature | |
JP6636331B2 (en) | Calculation of blood flow reserve volume ratio | |
US9514530B2 (en) | Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions | |
CN112419484A (en) | Three-dimensional blood vessel synthesis method and system, coronary artery analysis system and storage medium | |
CN116090364A (en) | Method for obtaining coronary blood flow reserve fraction based on CTA image and readable storage medium | |
EP4005472B1 (en) | Method and apparatus for correcting blood flow velocity on the basis of interval time between angiographic images | |
US20240070855A1 (en) | Method and System of Calculating the Cross-section Area and Included Angle of Three-dimensional Blood Vessel Branch | |
CN113744217A (en) | CT image-oriented coronary artery intelligent auxiliary analysis method and system | |
CN111627023B (en) | Method and device for generating coronary artery projection image and computer readable medium | |
CN112155580B (en) | Method and device for correcting blood flow velocity and microcirculation parameters based on radiography images | |
CN112669449B (en) | CAG and IVUS precise linkage analysis method and system based on 3D reconstruction technology | |
CN118299006B (en) | QFR (quad Flat No-lead) and OFR (optical fiber Rate) -based multi-modal coronary function assessment method | |
CN114049282B (en) | Coronary artery construction method, device, terminal and storage medium | |
CN113658172B (en) | Image processing method and device, computer readable storage medium and electronic device | |
CN113362327B (en) | Region segmentation method, device, terminal and storage medium in chest image | |
CN112862827B (en) | Method, device, terminal and storage medium for determining opening parameters of left atrial appendage | |
CN111798468B (en) | Image processing method and device, storage medium and electronic terminal | |
CN111768391B (en) | Full-automatic heart function analysis method, device, computer equipment and storage medium based on CT image | |
Hu et al. | 4D-CAT: Synthesis of 4D Coronary Artery Trees from Systole and Diastole | |
CN119904724A (en) | A liver enhanced CT feature extraction and fusion method based on vascular topology | |
CN118430804A (en) | A method and device for calculating blood flow at any position of a vascular tree | |
CN119068282A (en) | Coronary vessel naming model training method, device, electronic device and storage medium | |
CN115511840A (en) | Image processing method, image processing device, electronic equipment and storage medium | |
CN115984239A (en) | Method, system, device and storage medium for extracting central line of cerebral artery blood vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |