JPWO2020138105A1 - Heater and fixing device - Google Patents

Heater and fixing device Download PDF

Info

Publication number
JPWO2020138105A1
JPWO2020138105A1 JP2020563319A JP2020563319A JPWO2020138105A1 JP WO2020138105 A1 JPWO2020138105 A1 JP WO2020138105A1 JP 2020563319 A JP2020563319 A JP 2020563319A JP 2020563319 A JP2020563319 A JP 2020563319A JP WO2020138105 A1 JPWO2020138105 A1 JP WO2020138105A1
Authority
JP
Japan
Prior art keywords
heat generating
substrate
heating element
group
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020563319A
Other languages
Japanese (ja)
Other versions
JP7092892B2 (en
Inventor
秀信 中川
山口 泰史
品川 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020138105A1 publication Critical patent/JPWO2020138105A1/en
Application granted granted Critical
Publication of JP7092892B2 publication Critical patent/JP7092892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Resistance Heating (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

加熱器は、第1端(30a)から第2端(30b)にかけて延びる基板(30)と、基板(30)の長手方向における第1端(30a)側または第2端(30b)側に位置する複数の端子(61〜63)と、基板(30)の長手方向に沿って並んで位置する複数の発熱部を有し、複数の発熱部が同一の端子(61〜63)に繋がる発熱部群(41)と、を備える。また、発熱部群(41)において中央部に位置する発熱部は、端部に位置する発熱部より電気抵抗が小さい。 The heater is located on the substrate (30) extending from the first end (30a) to the second end (30b) and on the first end (30a) side or the second end (30b) side in the longitudinal direction of the substrate (30). It has a plurality of terminals (61 to 63) and a plurality of heat generating parts located side by side along the longitudinal direction of the substrate (30), and the plurality of heat generating parts are connected to the same terminal (61 to 63). The group (41) and the group (41) are provided. Further, in the heat generating portion group (41), the heat generating portion located at the central portion has a smaller electric resistance than the heat generating portion located at the end portion.

Description

開示の実施形態は、加熱器および定着装置に関する。 The disclosed embodiments relate to heaters and fixing devices.

従来、複数の発熱部が並んで設けられ、かかる複数の発熱部が一体となって発熱する発熱部群を備える定着ヒータが知られている(たとえば、特許文献1参照)。 Conventionally, there is known a fixing heater in which a plurality of heat generating parts are provided side by side and the plurality of heat generating parts are integrally provided to generate heat (see, for example, Patent Document 1).

特開2016−115512号公報Japanese Unexamined Patent Publication No. 2016-115512

しかしながら、従来の定着ヒータでは、発熱部群の中央部に電流集中が生じることから、発熱部群内の複数の発熱部において温度のばらつきが生じるという問題がある。 However, in the conventional fixing heater, since the current is concentrated in the central portion of the heat generating portion group, there is a problem that the temperature varies in a plurality of heat generating portions in the heat generating portion group.

実施形態の一態様は、上記に鑑みてなされたものであって、複数の発熱部における温度のばらつきの少ない加熱器および定着装置を提供することを目的とする。 One aspect of the embodiment is made in view of the above, and an object of the present invention is to provide a heater and a fixing device having less variation in temperature in a plurality of heat generating portions.

実施形態の一態様に係る加熱器は、第1端から第2端にかけて延びる基板と、前記基板の長手方向における前記第1端側または前記第2端側に位置する複数の端子と、前記基板の長手方向に沿って並んで位置する複数の発熱部を有し、前記複数の発熱部が同一の前記端子に繋がる発熱部群と、を備える。また、前記発熱部群において中央部に位置する前記発熱部は、端部に位置する前記発熱部より電気抵抗が小さい。 The heater according to one aspect of the embodiment includes a substrate extending from the first end to the second end, a plurality of terminals located on the first end side or the second end side in the longitudinal direction of the substrate, and the substrate. It has a plurality of heat generating parts arranged side by side along the longitudinal direction of the above, and includes a group of heat generating parts in which the plurality of heat generating parts are connected to the same terminal. Further, in the heat generating portion group, the heat generating portion located at the central portion has a smaller electric resistance than the heat generating portion located at the end portion.

また、実施形態の一態様に係る定着装置は、軸周りに回転しながら媒体上のトナーを加熱する定着部材と、軸周りに回転しながら前記定着部材との間に加圧領域を形成し、前記加圧領域を通過する前記媒体上のトナーを加圧する加圧部材と、前記定着部材を挟んで前記加圧領域に対応して位置しており、前記定着部材を加熱する加熱器と、を備える。前記加熱器は、第1端から第2端にかけて延びる基板と、前記基板の長手方向における前記第1端側または前記第2端側に位置する複数の端子と、前記基板の長手方向に沿って並んで位置する複数の発熱部を有し、前記複数の発熱部が同一の前記端子に繋がる発熱部群と、を備える。また、前記発熱部群において中央部に位置する前記発熱部は、端部に位置する前記発熱部より電気抵抗が小さい。 Further, in the fixing device according to one aspect of the embodiment, a pressure region is formed between the fixing member that heats the toner on the medium while rotating around the axis and the fixing member while rotating around the axis. A pressurizing member that pressurizes the toner on the medium that passes through the pressurizing region, and a heater that is located corresponding to the pressurizing region with the fixing member interposed therebetween and heats the fixing member. Be prepared. The heater includes a substrate extending from a first end to a second end, a plurality of terminals located on the first end side or the second end side in the longitudinal direction of the substrate, and along the longitudinal direction of the substrate. It has a plurality of heat generating parts located side by side, and includes a group of heat generating parts in which the plurality of heat generating parts are connected to the same terminal. Further, in the heat generating portion group, the heat generating portion located at the central portion has a smaller electric resistance than the heat generating portion located at the end portion.

実施形態の一態様の加熱器および定着装置は、複数の発熱部における温度のばらつきが少ない。 In the heater and the fixing device of one aspect of the embodiment, there is little variation in temperature in a plurality of heat generating portions.

図1は、実施形態に係るプリンタを示す概略図(正面図)である。FIG. 1 is a schematic view (front view) showing a printer according to an embodiment. 図2は、実施形態に係る定着装置を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the fixing device according to the embodiment. 図3は、実施形態に係るヒータを模式的に示す底面図である。FIG. 3 is a bottom view schematically showing the heater according to the embodiment. 図4は、図3に示すA−A線の矢視断面図である。FIG. 4 is a cross-sectional view taken along the line AA shown in FIG. 図5は、実施形態に係るヒータにおける温度ばらつきの要因を説明するための図である。FIG. 5 is a diagram for explaining the factors of temperature variation in the heater according to the embodiment. 図6は、実施形態に係るヒータにおける抵抗発熱体の配置例について説明するための図である。FIG. 6 is a diagram for explaining an arrangement example of a resistance heating element in the heater according to the embodiment. 図7は、実施形態の変形例1に係るヒータを模式的に示す底面図である。FIG. 7 is a bottom view schematically showing the heater according to the first modification of the embodiment. 図8は、実施形態の変形例1に係るヒータにおける温度ばらつきの要因を説明するための図である。FIG. 8 is a diagram for explaining the factors of temperature variation in the heater according to the first modification of the embodiment. 図9は、実施形態の変形例2に係るヒータを模式的に示す底面図である。FIG. 9 is a bottom view schematically showing the heater according to the second modification of the embodiment.

以下、添付図面を参照して、本願の開示する加熱器および定着装置の実施形態について説明する。なお、各図に示す「Fr」は「前」を示し、「Rr」は「後」を示し、「L」は「左」を示し、「R」は「右」を示し、「U」は「上」を示し、「D」は「下」を示している。 Hereinafter, embodiments of the heater and the fixing device disclosed in the present application will be described with reference to the accompanying drawings. In each figure, "Fr" indicates "front", "Rr" indicates "rear", "L" indicates "left", "R" indicates "right", and "U" indicates "right". "Upper" indicates "upper" and "D" indicates "lower".

[プリンタの全体構成]
最初に、実施形態に係る定着装置7が用いられるプリンタ1の全体構成について、図1を参照しながら説明する。図1はプリンタ1を示す概略図(正面図)である。プリンタ1は、装置本体2と、給紙カセット3と、排紙トレイ4と、給紙装置5と、作像装置6と、定着装置7と、図示しない制御装置とを備える。
[Overall configuration of printer]
First, the overall configuration of the printer 1 in which the fixing device 7 according to the embodiment is used will be described with reference to FIG. FIG. 1 is a schematic view (front view) showing the printer 1. The printer 1 includes a device main body 2, a paper cassette 3, a paper output tray 4, a paper feed device 5, an image drawing device 6, a fixing device 7, and a control device (not shown).

装置本体2は、プリンタ1において略直方体状の外観を構成する。給紙カセット3は、装置本体2の下部に位置し、画像が形成される前のシートSを収容する。かかるシートSは、媒体の一例であり、たとえば普通紙である。なお、シートSは、紙製に限られず、樹脂製などであってもよい。 The apparatus main body 2 constitutes a substantially rectangular parallelepiped appearance in the printer 1. The paper cassette 3 is located at the lower part of the apparatus main body 2 and accommodates the sheet S before the image is formed. Such a sheet S is an example of a medium, for example, plain paper. The sheet S is not limited to paper, but may be made of resin or the like.

排紙トレイ4は、装置本体2の上部に位置し、画像が形成された後のシートSを収容する。給紙装置5は、給紙カセット3から排紙トレイ4まで延びる搬送路8の上流端部に位置する。 The output tray 4 is located at the upper part of the apparatus main body 2 and accommodates the sheet S after the image is formed. The paper feed device 5 is located at the upstream end of the transport path 8 extending from the paper feed cassette 3 to the paper output tray 4.

作像装置6は、搬送路8の中間部に位置し、トナーコンテナ10と、ドラムユニット11と、光走査装置12とを有する。 The image-forming device 6 is located in the middle of the transport path 8, and has a toner container 10, a drum unit 11, and an optical scanning device 12.

トナーコンテナ10は、たとえば、黒色のトナー(現像剤)を収容する。なお、トナーコンテナ10に収容されるトナーは、トナーとキャリアとを混合した二成分現像剤であってもよいし、磁性トナーから成る一成分現像剤であってもよい。 The toner container 10 contains, for example, black toner (developer). The toner contained in the toner container 10 may be a two-component developer in which the toner and the carrier are mixed, or a one-component developer composed of magnetic toner.

ドラムユニット11は、感光体ドラム13と、帯電装置14と、現像装置15と、転写ローラ16とを有する。転写ローラ16は、下側から感光体ドラム13に接触して転写ニップを形成する。 The drum unit 11 includes a photoconductor drum 13, a charging device 14, a developing device 15, and a transfer roller 16. The transfer roller 16 contacts the photoconductor drum 13 from below to form a transfer nip.

定着装置7は、搬送路8の下流側に位置する。かかる定着装置7の詳細については後述する。 The fixing device 7 is located on the downstream side of the transport path 8. Details of the fixing device 7 will be described later.

制御装置は、上述の各装置を適宜制御して、以下の手順で画像形成処理を実施する。まず、帯電装置14は、感光体ドラム13の表面を帯電させる。そして、感光体ドラム13は、光走査装置12から出射される走査光を受け、静電潜像を担持する。 The control device appropriately controls each of the above-mentioned devices, and performs the image forming process according to the following procedure. First, the charging device 14 charges the surface of the photoconductor drum 13. Then, the photoconductor drum 13 receives the scanning light emitted from the optical scanning device 12 and carries an electrostatic latent image.

次に、現像装置15は、トナーコンテナ10から供給されるトナーを用いて感光体ドラム13上の静電潜像をトナー像に現像する。そして、給紙装置5は、シートSを給紙カセット3から搬送路8に送り出す。これにより、感光体ドラム13上のトナー像が、転写ニップを通過するシートSに転写される。 Next, the developing device 15 develops the electrostatic latent image on the photoconductor drum 13 into a toner image using the toner supplied from the toner container 10. Then, the paper feed device 5 feeds the sheet S from the paper feed cassette 3 to the transport path 8. As a result, the toner image on the photoconductor drum 13 is transferred to the sheet S passing through the transfer nip.

次に、定着装置7は、トナー像をシートSに定着させる。最後に、トナー像が定着されたシートSが、排紙トレイ4に排出される。 Next, the fixing device 7 fixes the toner image on the sheet S. Finally, the sheet S on which the toner image is fixed is discharged to the paper ejection tray 4.

[定着装置およびヒータ]
次に、実施形態に係る定着装置7およびヒータ23の詳細について、図2〜図6を参照しながら説明する。図2は、実施形態に係る定着装置7を模式的に示す断面図であり、図3は、実施形態に係るヒータ23を模式的に示す底面図であり、図4は、図3に示すA−A線の矢視断面図である。
[Fixing device and heater]
Next, the details of the fixing device 7 and the heater 23 according to the embodiment will be described with reference to FIGS. 2 to 6. FIG. 2 is a cross-sectional view schematically showing the fixing device 7 according to the embodiment, FIG. 3 is a bottom view schematically showing the heater 23 according to the embodiment, and FIG. 4 is A shown in FIG. It is a cross-sectional view taken along the line A.

図2に示すように、定着装置7は、定着ベルト21と、加圧ローラ22と、ヒータ23とを備える。定着ベルト21は定着部材の一例であり、加圧ローラ22は加圧部材の一例であり、ヒータ23は加熱器の一例である。 As shown in FIG. 2, the fixing device 7 includes a fixing belt 21, a pressure roller 22, and a heater 23. The fixing belt 21 is an example of a fixing member, the pressure roller 22 is an example of a pressure member, and the heater 23 is an example of a heater.

定着ベルト21は、無端状のベルトであって、前後方向(以下、軸方向とも呼称する。)に長い略円筒状である。定着ベルト21の表層は、たとえば、ポリイミド樹脂などの耐熱性および弾性を有する合成樹脂材料などで構成される。 The fixing belt 21 is an endless belt and has a substantially cylindrical shape that is long in the front-rear direction (hereinafter, also referred to as an axial direction). The surface layer of the fixing belt 21 is made of, for example, a heat-resistant and elastic synthetic resin material such as a polyimide resin.

定着ベルト21は、筐体20(図1参照)の内部上方に配置される。定着ベルト21の軸方向両端部には、略円筒状の一対のキャップ(図示せず)が装着される。なお、定着ベルト21の内部には、定着ベルト21の略円筒形状を保持するためのベルトガイド(図示せず)が位置していてもよい。 The fixing belt 21 is arranged above the inside of the housing 20 (see FIG. 1). A pair of substantially cylindrical caps (not shown) are attached to both ends of the fixing belt 21 in the axial direction. A belt guide (not shown) for holding the substantially cylindrical shape of the fixing belt 21 may be located inside the fixing belt 21.

定着ベルト21の内部には、押圧部材24が位置する。押圧部材24は、軸方向に長い略角筒状である。押圧部材24は、定着ベルト21(およびキャップ)を軸方向に貫通して筐体20に支持される。上記した定着ベルト21は、押圧部材24に対して回転可能に支持される。そして、押圧部材24は、たとえば、金属材料によって構成される。 The pressing member 24 is located inside the fixing belt 21. The pressing member 24 has a substantially square cylinder shape that is long in the axial direction. The pressing member 24 penetrates the fixing belt 21 (and the cap) in the axial direction and is supported by the housing 20. The fixing belt 21 described above is rotatably supported by the pressing member 24. The pressing member 24 is made of, for example, a metal material.

加圧ローラ22は、前後方向(すなわち軸方向)に長い略円筒状である。加圧ローラ22は、筐体20の内部下方に配置される。加圧ローラ22は、金属製の芯金22aと、その外周面に積層されるシリコーンスポンジなどの弾性層22bとを有する。 The pressure roller 22 has a substantially cylindrical shape that is long in the front-rear direction (that is, the axial direction). The pressure roller 22 is arranged below the inside of the housing 20. The pressure roller 22 has a metal core metal 22a and an elastic layer 22b such as a silicone sponge laminated on the outer peripheral surface thereof.

芯金22aの軸方向両端部は、筐体20に回転可能に支持される。芯金22aにはギア列などを介して駆動モータ(図示せず)が接続され、加圧ローラ22は駆動モータによって回転駆動される。 Both ends of the core metal 22a in the axial direction are rotatably supported by the housing 20. A drive motor (not shown) is connected to the core metal 22a via a gear train or the like, and the pressurizing roller 22 is rotationally driven by the drive motor.

なお、定着装置7は、加圧ローラ22を昇降させて定着ベルト21に対する加圧ローラ22の接触圧を調整する圧力調整部(図示せず)を備える。加圧ローラ22が定着ベルト21に押し付けられることで、定着ベルト21と加圧ローラ22との間に加圧領域Nが形成される。 The fixing device 7 includes a pressure adjusting unit (not shown) that raises and lowers the pressure roller 22 to adjust the contact pressure of the pressure roller 22 with respect to the fixing belt 21. When the pressure roller 22 is pressed against the fixing belt 21, a pressure region N is formed between the fixing belt 21 and the pressure roller 22.

また、かかる加圧領域Nとは、圧力が0PaであるシートSの搬送方向上流側の位置から最大圧力となる位置を経由して再び圧力が0PaとなるシートSの搬送方向下流側の位置までの領域を指す。 Further, the pressure region N is from the position on the upstream side of the sheet S having a pressure of 0 Pa in the transport direction to the position on the downstream side of the sheet S having a pressure of 0 Pa again via the position where the maximum pressure is reached. Refers to the area of.

また、本開示において、「通過方向」とは、軸方向に直交する方向であって、シートSが定着装置7の加圧領域Nを通過する方向(搬送される方向)を指す。また、以下の説明では、「上流」および「下流」並びにこれらに類する用語は、通過方向における「上流」および「下流」並びにこれらに類する概念を指す。 Further, in the present disclosure, the "passing direction" refers to a direction orthogonal to the axial direction and a direction in which the sheet S passes through the pressurizing region N of the fixing device 7 (the direction in which the sheet S is conveyed). Further, in the following description, "upstream" and "downstream" and similar terms refer to "upstream" and "downstream" in the passing direction and similar concepts.

ヒータ23は、定着ベルト21を加熱するための熱源である。ヒータ23は、保持部材25を介して押圧部材24の下面に固定される。保持部材25は、軸方向に直交する断面が半円状、かつ、軸方向に長い形状である。定着ベルト21の下側内面に沿うように湾曲している。そして、保持部材25は、たとえば、耐熱樹脂材料から構成される。 The heater 23 is a heat source for heating the fixing belt 21. The heater 23 is fixed to the lower surface of the pressing member 24 via the holding member 25. The holding member 25 has a semicircular cross section orthogonal to the axial direction and a long shape in the axial direction. It is curved along the lower inner surface of the fixing belt 21. The holding member 25 is made of, for example, a heat-resistant resin material.

図4に示すように、ヒータ23は、基板30と、断熱層31と、発熱接触部32とを有する。基板30は、保持部材25の下面に固定される。断熱層31は、基板30の下面上に位置する。発熱接触部32は、断熱層31の下面上に位置する。 As shown in FIG. 4, the heater 23 has a substrate 30, a heat insulating layer 31, and a heat generating contact portion 32. The substrate 30 is fixed to the lower surface of the holding member 25. The heat insulating layer 31 is located on the lower surface of the substrate 30. The heat generating contact portion 32 is located on the lower surface of the heat insulating layer 31.

ヒータ23は、保持部材25の下面に保持される。ヒータ23における発熱接触部32は、加圧ローラ22に対向しており、定着ベルト21の内面に接触する部位である。そして、定着ベルト21と加圧ローラ22との接触部分が、加圧領域Nである。 The heater 23 is held on the lower surface of the holding member 25. The heat generating contact portion 32 in the heater 23 is a portion that faces the pressure roller 22 and comes into contact with the inner surface of the fixing belt 21. The contact portion between the fixing belt 21 and the pressure roller 22 is the pressure region N.

すなわち、ヒータ23は、定着ベルト21を挟んで加圧領域Nに対応して設けられる。なお、定着ベルト21の表面温度またはヒータ23の温度を検知するための温度センサ(図示せず)は、図1に示す筐体20に設けられてもよい。 That is, the heater 23 is provided so as to correspond to the pressure region N with the fixing belt 21 interposed therebetween. A temperature sensor (not shown) for detecting the surface temperature of the fixing belt 21 or the temperature of the heater 23 may be provided in the housing 20 shown in FIG.

図3および図4に示すように、基板30は、前後方向(軸方向)に長い略矩形板状である。換言すると、基板30は、軸方向が長手方向であり、通過方向が短手方向であり、長手方向における第1端30aから第2端30bにかけて延びる。そして、基板30は、たとえば、セラミックなどの電気絶縁性を有する材料で構成される。 As shown in FIGS. 3 and 4, the substrate 30 has a substantially rectangular plate shape that is long in the front-rear direction (axial direction). In other words, the substrate 30 has an axial direction in the longitudinal direction and a passing direction in the lateral direction, and extends from the first end 30a to the second end 30b in the longitudinal direction. The substrate 30 is made of a material having electrical insulation such as ceramics.

ここで、基板30の第1端30aは、後述する個別電極51〜53が引き出される側の端部であり、第2端30bは、かかる第1端30aとは反対側の端部である。また、基板30の上下両面は、略平滑である。 Here, the first end 30a of the substrate 30 is the end on the side where the individual electrodes 51 to 53, which will be described later, are drawn out, and the second end 30b is the end on the side opposite to the first end 30a. Further, both the upper and lower surfaces of the substrate 30 are substantially smooth.

断熱層31は、基板30の一面(下面全域)上に積層(成膜)される。断熱層31は、たとえば、セラミックあるいはガラスなどの電気絶縁性を有すると共に熱伝導率の低い材料で構成される。断熱層31は、発熱接触部32で発生した熱が基板30側に伝達することを規制する機能を有する。 The heat insulating layer 31 is laminated (deposited) on one surface (entire lower surface) of the substrate 30. The heat insulating layer 31 is made of a material having electrical insulation and low thermal conductivity, such as ceramic or glass. The heat insulating layer 31 has a function of restricting the heat generated in the heat generating contact portion 32 from being transferred to the substrate 30 side.

発熱接触部32は、断熱層31の一面(下面)上に積層される。発熱接触部32は、図3に示すように、複数(たとえば3つ)の発熱部群41と、かかる発熱部群41と同じ数の個別電極51〜53と、コモン電極54と、コート層60(図4参照)とを有する。 The heat generating contact portion 32 is laminated on one surface (lower surface) of the heat insulating layer 31. As shown in FIG. 3, the heat-generating contact portions 32 include a plurality of (for example, three) heat-generating parts groups 41, the same number of individual electrodes 51 to 53 as the heat-generating parts groups 41, a common electrode 54, and a coat layer 60. (See FIG. 4).

複数の発熱部群41は、たとえば、個別電極51〜53およびコモン電極54より電気抵抗の大きい金属などの導電性材料で構成される。また、複数の発熱部群41は、断熱層31の下面上において、基板30の長手方向に一列に並んで位置する。 The plurality of heat generating unit groups 41 are made of a conductive material such as a metal having a higher electric resistance than the individual electrodes 51 to 53 and the common electrode 54, for example. Further, the plurality of heat generating unit groups 41 are located side by side in a row in the longitudinal direction of the substrate 30 on the lower surface of the heat insulating layer 31.

また、それぞれの発熱部群41は、基板30の長手方向に一列に並ぶ複数の抵抗発熱体40で構成される。抵抗発熱体40は、発熱部の一例である。複数の抵抗発熱体40は、それぞれ、通過方向(すなわち、基板30の短手方向)に細長い略長方形状である。 Further, each heating element group 41 is composed of a plurality of resistance heating elements 40 arranged in a row in the longitudinal direction of the substrate 30. The resistance heating element 40 is an example of a heating element. Each of the plurality of resistance heating elements 40 has a substantially rectangular shape elongated in the passing direction (that is, the lateral direction of the substrate 30).

複数の発熱部群41は、基板30の第1端30a側から順に第1発熱部群41Aと、第2発熱部群41Bと、第3発熱部群41Cとを有する。すなわち、軸方向の中央に第2発熱部群41Bが位置し、軸方向の第1端30a側に第1発熱部群41Aが位置し、軸方向の第2端30b側に第3発熱部群41Cが位置する。 The plurality of heat-generating unit groups 41 include a first heat-generating unit group 41A, a second heat-generating unit group 41B, and a third heat-generating unit group 41C in order from the first end 30a side of the substrate 30. That is, the second heat generating portion group 41B is located in the center in the axial direction, the first heat generating portion group 41A is located on the first end 30a side in the axial direction, and the third heat generating portion group is located on the second end 30b side in the axial direction. 41C is located.

軸方向の中央に位置する第2発熱部群41Bは、加圧領域Nを通過する小サイズ(たとえばA5サイズ)のシートSの前後幅に対応する範囲に並ぶ複数(図では8個)の抵抗発熱体40によって構成される。 The second heating element group 41B located at the center in the axial direction has a plurality of (8 in the figure) resistors arranged in a range corresponding to the front-rear width of a small-sized (for example, A5 size) sheet S passing through the pressurizing region N. It is composed of a heating element 40.

かかる第2発熱部群41Bの両側に位置する第1発熱部群41Aおよび第3発熱部群41Cは、加圧領域Nを通過する通常サイズ(たとえばA4サイズ)のシートSの前後幅に対応する範囲に並ぶ複数(図では4個)の抵抗発熱体40によって構成される。 The first heating element group 41A and the third heating element group 41C located on both sides of the second heating element group 41B correspond to the front-rear width of the normal size (for example, A4 size) sheet S passing through the pressurizing region N. It is composed of a plurality of (4 in the figure) resistance heating elements 40 arranged in a range.

ここで、実施形態では、軸方向の中央に位置する第2発熱部群41Bが、軸方向の両側に位置する第1発熱部群41Aおよび第3発熱部群41Cより多くの抵抗発熱体40を有する。 Here, in the embodiment, the second heating element group 41B located at the center in the axial direction has more resistance heating elements 40 than the first heating element group 41A and the third heating element group 41C located on both sides in the axial direction. Have.

複数の個別電極51〜53とコモン電極54とは、断熱層31の下面上に位置する。複数の個別電極51〜53とコモン電極54とは、たとえば、抵抗発熱体40より電気抵抗の小さい金属などの導電性材料で構成される。 The plurality of individual electrodes 51 to 53 and the common electrode 54 are located on the lower surface of the heat insulating layer 31. The plurality of individual electrodes 51 to 53 and the common electrode 54 are made of, for example, a conductive material such as a metal having an electric resistance smaller than that of the resistance heating element 40.

個別電極51は、第1発熱部群41Aの一方側と端子61とを繋ぐ。個別電極52は、第2発熱部群41Bの一方側と端子62とを繋ぐ。個別電極53は、第3発熱部群41Cの一方側と端子63とを繋ぐ。 The individual electrode 51 connects one side of the first heat generating portion group 41A to the terminal 61. The individual electrode 52 connects one side of the second heat generating portion group 41B to the terminal 62. The individual electrode 53 connects one side of the third heat generating portion group 41C to the terminal 63.

また、コモン電極54は、全ての発熱部群41の他方側と同一の端子64とを繋ぐ。端子61〜64は、電源などの外部機器と電気的に接続するための接続端子である。 Further, the common electrode 54 connects to the same terminal 64 as the other side of all the heat generating parts group 41. Terminals 61 to 64 are connection terminals for electrically connecting to an external device such as a power supply.

個別電極51は、接続部51aと、引出部51bとを有する。接続部51aは、第1発熱部群41Aの各抵抗発熱体40を並列に接続する部位である。引出部51bは、かかる接続部51aから、基板30の長手方向に沿って端子61に向かって延びる部位である。 The individual electrode 51 has a connecting portion 51a and a drawing portion 51b. The connection portion 51a is a portion for connecting the resistance heating elements 40 of the first heating unit group 41A in parallel. The drawer portion 51b is a portion extending from the connection portion 51a toward the terminal 61 along the longitudinal direction of the substrate 30.

個別電極52は、接続部52aと、引出部52bとを有する。接続部52aは、第2発熱部群41Bの各抵抗発熱体40を並列に接続する部位である。引出部52bは、かかる接続部52aから、基板30の長手方向に沿って端子62に向かって延びる部位である。 The individual electrode 52 has a connecting portion 52a and a drawing portion 52b. The connection portion 52a is a portion for connecting the resistance heating elements 40 of the second heating unit group 41B in parallel. The drawer portion 52b is a portion extending from the connection portion 52a toward the terminal 62 along the longitudinal direction of the substrate 30.

個別電極53は、接続部53aと、引出部53bとを有する。接続部53aは、第3発熱部群41Cの各抵抗発熱体40を並列に接続する部位である。引出部53bは、かかる接続部53aから、基板30の長手方向に沿って端子63に向かって延びる部位である。 The individual electrode 53 has a connecting portion 53a and a drawing portion 53b. The connection portion 53a is a portion for connecting the resistance heating elements 40 of the third heating unit group 41C in parallel. The drawer portion 53b is a portion extending from the connection portion 53a toward the terminal 63 along the longitudinal direction of the substrate 30.

コモン電極54は、接続部54aと、引出部54bとを有する。接続部54aは、全ての発熱部群41の各抵抗発熱体40を並列に接続する部位である。引出部54bは、かかる接続部54aから、基板30の長手方向に沿って端子64に向かって延びる部位である。 The common electrode 54 has a connecting portion 54a and a drawing portion 54b. The connecting portion 54a is a portion for connecting each resistance heating element 40 of all the heating unit groups 41 in parallel. The drawer portion 54b is a portion extending from the connection portion 54a toward the terminal 64 along the longitudinal direction of the substrate 30.

図4に示すように、コート層60は、複数の発熱部群41と、複数の個別電極51〜53と、コモン電極54とを被覆する。コート層60は、たとえば、セラミックなどの電気絶縁性を有すると共に定着ベルト21に対して滑り摩擦力の小さな材料で形成される。 As shown in FIG. 4, the coat layer 60 covers a plurality of heat generating portions 41, a plurality of individual electrodes 51 to 53, and a common electrode 54. The coat layer 60 is made of a material having electrical insulation such as ceramic and having a small sliding frictional force with respect to the fixing belt 21.

コート層60は、定着ベルト21の内面に接触する面を構成している。なお、複数の発熱部群41、個別電極51〜53およびコモン電極54が積層されない部分にも、コート層60が積層される。 The coat layer 60 constitutes a surface that comes into contact with the inner surface of the fixing belt 21. The coat layer 60 is also laminated on the portion where the plurality of heat generating portions 41, the individual electrodes 51 to 53, and the common electrode 54 are not laminated.

以上説明したヒータ23の製造には、たとえば、スパッタリングなどの成膜技術、プリント基板の製造技術、またはスクリーン印刷技術、若しくはこれらの技術の組み合せを用いることができる。 For the production of the heater 23 described above, for example, a film forming technique such as sputtering, a printed circuit board manufacturing technique, a screen printing technique, or a combination of these techniques can be used.

たとえば、断熱層31および発熱接触部32は、スパッタリングによって基板30上に成膜されてもよい。また、断熱層31および発熱接触部32は、プリント基板の製造技術であるフォトマスクを用いた露光、現像、エッチング、剥離、積層などの工程を繰り返すことによって基板30上に形成されてもよい。 For example, the heat insulating layer 31 and the heat generating contact portion 32 may be formed on the substrate 30 by sputtering. Further, the heat insulating layer 31 and the heat generating contact portion 32 may be formed on the substrate 30 by repeating steps such as exposure, development, etching, peeling, and laminating using a photomask, which is a technique for manufacturing a printed circuit board.

また、断熱層31および発熱接触部32は、電気絶縁性塗料または導電性塗料を基板30上に塗布(スクリーン印刷)することによって形成されてもよい。これらの製法であれば、断熱層31および発熱接触部32を基板30上に精度よく形成することができる。 Further, the heat insulating layer 31 and the heat generating contact portion 32 may be formed by applying an electrically insulating paint or a conductive paint on the substrate 30 (screen printing). With these manufacturing methods, the heat insulating layer 31 and the heat generating contact portion 32 can be accurately formed on the substrate 30.

また、ヒータ23の端子61〜64や駆動モータなどは、各種の駆動回路(図示せず)を介して電源(図示せず)に電気的に接続される。また、ヒータ23、駆動モータおよび温度センサなどは、各種の回路を介してプリンタ1の制御装置に電気的に接続される。かかる制御装置は、電気的に接続される装置などを制御する。 Further, the terminals 61 to 64 of the heater 23, the drive motor, and the like are electrically connected to the power supply (not shown) via various drive circuits (not shown). Further, the heater 23, the drive motor, the temperature sensor, and the like are electrically connected to the control device of the printer 1 via various circuits. Such a control device controls an electrically connected device or the like.

ここで、定着装置7で実施される定着処理の詳細について、主に図2を参照しながら説明する。 Here, the details of the fixing process performed by the fixing device 7 will be described mainly with reference to FIG.

まず、制御装置は、駆動モータやヒータ23を駆動制御する。加圧ローラ22は駆動モータの駆動力を受けて回転し、定着ベルト21は加圧ローラ22に従動して回転する(図2の実線細矢印参照)。 First, the control device drives and controls the drive motor and the heater 23. The pressure roller 22 rotates under the driving force of the drive motor, and the fixing belt 21 rotates in accordance with the pressure roller 22 (see the solid line thin arrow in FIG. 2).

それぞれの抵抗発熱体40(図3参照)は、複数の発熱部群41(図3参照)を挟む個別電極51〜53(図3参照)とコモン電極54(図3参照)との間で通過方向(すなわち、基板30の短手方向)に沿って電流を流すことによって発熱する。これにより、定着ベルト21の加圧領域Nが加熱される。 Each resistance heating element 40 (see FIG. 3) passes between the individual electrodes 51 to 53 (see FIG. 3) and the common electrode 54 (see FIG. 3) sandwiching the plurality of heating unit groups 41 (see FIG. 3). Heat is generated by passing an electric current along the direction (that is, the lateral direction of the substrate 30). As a result, the pressure region N of the fixing belt 21 is heated.

この際、制御装置は、シートSのサイズに応じて発熱させる発熱部群41を変更する。たとえば、通常サイズのシートSが加圧領域Nを通過する場合、制御装置は、全ての発熱部群41に電力を供給し、全ての発熱部群41を発熱させる。 At this time, the control device changes the heat generating unit group 41 that generates heat according to the size of the seat S. For example, when the normal size sheet S passes through the pressurizing region N, the control device supplies electric power to all the heat generating parts groups 41 to heat all the heat generating parts groups 41.

また、小サイズのシートSが加圧領域Nを通過する場合、制御装置は、中央の第2発熱部群41B(図3参照)のみを発熱させる。これにより、シートSのサイズに合わせて定着ベルト21(加圧領域N)の必要な部分のみを加熱することができる。その結果、定着ベルト21の軸方向両端部の過昇温を抑制することができる。 Further, when the small-sized sheet S passes through the pressurizing region N, the control device generates heat only in the central second heating unit group 41B (see FIG. 3). As a result, only the necessary portion of the fixing belt 21 (pressurized region N) can be heated according to the size of the sheet S. As a result, it is possible to suppress excessive temperature rise at both ends of the fixing belt 21 in the axial direction.

温度センサは、定着ベルト21の表面温度を検出し、入力回路を介して検出信号を制御装置に送信する。制御装置は、温度センサから設定温度(たとえば150〜200℃)に達したことを示す検出信号を受信すると、その設定温度を維持するようにヒータ23を制御しながら、上述した画像形成処理を開始する。 The temperature sensor detects the surface temperature of the fixing belt 21 and transmits a detection signal to the control device via the input circuit. When the control device receives a detection signal indicating that the set temperature (for example, 150 to 200 ° C.) has been reached from the temperature sensor, the control device starts the above-mentioned image forming process while controlling the heater 23 so as to maintain the set temperature. do.

トナー像が転写されたシートSは筐体20内に進入し、定着ベルト21は、軸周りに正回転しながら加圧領域Nを通過するシートS上のトナー(トナー像)を加熱する。加圧ローラ22は、軸周りに回転しながら加圧領域Nを通過するシートS上のトナーを加圧する。すると、トナー像がシートSに定着する。そして、トナー像が定着したシートSは、筐体20(図1参照)の外部に送り出されて排紙トレイ4(図1参照)に排出される。 The sheet S on which the toner image is transferred enters the housing 20, and the fixing belt 21 heats the toner (toner image) on the sheet S passing through the pressure region N while rotating forward about the axis. The pressurizing roller 22 pressurizes the toner on the sheet S passing through the pressurizing region N while rotating around the axis. Then, the toner image is fixed on the sheet S. Then, the sheet S on which the toner image is fixed is sent out to the outside of the housing 20 (see FIG. 1) and discharged to the paper ejection tray 4 (see FIG. 1).

図5は、実施形態に係るヒータ23における温度ばらつきの要因を説明するための図である。上述の構成を有するヒータ23では、図5に示すように、1つの発熱部群41において、発熱部群41の中央部に電流が集中する。それにより、引出部52bを流れる電流が増大し、引出部52bの配線抵抗が高くなる。 FIG. 5 is a diagram for explaining the factors of temperature variation in the heater 23 according to the embodiment. In the heater 23 having the above configuration, as shown in FIG. 5, in one heat generating unit group 41, the current is concentrated in the central portion of the heat generating unit group 41. As a result, the current flowing through the drawer portion 52b increases, and the wiring resistance of the drawer portion 52b increases.

これにより、発熱部群41の中央部に位置する抵抗発熱体40は、端部に位置する抵抗発熱体40より低温化してしまう。なぜなら、引出部52bの配線抵抗が高くなり、中央部に位置する抵抗発熱体40に供給される電圧が、引出部52bの配線ロスにより少なくなってしまうためである。
Q=V/R・t ・・(1)
Q=I・R・t ・・(2)
As a result, the resistance heating element 40 located at the center of the heating element group 41 becomes colder than the resistance heating element 40 located at the end. This is because the wiring resistance of the lead-out portion 52b becomes high, and the voltage supplied to the resistance heating element 40 located in the central portion becomes small due to the wiring loss of the lead-out portion 52b.
Q = V 2 / R ・ t ・ ・ (1)
Q = I 2・ R ・ t ・ ・ (2)

なお、上記の式(1)において、Vは電圧値であり、Rは電気抵抗であり、tは電流を流す時間である。また、上記の式(2)において、Iは電流値である。 In the above equation (1), V is a voltage value, R is an electric resistance, and t is a time for passing a current. Further, in the above equation (2), I is a current value.

特に、抵抗発熱体40の数が最も多い発熱部群41(第2発熱部群41B)では、他の発熱部群41(第1発熱部群41A、第3発熱部群41C)より中央部への電流の集中度合いが大きいため、引出部52bの配線ロスが大きく、端部に比べて中央部へ供給される電圧が小さくなり、中央部がより低温化してしまう。 In particular, in the heating unit group 41 (second heating unit group 41B) having the largest number of resistance heating elements 40, from the other heating unit group 41 (first heating unit group 41A, third heating unit group 41C) to the central portion. Since the degree of concentration of the current is large, the wiring loss of the lead-out portion 52b is large, the voltage supplied to the central portion is smaller than that of the end portion, and the temperature of the central portion becomes lower.

このように、発熱部群41の中央部に位置する抵抗発熱体40が低温化した場合、ヒータ23内で長手方向に温度のばらつきが生じてしまうことから、シートSへのトナー像の定着に悪影響が生じるおそれがある。 As described above, when the temperature of the resistance heating element 40 located at the center of the heating unit group 41 is lowered, the temperature varies in the longitudinal direction in the heater 23, so that the toner image can be fixed on the sheet S. There is a risk of adverse effects.

そこで、実施形態では、同じ発熱部群41において中央部に位置する抵抗発熱体40の電気抵抗を、端部に位置する抵抗発熱体40の電気抵抗より小さくすることとした。これにより、中央部に位置する抵抗発熱体40に供給される電流が大きくなり、上記の式(2)で示すように、中央部に位置する抵抗発熱体40のジュール熱Qが増加する。その一方で、引出部52bへ流れる電流が増加し、引出部52bの配線ロスが大きくなるものの、ジュール熱Qの増加に対する引出部52bの配線ロスの影響は小さくなり、端部に位置する抵抗発熱体40のジュール熱Qに近づけることができる。 Therefore, in the embodiment, the electric resistance of the resistance heating element 40 located at the center of the same heating element group 41 is made smaller than the electric resistance of the resistance heating element 40 located at the end. As a result, the current supplied to the resistance heating element 40 located in the central portion increases, and as shown by the above equation (2), the Joule heat Q of the resistance heating element 40 located in the central portion increases. On the other hand, although the current flowing through the extraction portion 52b increases and the wiring loss of the extraction portion 52b increases, the influence of the wiring loss of the extraction portion 52b on the increase in Joule heat Q becomes small, and the resistance heat generated at the end portion is generated. It can approach the Joule heat Q of the body 40.

したがって、実施形態によれば、ヒータ23内の複数の抵抗発熱体40は、温度のばらつきが小さい。 Therefore, according to the embodiment, the temperature variation of the plurality of resistance heating elements 40 in the heater 23 is small.

具体的には、中央部への電流の集中度合いが大きい第2発熱部群41Bの場合、中央部に位置する抵抗発熱体40の電気抵抗を、端部に位置する抵抗発熱体40の電気抵抗より所定の割合、たとえば、10%小さくするとよい。 Specifically, in the case of the second heating element group 41B in which the degree of current concentration in the central portion is large, the electric resistance of the resistance heating element 40 located in the central portion is changed to the electric resistance of the resistance heating element 40 located in the end portion. It may be smaller by a more predetermined ratio, for example, 10%.

また、中央部と端部との間に位置する抵抗発熱体40の電気抵抗は、中央部および端部の抵抗発熱体40からの距離に応じて段階的に調整してもよい。これにより、かかる第2発熱部群41B内での温度のばらつきを効果的に低減することができる。 Further, the electric resistance of the resistance heating element 40 located between the central portion and the end portion may be adjusted stepwise according to the distance from the resistance heating element 40 of the central portion and the end portion. Thereby, the variation in temperature within the second heat generating portion group 41B can be effectively reduced.

なお、抵抗発熱体40の数が少なく、中央部への電流の集中度合いが小さい発熱部群41(第1発熱部群41A、第3発熱部群41C)の場合においても、中央部に位置する抵抗発熱体40の電気抵抗を、端部に位置する抵抗発熱体40の電気抵抗より小さくすればよい。これにより、かかる発熱部群41(第1発熱部群41A、第3発熱部群41C)内での温度のばらつきを効果的に制限することができる。 Even in the case of the heating element group 41 (first heating element group 41A, third heating element group 41C) in which the number of resistance heating elements 40 is small and the degree of current concentration in the central portion is small, the heating element 40 is located in the central portion. The electric resistance of the resistance heating element 40 may be made smaller than the electric resistance of the resistance heating element 40 located at the end. Thereby, the variation in temperature within the heat generating unit group 41 (first heat generating unit group 41A, third heat generating unit group 41C) can be effectively limited.

また、上述の構成を有するヒータ23では、図5に示すように、抵抗発熱体40の数が最も多い第2発熱部群41Bの個別電極52に、他の個別電極51、53より電流が多く流れる。なぜなら、多くの抵抗発熱体40を全て発熱させるには、その分個別電極52に多くの電流を流さなければならないからである。 Further, in the heater 23 having the above configuration, as shown in FIG. 5, the individual electrode 52 of the second heating element group 41B having the largest number of resistance heating elements 40 has a larger current than the other individual electrodes 51 and 53. It flows. This is because, in order to generate all of the many resistance heating elements 40, a large amount of current must be passed through the individual electrodes 52.

そして、かかる個別電極52では、引出部52bのほうが接続部52aより幅が狭いことから、単位長さ当たりの電気抵抗が大きい。なぜなら、ヒータ23は、基板30の短手方向(すなわち、シートSの通過方向)の幅に制限があることから、短手方向に複数並んで配置される引出部51b〜53bを幅広にすることが難しいからである。 Further, in the individual electrode 52, since the width of the drawer portion 52b is narrower than that of the connection portion 52a, the electric resistance per unit length is large. This is because the heater 23 has a limitation on the width of the substrate 30 in the lateral direction (that is, the passing direction of the sheet S), so that the drawer portions 51b to 53b arranged side by side in the lateral direction are widened. Is difficult.

したがって、上述の構成を有するヒータ23では、個別電極52の引出部52bに多くの電流が流れる際に、かかる引出部52bで熱が発生してしまう。 Therefore, in the heater 23 having the above-described configuration, when a large amount of current flows through the extraction portion 52b of the individual electrode 52, heat is generated in the extraction portion 52b.

そして、引出部52bが発熱した場合、熱干渉によってかかる引出部52bに隣接する発熱部群41(第1発熱部群41A)の温度が他の発熱部群41の温度より高くなることから、ヒータ23内で長手方向に温度のばらつきが生じてしまう。 When the drawer portion 52b generates heat, the temperature of the heat generating portion group 41 (first heat generating portion group 41A) adjacent to the drawer portion 52b is higher than that of the other heat generating portion group 41 due to thermal interference. Within 23, the temperature varies in the longitudinal direction.

そこで、実施形態では、熱が発生する引出部52bに隣接する発熱部群41(第1発熱部群41A)の抵抗発熱体40を、他の発熱部群41(第2発熱部群41B、第3発熱部群41C)の抵抗発熱体40より電気抵抗を大きくすることとした。ここで、引出部52bに隣接する抵抗発熱体40とは、図示面における引出部52bの直下に位置する抵抗発熱体40のことであり、図5によれば、第1発熱部群41Aに位置する抵抗発熱体40のことである。 Therefore, in the embodiment, the resistance heating element 40 of the heating element group 41 (first heating element group 41A) adjacent to the drawer portion 52b where heat is generated is replaced with another heating element group 41 (second heating element group 41B, first). It was decided to make the electric resistance larger than the resistance heating element 40 of the 3 heating unit group 41C). Here, the resistance heating element 40 adjacent to the drawer portion 52b is a resistance heating element 40 located directly below the drawer portion 52b on the illustrated surface, and according to FIG. 5, it is located in the first heating unit group 41A. It is a resistance heating element 40.

換言すると、最も抵抗発熱体40の数が多い第2発熱部群41Bの個別電極52が端子62に引き出される側(すなわち、第1端30a側)の発熱部群41を、反対側(すなわち、第2端30b側)の発熱部群41より電気抵抗を大きくすることとした。 In other words, the heating element group 41 on the side where the individual electrode 52 of the second heating element group 41B having the largest number of resistance heating elements 40 is pulled out to the terminal 62 (that is, the first end 30a side) is on the opposite side (that is, that is). It was decided to make the electric resistance larger than that of the heating element group 41 on the second end 30b side).

そのため、引出部52bに隣接する抵抗発熱体40に供給される電流が減少し、上記の式(2)に示すように、引出部52bに隣接する抵抗発熱体40のジュール熱Qが減少する。それにより、引出部52bに隣接する抵抗発熱体40のジュール熱Qと引出部52bからの発熱との合計を、別の抵抗発熱体40のジュール熱Qに近づけることができる。したがって、実施形態によれば、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 Therefore, the current supplied to the resistance heating element 40 adjacent to the drawer portion 52b is reduced, and as shown in the above equation (2), the Joule heat Q of the resistance heating element 40 adjacent to the drawer portion 52b is reduced. Thereby, the sum of the Joule heat Q of the resistance heating element 40 adjacent to the drawer portion 52b and the heat generated from the drawer portion 52b can be brought close to the Joule heat Q of another resistance heating element 40. Therefore, according to the embodiment, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

たとえば、第1端30a側の抵抗発熱体40の電気抵抗を、第2端30b側の抵抗発熱体40の電気抵抗より所定の割合(たとえば、35%)小さくするとよい。 For example, the electric resistance of the resistance heating element 40 on the first end 30a side may be made smaller than the electric resistance of the resistance heating element 40 on the second end 30b side by a predetermined ratio (for example, 35%).

また、第1端30a側と第2端30b側との間に位置する抵抗発熱体40の電気抵抗は、第1端30a側と第2端30b側の抵抗発熱体40からの距離に応じて段階的に調整してもよい。これにより、複数の発熱部群41における温度のばらつきを効果的に低減することができる。 Further, the electrical resistance of the resistance heating element 40 located between the first end 30a side and the second end 30b side depends on the distance from the resistance heating element 40 on the first end 30a side and the second end 30b side. It may be adjusted step by step. Thereby, the temperature variation in the plurality of heat generating unit groups 41 can be effectively reduced.

実施形態において、特定の抵抗発熱体40の電気抵抗を別の抵抗発熱体40の電気抵抗より小さくする手段としては、別の抵抗発熱体40より特定の抵抗発熱体40の長さを短くしてもよいし、断面積(すなわち、幅×厚み)を大きくしてもよい。また、特定の抵抗発熱体40を、別の抵抗発熱体40よりも電気抵抗の小さい材料で構成してもよい。 In the embodiment, as a means for making the electric resistance of the specific resistance heating element 40 smaller than the electric resistance of another resistance heating element 40, the length of the specific resistance heating element 40 is made shorter than that of another resistance heating element 40. Alternatively, the cross-sectional area (that is, width × thickness) may be increased. Further, the specific resistance heating element 40 may be made of a material having a smaller electric resistance than another resistance heating element 40.

たとえば、別の抵抗発熱体40より特定の抵抗発熱体40の長さを短くする場合、ヒータ23に設けられる、それぞれの抵抗発熱体40の中心が、基板30の長手方向に沿って揃って配置されるとよい(すなわち、中心の長手方向に沿った中央揃え)。これにより、シートSの通過方向(すなわち、基板30の短手方向)におけるヒータ23の温度分布を均一に近づけることができる。なお、長手方向に沿って揃って配置されているとは、全ての抵抗発熱体40の中心が揃っていなくてもよく、少なくとも全体の80%が揃っていればよい。また、抵抗発熱体40の中心は、平面写真を撮影し、画像処理により抵抗発熱体40の面積重心を求めればよい。 For example, when the length of a specific resistance heating element 40 is made shorter than that of another resistance heating element 40, the centers of the respective resistance heating elements 40 provided in the heater 23 are aligned along the longitudinal direction of the substrate 30. It should be (ie, centered along the longitudinal direction of the center). As a result, the temperature distribution of the heater 23 in the passing direction of the sheet S (that is, the lateral direction of the substrate 30) can be made uniform. It should be noted that the fact that they are aligned along the longitudinal direction means that the centers of all the resistance heating elements 40 do not have to be aligned, and at least 80% of the total may be aligned. Further, for the center of the resistance heating element 40, a plan photograph may be taken and the area center of gravity of the resistance heating element 40 may be obtained by image processing.

また、個別電極52の引出部52bに隣接する抵抗発熱体40(簡易的に抵抗発熱体40aとする。)の長さを他の抵抗発熱体40(簡易的に抵抗発熱体40bとする。)より短くする場合、図6に示すように、引出部52bに隣接する抵抗発熱体40aを、他の抵抗発熱体40bより個別電極52の引出部52bから離れるように配置してもよい。図6は、実施形態に係るヒータ23における抵抗発熱体40の配置例について説明するための図である。なお、ここで、引出部52bに隣接する抵抗発熱体40aが、他の抵抗発熱体40bより個別電極52の引出部52bから離れるとは、引出部52bが基板30の長手方向に存在していた場合において、基板30の短手方向における抵抗発熱体40までの距離を比較したものである。 Further, the length of the resistance heating element 40 (simply referred to as the resistance heating element 40a) adjacent to the extraction portion 52b of the individual electrode 52 is set to the length of another resistance heating element 40 (simply referred to as the resistance heating element 40b). To make it shorter, as shown in FIG. 6, the resistance heating element 40a adjacent to the extraction portion 52b may be arranged so as to be separated from the extraction portion 52b of the individual electrode 52 by the other resistance heating element 40b. FIG. 6 is a diagram for explaining an arrangement example of the resistance heating element 40 in the heater 23 according to the embodiment. Here, the fact that the resistance heating element 40a adjacent to the extraction portion 52b is separated from the extraction portion 52b of the individual electrode 52 from the other resistance heating element 40b means that the extraction portion 52b exists in the longitudinal direction of the substrate 30. In this case, the distances to the resistance heating element 40 in the lateral direction of the substrate 30 are compared.

これにより、引出部52bと、かかる引出部52bに隣接する抵抗発熱体40aとの距離が離れる。換言すれば、抵抗発熱体40aにおけるそれぞれ中心を結ぶ線が、その他の抵抗発熱体40bの中心を結ぶ線よりもコモン電極54に近づく。それにより、第1発熱部群41Aを構成する抵抗発熱体40aの発熱領域が、コモン電極54側に近づくこととなる。その結果、抵抗発熱体40aにおけるそれぞれ中心を結ぶ線上の温度分布(換言すると、図2における加圧領域N上の温度分布)において、基板30の短手方向(すなわち、シートSの通過方向)におけるヒータ23の温度分布を均一に近づけることができる。 As a result, the distance between the drawer portion 52b and the resistance heating element 40a adjacent to the drawer portion 52b is increased. In other words, the lines connecting the centers of the resistance heating elements 40a are closer to the common electrode 54 than the lines connecting the centers of the other resistance heating elements 40b. As a result, the heat generation region of the resistance heating element 40a constituting the first heat generation unit group 41A approaches the common electrode 54 side. As a result, in the temperature distribution on the line connecting the centers of the resistance heating element 40a (in other words, the temperature distribution on the pressurized region N in FIG. 2), in the lateral direction of the substrate 30 (that is, the passing direction of the sheet S). The temperature distribution of the heater 23 can be made uniform.

また、実施形態では、複数の個別電極51〜53およびコモン電極54が繋がれる端子61〜64を、全て基板30の第1端30a側に配置している。これにより、ヒータ23の長手方向における幅を縮小することができることから、ヒータ23を小型化することができる。 Further, in the embodiment, the terminals 61 to 64 to which the plurality of individual electrodes 51 to 53 and the common electrodes 54 are connected are all arranged on the first end 30a side of the substrate 30. As a result, the width of the heater 23 in the longitudinal direction can be reduced, so that the heater 23 can be miniaturized.

[各種変形例]
つづいて、ヒータ23の各種変形例について、図7〜図9を参照しながら説明する。図7は、実施形態の変形例1に係るヒータ23を模式的に示す底面図である。図8は、実施形態の変形例1に係るヒータ23における温度ばらつきの要因を説明するための図である。なお、以下の説明では、上述の実施形態と同一の部位には同一の符号を付することにより重複する説明を省略する。
[Various variants]
Subsequently, various modifications of the heater 23 will be described with reference to FIGS. 7 to 9. FIG. 7 is a bottom view schematically showing the heater 23 according to the first modification of the embodiment. FIG. 8 is a diagram for explaining a factor of temperature variation in the heater 23 according to the first modification of the embodiment. In the following description, duplicate description will be omitted by assigning the same reference numerals to the same parts as those in the above-described embodiment.

図7に示す変形例1は、個別電極53およびコモン電極54の引出部53b、54bが、基板30の第1端30a側ではなく第2端30b側に向かって延びている点が実施形態と異なる。なお、個別電極51、52の引出部51b、52bは、実施形態と同様に基板30の第1端30a側に向かって延びている。 In the first modification shown in FIG. 7, the individual electrodes 53 and the drawer portions 53b and 54b of the common electrode 54 extend toward the second end 30b side of the substrate 30 instead of the first end 30a side. different. The extraction portions 51b and 52b of the individual electrodes 51 and 52 extend toward the first end 30a side of the substrate 30 as in the embodiment.

このように、基板30の長手方向における両端側、具体的には、個別電極51、52が第1端30a側、個別電極53とコモン電極54が第2端30b側にそれぞれ向かって延びている構成であることにより、ヒータ23の長手方向における両側のスペースを効率的に利用することができる。 As described above, both ends of the substrate 30 in the longitudinal direction, specifically, the individual electrodes 51 and 52 extend toward the first end 30a side, and the individual electrodes 53 and the common electrode 54 extend toward the second end 30b side, respectively. Due to the configuration, the spaces on both sides of the heater 23 in the longitudinal direction can be efficiently used.

一方で、図8に示すように、変形例1に係るヒータ23では、実施形態と同様、1つの発熱部群41において、発熱部群41の中央部に電流が集中する。 On the other hand, as shown in FIG. 8, in the heater 23 according to the first modification, the current is concentrated in the central portion of the heat generating portion group 41 in one heat generating portion group 41 as in the embodiment.

これにより、上述したように、発熱部群41の中央部に位置する抵抗発熱体40は、端部に位置する抵抗発熱体40より低温化してしまう。 As a result, as described above, the resistance heating element 40 located at the center of the heating unit group 41 becomes colder than the resistance heating element 40 located at the end.

そこで、変形例1では、実施形態と同じように、同じ発熱部群41において中央部に位置する抵抗発熱体40の電気抵抗を、端部に位置する抵抗発熱体40の電気抵抗より小さくする。 Therefore, in the first modification, the electric resistance of the resistance heating element 40 located at the center of the same heating element group 41 is made smaller than the electric resistance of the resistance heating element 40 located at the end, as in the embodiment.

これにより、中央部に位置する抵抗発熱体40に供給される電流が大きくなり、上記の式(2)で示すように、中央部に位置する抵抗発熱体40のジュール熱Qが増加する。その一方で、引出部52bへ流れる電流が増加し、引出部52bの配線ロスが大きくなるものの、ジュール熱Qの増加に対する引出部52bの配線ロスの影響は小さくなり、端部に位置する抵抗発熱体40のジュール熱Qに近づけることができる。したがって、変形例1によれば、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 As a result, the current supplied to the resistance heating element 40 located in the central portion increases, and as shown by the above equation (2), the Joule heat Q of the resistance heating element 40 located in the central portion increases. On the other hand, although the current flowing through the extraction portion 52b increases and the wiring loss of the extraction portion 52b increases, the influence of the wiring loss of the extraction portion 52b on the increase in Joule heat Q becomes small, and the resistance heat generated at the end portion is generated. It can approach the Joule heat Q of the body 40. Therefore, according to the first modification, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

また、変形例1に係るヒータ23では、実施形態と同様、発熱部群41の数が最も多い第2発熱部群41Bの個別電極52に、他の個別電極51、53より電流が多く流れる。これにより、個別電極52の引出部52bで熱が発生してしまう。 Further, in the heater 23 according to the first modification, as in the embodiment, a larger current flows through the individual electrodes 52 of the second heat generating unit group 41B, which has the largest number of heat generating unit groups 41, than the other individual electrodes 51 and 53. As a result, heat is generated at the extraction portion 52b of the individual electrode 52.

そこで、変形例1では、第1端30a側の発熱部群41の電気抵抗を大きくする。ここで、発熱部群41は、基板30の第1端30a側から順に第1発熱部群41A、第2発熱部群41B、第3発熱部群41Cが位置している。第1発熱部群41Aは個別電極51に繋がり、第2発熱部群41Bは、個別電極52に繋がり、第3発熱部群41Cは、個別電極53に繋がっている。よって、前述の記載を換言すれば、第1発熱部群41Aの電気抵抗を大きくする。 Therefore, in the first modification, the electric resistance of the heat generating portion group 41 on the first end 30a side is increased. Here, in the heat-generating portion group 41, the first heat-generating portion group 41A, the second heat-generating portion group 41B, and the third heat-generating portion group 41C are located in this order from the first end 30a side of the substrate 30. The first heat-generating part group 41A is connected to the individual electrode 51, the second heat-generating part group 41B is connected to the individual electrode 52, and the third heat-generating part group 41C is connected to the individual electrode 53. Therefore, in other words, the electric resistance of the first heat generating unit group 41A is increased.

これにより、引出部52bに隣接する抵抗発熱体40に供給される電流が減少し、上記の式(2)に示すように、引出部52bに隣接する抵抗発熱体40のジュール熱Qが減少する。それにより、引出部52bに隣接する抵抗発熱体40のジュール熱Qと引出部52bからの発熱との合計を、別の抵抗発熱体40のジュール熱Qに近づけることができる。したがって、変形例1によれば、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 As a result, the current supplied to the resistance heating element 40 adjacent to the drawer portion 52b is reduced, and as shown in the above equation (2), the Joule heat Q of the resistance heating element 40 adjacent to the drawer portion 52b is reduced. .. Thereby, the sum of the Joule heat Q of the resistance heating element 40 adjacent to the drawer portion 52b and the heat generated from the drawer portion 52b can be brought close to the Joule heat Q of another resistance heating element 40. Therefore, according to the first modification, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

さらに、変形例1では、図8に示すように、第3発熱部群41Cから第2端30b側に向かって延びる個別電極53の引出部53bの長さ(軸方向の距離)に制限がある。そこで、変形例1では、かかる個別電極53が繋がる第3発熱部群41Cにおいて、第2端30b側の抵抗発熱体40の電気抵抗を、第1端30a側の抵抗発熱体40の電気抵抗より大きくする。 Further, in the first modification, as shown in FIG. 8, there is a limitation on the length (distance in the axial direction) of the drawer portion 53b of the individual electrode 53 extending from the third heat generating portion group 41C toward the second end 30b side. .. Therefore, in the first modification, in the third heating element group 41C to which the individual electrodes 53 are connected, the electric resistance of the resistance heating element 40 on the second end 30b side is set from the electric resistance of the resistance heating element 40 on the first end 30a side. Enlarge.

これにより、個別電極53の引出部53bの長さに制限がある場合でも、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 As a result, even when the length of the extraction portion 53b of the individual electrode 53 is limited, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

図9は、実施形態の変形例2に係るヒータ23を模式的に示す底面図である。図9に示すヒータ23では、個別電極51〜53およびコモン電極54を抵抗発熱体40に接続する箇所が上述の実施形態と異なる。 FIG. 9 is a bottom view schematically showing the heater 23 according to the second modification of the embodiment. In the heater 23 shown in FIG. 9, the location where the individual electrodes 51 to 53 and the common electrode 54 are connected to the resistance heating element 40 is different from the above-described embodiment.

具体的には、個別電極51の接続部51aは、コモン電極54に向かって基板30の短手方向に櫛歯状に突出する突出部51a1を有する。個別電極52の接続部52aは、コモン電極54に向かって基板30の短手方向に櫛歯状に突出する突出部52a1を有する。 Specifically, the connecting portion 51a of the individual electrodes 51 has a protruding portion 51a1 that projects toward the common electrode 54 in a comb-teeth shape in the lateral direction of the substrate 30. The connecting portion 52a of the individual electrode 52 has a protruding portion 52a1 that projects in a comb-like shape in the lateral direction of the substrate 30 toward the common electrode 54.

個別電極53の接続部53aは、コモン電極54に向かって基板30の短手方向に櫛歯状に突出する突出部53a1を有する。コモン電極54の接続部54aは、個別電極51〜53に向かって基板30の短手方向に櫛歯状に突出する突出部54a1を有する。 The connecting portion 53a of the individual electrode 53 has a protruding portion 53a1 protruding toward the common electrode 54 in a comb-teeth shape in the lateral direction of the substrate 30. The connecting portion 54a of the common electrode 54 has a protruding portion 54a1 that projects in a comb-teeth shape in the lateral direction of the substrate 30 toward the individual electrodes 51 to 53.

また、第1発熱部群41Aに属する抵抗発熱体40は、突出部51a1と突出部54a1との間に配置され、第2発熱部群41Bに属する抵抗発熱体40は、突出部52a1と突出部54a1との間に配置され、第3発熱部群41Cに属する抵抗発熱体40は、突出部53a1と突出部54a1との間に配置される。 Further, the resistance heating element 40 belonging to the first heat generating portion group 41A is arranged between the protruding portion 51a1 and the protruding portion 54a1, and the resistance heating element 40 belonging to the second heating portion group 41B is arranged between the protruding portion 52a1 and the protruding portion 54a1. The resistance heating element 40, which is arranged between the protrusions 54a1 and belongs to the third heating unit group 41C, is arranged between the protrusions 53a1 and the protrusions 54a1.

そして、すべての抵抗発熱体40は、突出部51a1〜54a1と基板30の長手方向の両側で接続される。すなわち、抵抗発熱体40を流れる電流は、上述の実施形態のように基板30の短手方向に沿ってではなく、基板30の長手方向に沿って流れる。 Then, all the resistance heating elements 40 are connected to the protrusions 51a1 to 54a1 on both sides in the longitudinal direction of the substrate 30. That is, the current flowing through the resistance heating element 40 flows not along the lateral direction of the substrate 30 as in the above-described embodiment, but along the longitudinal direction of the substrate 30.

ここまで説明した変形例2に係るヒータ23において、特定の抵抗発熱体40の電気抵抗を別の抵抗発熱体40の電気抵抗より小さくする手段としては、特定の抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔を、別の抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔より狭くするとよい。 In the heater 23 according to the second modification described so far, as a means for making the electric resistance of the specific resistance heating element 40 smaller than the electric resistance of another resistance heating element 40, a protrusion connected to the specific resistance heating element 40 is used. The distance between the portions 51a1 to 54a1 may be narrower than the distance between the protruding portions 51a1 to 54a1 connected to another resistance heating element 40.

たとえば、変形例2では、同じ発熱部群41において中央部に位置する抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔を、端部に位置する抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔より小さくする。 For example, in the second modification, the protrusions 51a1 to 54a1 connected to the resistance heating element 40 located at the center of the same heating element group 41 are spaced apart from each other by the protrusions connected to the resistance heating element 40 located at the end. Make it smaller than the distance between the parts 51a1 to 54a1.

これにより、同じ発熱部群41において中央部に位置する抵抗発熱体40の長さ(ここでは、基板30の長手方向に沿った長さ)を、端部に位置する抵抗発熱体40の長さよりも短くすることができる。 As a result, in the same heating element group 41, the length of the resistance heating element 40 located at the center (here, the length along the longitudinal direction of the substrate 30) is set from the length of the resistance heating element 40 located at the end. Can also be shortened.

したがって、変形例2では、実施形態と同じように、同じ発熱部群41において中央部に位置する抵抗発熱体40の電気抵抗を、端部に位置する抵抗発熱体40の電気抵抗より小さくすることができる。 Therefore, in the second modification, as in the embodiment, the electric resistance of the resistance heating element 40 located at the center of the same heating element group 41 is made smaller than the electric resistance of the resistance heating element 40 located at the end. Can be done.

また、図9に示すように、個別電極52の引出部52bに隣接する抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔を、別の抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔よりも狭くする。 Further, as shown in FIG. 9, the distance between the protrusions 51a1 to 54a1 connected to the resistance heating element 40 adjacent to the extraction portion 52b of the individual electrode 52 is set to the protrusion 51a1 connected to another resistance heating element 40. Make it narrower than the distance between ~ 54a1.

これにより、個別電極52の引出部52bに隣接する抵抗発熱体40aの長さ(ここでは、基板30の長手方向に沿った長さ)を、他の抵抗発熱体40bの長さよりも短くすることができる。したがって、変形例2によれば、個別電極52の引出部52bに隣接する抵抗発熱体40aの電気抵抗を、他の抵抗発熱体40bよりも小さくすることができる。 As a result, the length of the resistance heating element 40a adjacent to the extraction portion 52b of the individual electrode 52 (here, the length along the longitudinal direction of the substrate 30) is made shorter than the length of the other resistance heating elements 40b. Can be done. Therefore, according to the second modification, the electric resistance of the resistance heating element 40a adjacent to the extraction portion 52b of the individual electrode 52 can be made smaller than that of the other resistance heating elements 40b.

なお、変形例2に係るヒータ23において、特定の抵抗発熱体40の電気抵抗を別の抵抗発熱体40の電気抵抗より小さくする手段は、特定の抵抗発熱体40に接続される突出部51a1〜54a1同士の間隔を狭くする場合に限られない。 In the heater 23 according to the second modification, the means for reducing the electric resistance of the specific resistance heating element 40 to be smaller than the electric resistance of another resistance heating element 40 is the protruding portions 51a1 to connected to the specific resistance heating element 40. It is not limited to the case where the distance between 54a1 is narrowed.

たとえば、特定の抵抗発熱体40の断面積(すなわち、幅×厚み)を別の抵抗発熱体40の断面積より大きくしてもよい。なお、ここで述べる「幅」とは、抵抗発熱体40における基板30の短手方向に沿った長さのことである。これによっても、特定の抵抗発熱体40の電気抵抗を別の抵抗発熱体40の電気抵抗より小さくすることができる。 For example, the cross-sectional area (that is, width × thickness) of a specific resistance heating element 40 may be larger than the cross-sectional area of another resistance heating element 40. The "width" described here is the length of the resistance heating element 40 along the lateral direction of the substrate 30. Also by this, the electric resistance of the specific resistance heating element 40 can be made smaller than the electric resistance of another resistance heating element 40.

また、特定の抵抗発熱体40を別の抵抗発熱体40よりも電気抵抗の小さい材料で構成してもよい。これによっても、特定の抵抗発熱体40の電気抵抗を別の抵抗発熱体40の電気抵抗より小さくすることができる。 Further, the specific resistance heating element 40 may be made of a material having a smaller electric resistance than another resistance heating element 40. Also by this, the electric resistance of the specific resistance heating element 40 can be made smaller than the electric resistance of another resistance heating element 40.

以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上述の実施形態において、第2発熱部群41Bには8つの抵抗発熱体40が設けられ、第1発熱部群41Aおよび第3発熱部群41Cには4つの抵抗発熱体40が設けられた例について示したが、それぞれの発熱部群41に設けられる抵抗発熱体40の数は上述の例に限られない。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various changes can be made without departing from the spirit of the present disclosure. For example, in the above embodiment, the second heating element group 41B is provided with eight resistance heating elements 40, and the first heating element group 41A and the third heating element group 41C are provided with four resistance heating elements 40. However, the number of resistance heating elements 40 provided in each heating unit group 41 is not limited to the above example.

また、上述の実施形態において、ヒータ23の断面構造は、図4の例に限られない。たとえば、個別電極51〜53やコモン電極54が、異なる金属材料(たとえば、AgやAlなど)による積層構造であってもよい。 Further, in the above-described embodiment, the cross-sectional structure of the heater 23 is not limited to the example of FIG. For example, the individual electrodes 51 to 53 and the common electrode 54 may have a laminated structure made of different metal materials (for example, Ag, Al, etc.).

かかる積層構造により、個別電極51〜53やコモン電極54の電気抵抗を低減することができることから、ヒータ23の消費電力を低減することができる。 With such a laminated structure, the electric resistance of the individual electrodes 51 to 53 and the common electrode 54 can be reduced, so that the power consumption of the heater 23 can be reduced.

以上のように、実施形態に係る加熱器(ヒータ23)は、第1端30aから第2端30bにかけて延びる基板30と、基板30の長手方向における第1端30a側または第2端30b側に位置する複数の端子61〜63と、基板30の長手方向に沿って並んで位置する複数の発熱部(抵抗発熱体40)を有し、複数の発熱部(抵抗発熱体40)が同一の端子61〜63に繋がる発熱部群41と、を備える。また、発熱部群41において中央部に位置する発熱部(抵抗発熱体40)は、端部に位置する発熱部(抵抗発熱体40)より電気抵抗が小さい。これにより、発熱部群41の中央部に電流が集中する場合でも、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 As described above, the heater (heater 23) according to the embodiment is located on the substrate 30 extending from the first end 30a to the second end 30b and on the first end 30a side or the second end 30b side in the longitudinal direction of the substrate 30. It has a plurality of terminals 61 to 63 located and a plurality of heat generating parts (resistive heating element 40) located side by side along the longitudinal direction of the substrate 30, and the plurality of heat generating parts (resistive heating element 40) are the same terminal. A heating element group 41 connected to 61 to 63 is provided. Further, in the heating element group 41, the heating element (resistive heating element 40) located at the center has a smaller electric resistance than the heating element (resistor heating element 40) located at the end. As a result, even when the current is concentrated in the central portion of the heating unit group 41, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

また、実施形態に係る加熱器(ヒータ23)は、複数の発熱部群41と、全ての発熱部群41を同一の端子64に繋げるコモン電極54と、それぞれの発熱部群41を同一の端子61〜63に繋げる複数の個別電極51〜53と、を備える。また、最も発熱部(抵抗発熱体40)の数が多い発熱部群41(第2発熱部群41B)の個別電極52が端子62に引き出される側を基板30の第1端30a側とした場合、複数の発熱部群41のうち、基板30の第1端30a側に位置する発熱部群41の発熱部(抵抗発熱体40)は、基板30の第2端30b側に位置する発熱部群41の発熱部(抵抗発熱体40)より電気抵抗が大きい。これにより、個別電極52の引出部52bから熱が発生する場合でも、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 Further, in the heater (heater 23) according to the embodiment, a plurality of heat generating part groups 41, a common electrode 54 connecting all the heat generating parts groups 41 to the same terminal 64, and each heat generating part group 41 are connected to the same terminal. A plurality of individual electrodes 51 to 53 connected to 61 to 63 are provided. Further, when the side where the individual electrode 52 of the heat generating part group 41 (second heat generating part group 41B) having the largest number of heat generating parts (resisting heat generating part 40) is pulled out to the terminal 62 is the first end 30a side of the substrate 30. Of the plurality of heat generating parts groups 41, the heat generating part (resisting heat generating body 40) of the heat generating part group 41 located on the first end 30a side of the substrate 30 is the heat generating part group located on the second end 30b side of the substrate 30. The electric resistance is larger than that of the heat generating portion (resistance heating element 40) of 41. As a result, even when heat is generated from the extraction portion 52b of the individual electrode 52, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

また、実施形態に係る加熱器(ヒータ23)において、全ての端子61〜64は、基板30の第1端30a側に位置する。これにより、ヒータ23の長手方向における幅を縮小することができることから、ヒータ23を小型化することができる。 Further, in the heater (heater 23) according to the embodiment, all the terminals 61 to 64 are located on the first end 30a side of the substrate 30. As a result, the width of the heater 23 in the longitudinal direction can be reduced, so that the heater 23 can be miniaturized.

また、実施形態に係る加熱器(ヒータ23)において、基板30の第1端30a側から順に第1発熱部群41Aと、第2発熱部群41Bと、第3発熱部群41Cとが位置しており、第1発熱部群41Aに繋がる個別電極51と、第2発熱部群41Bに繋がる個別電極52とが基板30の第1端30a側に引き出され、第3発熱部群41Cに繋がる個別電極53と、コモン電極54とが基板30の第2端30b側に引き出される。これにより、ヒータ23の長手方向における両側のスペースを効率的に利用することができる。 Further, in the heater (heater 23) according to the embodiment, the first heat generating part group 41A, the second heat generating part group 41B, and the third heat generating part group 41C are located in order from the first end 30a side of the substrate 30. The individual electrode 51 connected to the first heat generating part group 41A and the individual electrode 52 connected to the second heat generating part group 41B are pulled out to the first end 30a side of the substrate 30 and are individually connected to the third heat generating part group 41C. The electrode 53 and the common electrode 54 are pulled out toward the second end 30b of the substrate 30. As a result, the spaces on both sides of the heater 23 in the longitudinal direction can be efficiently used.

また、実施形態に係る加熱器(ヒータ23)において、第3発熱部群41Cにおいて、基板30の第2端30b側に位置する発熱部(抵抗発熱体40)は、基板30の第1端30a側に位置する発熱部(抵抗発熱体40)より電気抵抗が大きい。これにより、個別電極53の引出部53bの長さに制限がある場合でも、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 Further, in the heater (heater 23) according to the embodiment, in the third heating unit group 41C, the heating element (resistor heating element 40) located on the second end 30b side of the substrate 30 is the first end 30a of the substrate 30. The electrical resistance is larger than that of the heating element (resistive heating element 40) located on the side. As a result, even when the length of the extraction portion 53b of the individual electrode 53 is limited, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

また、実施形態に係る加熱器(ヒータ23)において、最も発熱部(抵抗発熱体40)の数が多い発熱部群41(第2発熱部群41B)の個別電極52に隣接する発熱部(抵抗発熱体40)は、他の発熱部(抵抗発熱体40)より電気抵抗が大きい。これにより、個別電極52の引出部52bからジュール熱が発生する場合でも、ヒータ23内の複数の抵抗発熱体40における温度のばらつきを低減することができる。 Further, in the heater (heater 23) according to the embodiment, the heating element (resistance) adjacent to the individual electrode 52 of the heating element group 41 (second heating element group 41B) having the largest number of heating elements (resisting element 40). The heating element 40) has a higher electrical resistance than the other heating elements (resistance heating element 40). As a result, even when Joule heat is generated from the extraction portion 52b of the individual electrode 52, it is possible to reduce the temperature variation in the plurality of resistance heating elements 40 in the heater 23.

また、実施形態に係る加熱器(ヒータ23)において、最も発熱部(抵抗発熱体40)の数が多い発熱部群41(第2発熱部群41B)の個別電極52に隣接する発熱部(抵抗発熱体40)は、他の発熱部(抵抗発熱体40)より当該個別電極52から離れるように位置する。これにより、シートSの通過方向におけるヒータ23の温度分布を均一に近づけることができる。 Further, in the heater (heater 23) according to the embodiment, the heating element (resistor) adjacent to the individual electrode 52 of the heating element group 41 (second heating element group 41B) having the largest number of heating elements (resisting heating element 40). The heating element 40) is located so as to be separated from the individual electrode 52 by the other heating element (resistive heating element 40). As a result, the temperature distribution of the heater 23 in the passing direction of the sheet S can be made uniform.

また、実施形態に係る加熱器(ヒータ23)において、電気抵抗の小さい発熱部(抵抗発熱体40)は、電気抵抗の大きい発熱部(抵抗発熱体40)より長さが短い。これにより、全ての抵抗発熱体40において同じ材料の材料を用いた場合でも、電気抵抗の異なる抵抗発熱体40を構成することができる。 Further, in the heater (heater 23) according to the embodiment, the heating element (resistor heating element 40) having a small electric resistance has a shorter length than the heating element (resistor heating element 40) having a large electric resistance. As a result, even when the same material is used for all the resistance heating elements 40, the resistance heating elements 40 having different electric resistances can be formed.

また、実施形態に係る加熱器(ヒータ23)において、全ての発熱部(抵抗発熱体40)の中央部(中心)は、長手方向に沿って揃って配置される。これにより、シートSの通過方向(すなわち、基板30の短手方向)におけるヒータ23の温度分布を均一にすることができる。 Further, in the heater (heater 23) according to the embodiment, the central portions (centers) of all the heat generating portions (resistive heating elements 40) are arranged so as to be aligned along the longitudinal direction. As a result, the temperature distribution of the heater 23 in the passing direction of the sheet S (that is, the lateral direction of the substrate 30) can be made uniform.

また、実施形態に係る加熱器(ヒータ23)において、電気抵抗の小さい発熱部(抵抗発熱体40)は、電気抵抗の大きい発熱部(抵抗発熱体40)より断面積が大きい。これにより、全ての抵抗発熱体40において同じ材料の材料を用いた場合でも、電気抵抗の異なる抵抗発熱体40を形成することができる。 Further, in the heater (heater 23) according to the embodiment, the heating element (resistor heating element 40) having a small electric resistance has a larger cross-sectional area than the heating element (resistor heating element 40) having a large electric resistance. Thereby, even if the same material is used for all the resistance heating elements 40, the resistance heating elements 40 having different electric resistances can be formed.

また、実施形態に係る定着装置7は、軸周りに回転しながら媒体(シートS)上のトナーを加熱する定着部材(定着ベルト21)と、軸周りに回転しながら定着部材(定着ベルト21)との間に加圧領域Nを形成し、加圧領域Nを通過する媒体(シートS)上のトナーを加圧する加圧部材(加圧ローラ22)と、定着部材(定着ベルト21)を挟んで加圧領域Nに対応して位置しており、定着部材(定着ベルト21)を加熱する加熱器(ヒータ23)とを備える。また、加熱器(ヒータ23)は、第1端30aから第2端30bにかけて延びる基板30と、基板30の長手方向における第1端30a側または第2端30b側に位置する複数の端子61〜63と、基板30の長手方向に沿って並んで位置する複数の発熱部(抵抗発熱体40)を有し、複数の発熱部(抵抗発熱体40)が同一の端子61〜63に繋がる発熱部群41と、を備える。そして、発熱部群41において中央部に位置する発熱部(抵抗発熱体40)は、端部に位置する発熱部(抵抗発熱体40)より電気抵抗が小さい。これにより、ヒータ23内の複数の抵抗発熱体40における温度のばらつきが低減された定着装置7を実現することができる。 Further, the fixing device 7 according to the embodiment includes a fixing member (fixing belt 21) that heats the toner on the medium (sheet S) while rotating around the axis, and a fixing member (fixing belt 21) that rotates around the axis. A pressure region N is formed between the two, and a pressure member (pressure roller 22) that pressurizes toner on a medium (sheet S) that passes through the pressure region N and a fixing member (fixing belt 21) are sandwiched between the two. It is located corresponding to the pressurizing region N and includes a heater (heater 23) for heating the fixing member (fixing belt 21). Further, the heater (heater 23) includes a substrate 30 extending from the first end 30a to the second end 30b, and a plurality of terminals 61 to 61 located on the first end 30a side or the second end 30b side in the longitudinal direction of the substrate 30. 63 and a plurality of heating elements (resisting heating elements 40) located side by side along the longitudinal direction of the substrate 30, and the plurality of heating elements (resisting heating elements 40) are connected to the same terminals 61 to 63. A group 41 and the like. The heating element (resisting heating element 40) located at the center of the heating element group 41 has a smaller electrical resistance than the heating element (resisting heating element 40) located at the end. As a result, it is possible to realize the fixing device 7 in which the temperature variation in the plurality of resistance heating elements 40 in the heater 23 is reduced.

今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. Indeed, the above embodiments can be embodied in a variety of forms. Further, the above-described embodiment may be omitted, replaced or changed in various forms without departing from the scope of the appended claims and the purpose thereof.

1 プリンタ
7 定着装置
21 定着ベルト(定着部材の一例)
22 加圧ローラ(加圧部材の一例)
23 ヒータ(加熱器の一例)
30 基板
30a 第1端
30b 第2端
31 断熱層
32 発熱接触部
40 抵抗発熱体(発熱部の一例)
41 発熱部群
41A 第1発熱部群
41B 第2発熱部群
41C 第3発熱部群
51〜53 個別電極
54 コモン電極
61〜64 端子
S シート(媒体の一例)
1 Printer 7 Fixing device 21 Fixing belt (an example of fixing member)
22 Pressurizing roller (example of pressurizing member)
23 Heater (an example of a heater)
30 Substrate 30a 1st end 30b 2nd end 31 Insulation layer 32 Heat-generating contact part 40 Resistance heating element (example of heating part)
41 Heat-generating part group 41A 1st heat-generating part group 41B 2nd heat-generating part group 41C 3rd heat-generating part group 51 to 53 Individual electrodes 54 Common electrodes 61 to 64 terminals S sheet (example of medium)

Claims (13)

第1端から第2端にかけて延びる基板と、
前記基板の長手方向における前記第1端側または前記第2端側に位置する複数の端子と、
前記基板の長手方向に沿って並んで位置する複数の発熱部を有し、前記複数の発熱部が同一の前記端子に繋がる発熱部群と、
を備え、
前記発熱部群において中央部に位置する前記発熱部は、端部に位置する前記発熱部より電気抵抗が小さい
加熱器。
A substrate extending from the first end to the second end,
A plurality of terminals located on the first end side or the second end side in the longitudinal direction of the substrate, and
A group of heat generating parts having a plurality of heat generating parts arranged side by side along the longitudinal direction of the substrate and connecting the plurality of heat generating parts to the same terminal.
With
The heating element located at the center of the heating element group is a heater having a smaller electric resistance than the heating element located at the end.
複数の前記発熱部群と、
全ての前記発熱部群を同一の前記端子に繋げるコモン電極と、
それぞれの前記発熱部群を同一の前記端子に繋げる複数の個別電極と、
を備え、
最も前記発熱部の数が多い前記発熱部群の前記個別電極が前記端子に引き出される側を前記基板の前記第1端側とした場合、
前記複数の発熱部群のうち、前記基板の前記第1端側に位置する前記発熱部群の前記発熱部は、前記基板の前記第2端側に位置する前記発熱部群の前記発熱部より電気抵抗が大きい
請求項1に記載の加熱器。
With the plurality of the heat generating parts group,
A common electrode that connects all the heat generating parts to the same terminal,
A plurality of individual electrodes connecting each of the heat generating parts to the same terminal,
With
When the side from which the individual electrodes of the heat generating part group having the largest number of heat generating parts are drawn out to the terminals is the first end side of the substrate.
Among the plurality of heat generating parts, the heat generating part of the heat generating part group located on the first end side of the substrate is from the heat generating part of the heat generating part group located on the second end side of the substrate. The heater according to claim 1, which has a large electrical resistance.
全ての前記端子は、前記基板の前記第1端側に位置する
請求項2に記載の加熱器。
The heater according to claim 2, wherein all the terminals are located on the first end side of the substrate.
前記基板の前記第1端側から順に第1発熱部群と、第2発熱部群と、第3発熱部群とが位置しており、
前記第1発熱部群に繋がる前記個別電極と、前記第2発熱部群に繋がる前記個別電極とが前記基板の前記第1端側に引き出され、
前記第3発熱部群に繋がる前記個別電極と、前記コモン電極とが前記基板の前記第2端側に引き出される
請求項2に記載の加熱器。
The first heat-generating part group, the second heat-generating part group, and the third heat-generating part group are located in this order from the first end side of the substrate.
The individual electrode connected to the first heat generating portion group and the individual electrode connected to the second heat generating portion group are pulled out to the first end side of the substrate.
The heater according to claim 2, wherein the individual electrode connected to the third heat generating portion group and the common electrode are pulled out to the second end side of the substrate.
前記第3発熱部群において、
前記基板の前記第2端側に位置する前記発熱部は、前記基板の前記第1端側に位置する前記発熱部より電気抵抗が大きい
請求項4に記載の加熱器。
In the third heat generating part group,
The heater according to claim 4, wherein the heating element located on the second end side of the substrate has a higher electrical resistance than the heating element located on the first end side of the substrate.
最も前記発熱部の数が多い前記発熱部群の前記個別電極に隣接する前記発熱部は、他の前記発熱部より電気抵抗が大きい
請求項2〜5のいずれか一つに記載の加熱器。
The heater according to any one of claims 2 to 5, wherein the heating portion adjacent to the individual electrode of the heating portion group having the largest number of heating portions has a higher electrical resistance than the other heating portions.
最も前記発熱部の数が多い前記発熱部群の前記個別電極に隣接する前記発熱部は、他の前記発熱部より当該個別電極から離れるように位置する
請求項2〜6のいずれか一つに記載の加熱器。
The heat-generating portion adjacent to the individual electrode of the heat-generating portion group having the largest number of heat-generating portions is one of claims 2 to 6 located so as to be separated from the individual electrode by the other heat-generating portion. The heater described.
電気抵抗の小さい前記発熱部は、電気抵抗の大きい前記発熱部より長さが短い
請求項1〜7のいずれか一つに記載の加熱器。
The heater according to any one of claims 1 to 7, wherein the heat generating portion having a small electric resistance has a shorter length than the heat generating portion having a large electric resistance.
全ての前記発熱部の中央部は、前記長手方向に沿って揃って配置される
請求項8に記載の加熱器。
The heater according to claim 8, wherein the central portions of all the heat generating portions are arranged so as to be aligned along the longitudinal direction.
電気抵抗の小さい前記発熱部は、電気抵抗の大きい前記発熱部より断面積が大きい
請求項1〜9のいずれか一つに記載の加熱器。
The heater according to any one of claims 1 to 9, wherein the heat generating portion having a small electric resistance has a larger cross-sectional area than the heat generating portion having a large electric resistance.
前記発熱部には、前記基板の短手方向に沿って電流が流れる
請求項1〜10のいずれか一つに記載の加熱器。
The heater according to any one of claims 1 to 10, wherein a current flows through the heat generating portion along the lateral direction of the substrate.
前記発熱部には、前記基板の長手方向に沿って電流が流れる
請求項1〜10のいずれか一つに記載の加熱器。
The heater according to any one of claims 1 to 10, wherein a current flows through the heat generating portion along the longitudinal direction of the substrate.
軸周りに回転しながら媒体上のトナーを加熱する定着部材と、
軸周りに回転しながら前記定着部材との間に加圧領域を形成し、前記加圧領域を通過する前記媒体上のトナーを加圧する加圧部材と、
前記定着部材を挟んで前記加圧領域に対応して位置しており、前記定着部材を加熱する加熱器と、
を備え、
前記加熱器は、
第1端から第2端にかけて延びる基板と、
前記基板の長手方向における前記第1端側または前記第2端側に位置する複数の端子と、
前記基板の長手方向に沿って並んで位置する複数の発熱部を有し、前記複数の発熱部が同一の前記端子に繋がる発熱部群と、
を備え、
前記発熱部群において中央部に位置する前記発熱部は、端部に位置する前記発熱部より電気抵抗が小さい
定着装置。
A fixing member that heats the toner on the medium while rotating around the axis,
A pressure member that forms a pressure region with the fixing member while rotating about an axis and pressurizes the toner on the medium that passes through the pressure region.
A heater located across the fixing member and corresponding to the pressure region and heating the fixing member, and a heater.
With
The heater
A substrate extending from the first end to the second end,
A plurality of terminals located on the first end side or the second end side in the longitudinal direction of the substrate, and
A group of heat generating parts having a plurality of heat generating parts arranged side by side along the longitudinal direction of the substrate and connecting the plurality of heat generating parts to the same terminal.
With
The heating unit located at the center of the heat generating group is a fixing device having a smaller electric resistance than the heat generating unit located at the end.
JP2020563319A 2018-12-27 2019-12-24 Heater and fixing device Active JP7092892B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018246307 2018-12-27
JP2018246307 2018-12-27
PCT/JP2019/050680 WO2020138105A1 (en) 2018-12-27 2019-12-24 Heater and fixing device

Publications (2)

Publication Number Publication Date
JPWO2020138105A1 true JPWO2020138105A1 (en) 2021-10-21
JP7092892B2 JP7092892B2 (en) 2022-06-28

Family

ID=71129484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020563319A Active JP7092892B2 (en) 2018-12-27 2019-12-24 Heater and fixing device

Country Status (3)

Country Link
JP (1) JP7092892B2 (en)
CN (1) CN113196869B (en)
WO (1) WO2020138105A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529067A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Structure of heating element and heater for office automation equipment
US20100142986A1 (en) * 2008-12-04 2010-06-10 Xerox Corporation Apparatus and method for a multi-tap series resistance heating element in a belt fuser
JP2016029480A (en) * 2014-07-24 2016-03-03 キヤノン株式会社 Heater and image heating device including the same
JP2016062024A (en) * 2014-09-19 2016-04-25 キヤノン株式会社 Heater and fixing device
JP2017097147A (en) * 2015-11-24 2017-06-01 キヤノン株式会社 Heater and fixation device
JP2017228525A (en) * 2016-06-20 2017-12-28 東芝テック株式会社 Heater and heating device
JP2018146822A (en) * 2017-03-07 2018-09-20 キヤノンファインテックニスカ株式会社 Heat generating device, image heating device, and image forming apparatus
JP2019012173A (en) * 2017-06-30 2019-01-24 キヤノン株式会社 Heater and fixation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529067A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Structure of heating element and heater for office automation equipment
US20100142986A1 (en) * 2008-12-04 2010-06-10 Xerox Corporation Apparatus and method for a multi-tap series resistance heating element in a belt fuser
JP2016029480A (en) * 2014-07-24 2016-03-03 キヤノン株式会社 Heater and image heating device including the same
JP2016062024A (en) * 2014-09-19 2016-04-25 キヤノン株式会社 Heater and fixing device
JP2017097147A (en) * 2015-11-24 2017-06-01 キヤノン株式会社 Heater and fixation device
JP2017228525A (en) * 2016-06-20 2017-12-28 東芝テック株式会社 Heater and heating device
JP2018146822A (en) * 2017-03-07 2018-09-20 キヤノンファインテックニスカ株式会社 Heat generating device, image heating device, and image forming apparatus
JP2019012173A (en) * 2017-06-30 2019-01-24 キヤノン株式会社 Heater and fixation device

Also Published As

Publication number Publication date
CN113196869A (en) 2021-07-30
JP7092892B2 (en) 2022-06-28
WO2020138105A1 (en) 2020-07-02
CN113196869B (en) 2023-06-30

Similar Documents

Publication Publication Date Title
US11067924B2 (en) Heating device, fixing device, and image forming apparatus
KR100572290B1 (en) Heaters having at least one cycle path resistor and image heating apparatus using them
US8841587B2 (en) Image heating apparatus and heater used in the apparatus
JP5572478B2 (en) Fixing apparatus and image forming apparatus
US11237503B2 (en) Heater configured to maintain adequate contact pressure with a contact terminal, heating device, fixing device, and image forming apparatus
JP5959974B2 (en) Heating apparatus and image forming apparatus
CN109407490B (en) Heater, fixing device, and image forming apparatus
US9802402B2 (en) Method of manufacturing heating device by screen printing
JP5447933B2 (en) Ceramic heater, heating device, image forming device
US10514639B2 (en) Heating unit, fixing device, and image forming apparatus
JP5074711B2 (en) Image heating apparatus and heating body used in the apparatus
US9395665B2 (en) Heating device, fixing device, and image forming apparatus
JP7092892B2 (en) Heater and fixing device
JP2019091003A (en) Heater and fixing device and image forming apparatus
US11906916B2 (en) Heating device, fixing device, drying device, laminator, and image forming apparatus
JP2009103881A (en) Heating element and heater
JP7122173B2 (en) Heater, fixing device and image forming device
JP2008076857A (en) Heating device and image forming apparatus
CN109407489B (en) Fixing device and image forming apparatus
JP7136688B2 (en) heater and fuser
WO2022229813A1 (en) Heating device, fixing device, and image forming apparatus
CN112947021A (en) Heating member, heating device, and image forming apparatus
JP2023147731A (en) Heating device, fixing device, and image forming apparatus
JP2021184017A (en) Fixing device and image forming apparatus
JP2020106699A (en) Heater and fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R150 Certificate of patent or registration of utility model

Ref document number: 7092892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150