JPWO2020137651A1 - Lubricating oil composition and its manufacturing method - Google Patents

Lubricating oil composition and its manufacturing method Download PDF

Info

Publication number
JPWO2020137651A1
JPWO2020137651A1 JP2020563097A JP2020563097A JPWO2020137651A1 JP WO2020137651 A1 JPWO2020137651 A1 JP WO2020137651A1 JP 2020563097 A JP2020563097 A JP 2020563097A JP 2020563097 A JP2020563097 A JP 2020563097A JP WO2020137651 A1 JPWO2020137651 A1 JP WO2020137651A1
Authority
JP
Japan
Prior art keywords
lubricating oil
oil composition
group
composition according
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020563097A
Other languages
Japanese (ja)
Other versions
JP7384175B2 (en
Inventor
隆二 門田
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2020137651A1 publication Critical patent/JPWO2020137651A1/en
Application granted granted Critical
Publication of JP7384175B2 publication Critical patent/JP7384175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/04Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/06Alkylated aromatic hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

基油と、フラーレンと、潤滑調整剤と、を含み、前記潤滑調整剤は、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレン、及びそれらの少なくとも1個の水素原子が置換基によって置換された化合物から選ばれる少なくとも一種である潤滑油組成物。It contains a base oil, fluorene, and a lubrication regulator, wherein the lubrication regulators include hydrindan, naphthalene, 1,2,3,4, -tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, cyclododecane, Lubrication, which is at least one selected from cyclododecane, dodecahydrofluorene, anthracene, phenanthracene, 9,10-dihydroanthracene, hexadecahydropyrene, and compounds in which at least one hydrogen atom thereof is substituted with a substituent. Oil composition.

Description

本発明は、潤滑油組成物及びその製造方法に関する。 The present invention relates to a lubricating oil composition and a method for producing the same.

近年、高速化、高効率化、高圧化及び小型化に伴い、自動車、工業機械等に使用される潤滑油には、高圧、高速、高荷重下で使用しても長時間にわたって充分に機械寿命を保証できる優れた潤滑性能が要求されている。このような要求に応じて、耐摩耗防止剤、極圧剤、潤滑性向上剤等の添加により、潤滑油組成物の潤滑特性を改善することが検討されている。 In recent years, with the increase in speed, efficiency, high pressure, and miniaturization, lubricating oils used in automobiles, industrial machines, etc. have a sufficient machine life for a long time even when used under high pressure, high speed, and high load. Excellent lubrication performance that can guarantee the above is required. In response to such demands, it has been studied to improve the lubrication characteristics of the lubricating oil composition by adding an anti-wear agent, an extreme pressure agent, a lubricity improver and the like.

例えば、特許文献1には、耐摩耗性を向上するため、ジアルキルジチオリン酸亜鉛を配合する潤滑油組成物が開示されている。しかし、ジアルキルジチオリン酸亜鉛は高温・高圧化での熱酸化安定性、及び水の混入による加水分解安定性が充分でないという問題がある。また、ジアルキルジチオリン酸亜鉛は硫黄を含むため、酸化されると大気汚染の原因となる硫黄酸化物(SO)が生成する。環境負荷の低い潤滑油組成物の開発が急務となっている。For example, Patent Document 1 discloses a lubricating oil composition containing zinc dialkyldithiophosphate in order to improve wear resistance. However, zinc dialkyldithiophosphate has a problem that the thermal oxidation stability at high temperature and high pressure and the hydrolysis stability due to the mixing of water are not sufficient. In addition, since zinc dialkyldithiophosphate contains sulfur, sulfur oxides (SO x ) that cause air pollution are generated when oxidized. There is an urgent need to develop a lubricating oil composition that has a low environmental impact.

また、特許文献2には、有機モリブデン摩擦調整剤と表面活性硫黄ドナー成分を含む潤滑剤組成物が開示されている。有機モリブデン摩擦調整剤としてモリブデンジチオカーバメートが使用されているが、モリブデンジチオカーバメートの摩擦低減効果は未だ不十分である。 Further, Patent Document 2 discloses a lubricant composition containing an organic molybdenum friction modifier and a surface active sulfur donor component. Molybdenum dithiocarbamate is used as an organic molybdenum friction modifier, but the friction reducing effect of molybdenum dithiocarbamate is still insufficient.

特開2018−123240号公報JP-A-2018-123240 特表2014−513173号公報Japanese Patent Application Laid-Open No. 2014-513173

本発明者らは、以上の事情に鑑みてなされたものであり、十分な耐摩耗性を有する潤滑油組成物を提供することを課題としている。 The present inventors have made this in view of the above circumstances, and an object of the present invention is to provide a lubricating oil composition having sufficient wear resistance.

本発明は、上記の課題を解決するため、以下の[1]〜[10]を含む。
[1] 基油と、フラーレンと、潤滑調整剤と、を含み、前記潤滑調整剤は、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレン、及びそれらの少なくとも1個の水素原子が置換基によって置換された化合物から選ばれる少なくとも一種である潤滑油組成物。
[2] 前記潤滑調整剤の置換基は、前記潤滑調整剤の置換基は、ハロゲン原子、ヒドロキシ基、カルボキシ基、アミノ基、炭素数1〜20の炭化水素基、炭素数1〜20のエーテル結合を有する基、炭素数1〜20のエステル結合を有する基、炭素数1〜20のジスルフィド結合を有する基、及びハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有する炭素数1〜20の基、から選ばれる少なくとも1種である前項[1]に記載の潤滑油組成物。
[3] 炭素数1〜20のエーテル結合を有する前記基、炭素数1〜20のエステル結合を有する前記基、及び炭素数1〜20のジスルフィド結合を有する前記基は、ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有する前項[2]に記載の潤滑油組成物。
[4] 前記潤滑調整剤における置換基の総分子量は、前記潤滑調整剤の分子量の60%以下である前項[1]〜[3]に記載の潤滑油組成物。
[5] 前記基油は合成油である前項[1]〜[4]のいずれかに記載の潤滑油組成物。
[6] 前記フラーレンは、C60を含む前項[1]〜[5]のいずれかに記載の潤滑油組成物。
[7] 前記潤滑調整剤を、基油100質量部に対し、1〜100質量部を含有する前項[1]〜[6]のいずれかに記載の潤滑油組成物。
[8] 前記フラーレンを、前記潤滑調整剤100質量部に対して、0.001〜1.000質量部を含有する前項[1]〜[7]のいずれかに記載の潤滑油組成物。
[9] 基油と、フラーレンと、潤滑調整剤と、を混合する混合工程を有する前項[1]〜[8]のいずれかに記載の潤滑油組成物の製造方法。
[10] さらに、前記混合工程後に、熱処理工程を含む前項[9]に記載の潤滑油組成物の製造方法。
[11] 前記熱処理工程における熱処理温度は、100〜250℃である前項[10]に記載の潤滑油組成物の製造方法。
The present invention includes the following [1] to [10] in order to solve the above problems.
[1] A base oil, fluorene, and a lubrication adjuster are included, and the lubrication adjuster includes hydrindan, naphthalene, 1,2,3,4-tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, and cyclo. Dodecatorien, cyclododecane, dodecahydrofluorene, anthracene, phenanthracene, 9,10-dihydroanthracene, hexadecahydropyrene, and at least one selected from compounds in which at least one hydrogen atom thereof is substituted with a substituent. Lubricating oil composition.
[2] The substituent of the lubrication regulator is a halogen atom, a hydroxy group, a carboxy group, an amino group, a hydrocarbon group having 1 to 20 carbon atoms, and an ether having 1 to 20 carbon atoms. A group having a bond, a group having an ester bond having 1 to 20 carbon atoms, a group having a disulfide bond having 1 to 20 carbon atoms, and a carbon number having at least one of a halogen atom, a hydroxy group, a carboxy group, and an amino group. The lubricating oil composition according to the preceding item [1], which is at least one selected from 1 to 20 groups.
[3] The group having an ether bond having 1 to 20 carbon atoms, the group having an ester bond having 1 to 20 carbon atoms, and the group having a disulfide bond having 1 to 20 carbon atoms are halogen atoms, hydroxy groups, and the like. The lubricating oil composition according to the preceding item [2], which has at least one of a carboxy group and an amino group.
[4] The lubricating oil composition according to the above items [1] to [3], wherein the total molecular weight of the substituents in the lubricating oil adjusting agent is 60% or less of the molecular weight of the lubricating oil adjusting agent.
[5] The lubricating oil composition according to any one of the above items [1] to [4], wherein the base oil is a synthetic oil.
[6] The fullerene is a lubricating oil composition according to any one of items [1] to [5] comprising C 60.
[7] The lubricating oil composition according to any one of the above items [1] to [6], wherein the lubricating oil adjusting agent is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the base oil.
[8] The lubricating oil composition according to any one of the preceding items [1] to [7], which contains 0.001 to 1.000 parts by mass of the fullerene with respect to 100 parts by mass of the lubricating regulator.
[9] The method for producing a lubricating oil composition according to any one of the preceding items [1] to [8], which comprises a mixing step of mixing a base oil, a fullerene, and a lubricant adjusting agent.
[10] The method for producing a lubricating oil composition according to the preceding item [9], which further comprises a heat treatment step after the mixing step.
[11] The method for producing a lubricating oil composition according to the preceding item [10], wherein the heat treatment temperature in the heat treatment step is 100 to 250 ° C.

本発明によれば、耐摩耗性が優れた潤滑油組成物を提供することができる。 According to the present invention, it is possible to provide a lubricating oil composition having excellent wear resistance.

以下、本発明の一実施形態を挙げて、詳細に説明する。なお、本発明はその要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, an embodiment of the present invention will be described in detail. It should be noted that the present invention can be carried out by appropriately modifying the gist without changing the gist thereof.

本実施形態で得られる潤滑油組成物は、基油と、フラーレンと、潤滑調整剤と、を含む。前記潤滑調整剤は、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレン、及びそれらの少なくとも1個の水素原子が置換基によって置換された化合物から選ばれる少なくとも一種である。
(基油)
本実施形態に係る潤滑油組成物の基油は、特に限定されるものではなく、通常潤滑油の基油として広く使用されている鉱油及び合成油が好適に用いられる。
The lubricating oil composition obtained in the present embodiment contains a base oil, a fullerene, and a lubrication regulator. The lubricant adjusting agents include hydrindan, naphthalene, 1,2,3,4, -tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, cyclododecatriene, cyclododecane, dodecahydrofluorene, anthracene, phenanthracene, 9, It is at least one selected from 10-dihydroanthracene, hexadecahydropyrene, and compounds in which at least one hydrogen atom thereof is substituted with a substituent.
(Base oil)
The base oil of the lubricating oil composition according to the present embodiment is not particularly limited, and mineral oils and synthetic oils that are widely used as the base oils of ordinary lubricating oils are preferably used.

鉱油として、例えば、原油の潤滑油留分を溶剤精製、水素化精製、脱ろうなどの精製法を適宜組合せて精製したパラフィン系鉱油、ナフテン系鉱油が例示できる。合成油としては、合成炭化水素油、エーテル油、エステル油等が挙げられ、より具体的には、ポリ−α−オレフィン(PAO)、ジエステル、ポリアルキレングリコール、ポリアルファオレフィン、ポリアルキルビニールエーテル、ポリブテン、イソパラフィン、オレフィンコポリマー、アルキルベンゼン、アルキルナフタレン、ジイソデシルアジペート、モノエステル、二塩基酸エステル、三塩基酸エステル、ポリオールエステル系(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ジアルキルジフェニルエーテル、アルキルジフェニルサルファイド、ポリフェニルエーテル、シリコーン潤滑油(ジメチルシリコーン等)、パーフルオロポリエーテル等が好適に用いられる。 Examples of the mineral oil include paraffin-based mineral oils and naphthen-based mineral oils in which the lubricating oil fraction of crude oil is refined by appropriately combining refining methods such as solvent refining, hydrorefining, and dewaxing. Examples of the synthetic oil include synthetic hydrocarbon oils, ether oils, ester oils and the like, and more specifically, poly-α-olefin (PAO), diesters, polyalkylene glycols, polyalphaolefins, polyalkylvinyl ethers, etc. Polybutene, isoparaffin, olefin copolymer, alkylbenzene, alkylnaphthalene, diisodecyl adipate, monoester, dibasic acid ester, tribasic acid ester, polyol ester (trimethylol propane caprilate, trimethylol propane pelargonate, pentaerythritol 2-ethylhexa Noate, pentaerythritol pelargonate, etc.), dialkyldiphenyl ether, alkyldiphenyl sulfide, polyphenyl ether, silicone lubricating oil (dimethyl silicone, etc.), perfluoropolyether, and the like are preferably used.

本実施形態に係る潤滑油組成物の基油として、上記の鉱油又は合成油を一種類単独で使用しても良く、それらの中から選ばれる2種以上のものを任意の割合で混合して使用してもよいが、耐熱性、耐酸化性等を考慮して、合成油を含むことが好ましく、合成油からなることがより好ましい。また、合成油の中で、よく使われるポリ−α−オレフィン、ポリオールエステル系を使用することがさらに好ましい。
(フラーレン)
本実施形態に係る潤滑油組成物に含まれるフラーレンは、構造や製造法が特に限定されず、種々のものを用いることができる。フラーレンとしては、例えば、比較的入手しやすいC60やC70、さらに高次のフラーレン、あるいはそれらの混合物が挙げられる。フラーレンの中でも、基油への溶解性の高さの点から、C60及びC70が好ましく、潤滑油への着色が少ない点から、C60がより好ましい。コストを低減するため、2種類以上のフラーレンを有するミックスフラーレンを用いることもできるが、C60を含み、そして、C60の含有量は50質量%以上であるものが好ましい。
(潤滑調整剤)
本実施形態に係る潤滑油組成物の潤滑調整剤は、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレン、または、それらの少なくとも1個の水素原子が後述する置換基で置き換えてなるものから選ばれる少なくとも一種である。また、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレンの水素原子が2個以上の置換基で置換される場合、それらの置換基は同一でも異なっていてもよい。
As the base oil of the lubricating oil composition according to the present embodiment, the above-mentioned mineral oil or synthetic oil may be used alone, or two or more kinds selected from them may be mixed at an arbitrary ratio. Although it may be used, it is preferable to contain synthetic oil in consideration of heat resistance, oxidation resistance and the like, and it is more preferable to use synthetic oil. Further, it is more preferable to use a poly-α-olefin or polyol ester system which is often used in synthetic oils.
(Fullerene)
As the fullerene contained in the lubricating oil composition according to the present embodiment, the structure and the manufacturing method are not particularly limited, and various fullerenes can be used. Examples of fullerenes include C 60 and C 70 , which are relatively easily available, higher-order fullerenes, and mixtures thereof. Among fullerenes, C 60 and C 70 are preferable from the viewpoint of high solubility in the base oil, and C 60 is more preferable from the viewpoint of less coloring in the lubricating oil. To reduce the cost, although it is also possible to use a mix fullerene having two or more fullerenes include C 60, and the content of C 60 is preferably not more than 50 wt%.
(Lubrication adjuster)
The lubricant adjusting agent of the lubricating oil composition according to the present embodiment is hydrindan, naphthalene, 1,2,3,4-tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, cyclododecatriene, cyclododecane, dodecahydrofluorene. , Anthracene, phenanthracene, 9,10-dihydroanthracene, hexadecahydropyrene, or at least one selected from those in which at least one hydrogen atom is replaced by a substituent described below. In addition, hydrindan, naphthalene, 1,2,3,4-tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, cyclododecane, cyclododecane, dodecahydrofluorene, anthracene, phenanthracene, 9,10-dihydroanthracene. , When the hydrogen atom of hexadecahydropyrene is substituted with two or more substituents, those substituents may be the same or different.

上記の潤滑調整剤は、フラーレンと相互作用する推定され、この相互作用により、潤滑油組成物の耐摩耗性が向上されると考えられる。また、潤滑油組成物のラメラ長を延長させる効果も期待できる。ラメラ長が延長されると、潤滑油組成物の成膜性が向上され、少量の潤滑油組成物で油膜ができるとともに、潤滑油組成物の漏洩防止効果も得られる。なお、ラメラ長が長いほど、油膜が切れにくくなり、耐焼付性が高まる。 It is presumed that the above-mentioned lubrication modifier interacts with fullerenes, and it is considered that this interaction improves the wear resistance of the lubricating oil composition. In addition, the effect of extending the lamella length of the lubricating oil composition can be expected. When the lamella length is extended, the film-forming property of the lubricating oil composition is improved, an oil film is formed with a small amount of the lubricating oil composition, and the effect of preventing leakage of the lubricating oil composition can be obtained. The longer the lamella length, the more difficult it is for the oil film to break, and the higher the seizure resistance.

前記潤滑調整剤が置換基を有する場合、置換基として、ハロゲン原子、ヒドロキシ基、カルボキシ基、アミノ基、炭素数1〜20の炭化水素基、炭素数1〜20のエーテル結合を有する基、炭素数1〜20のエステル結合を有する基、炭素数1〜20のジスルフィド結合を有する基、ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有する炭素数1〜20の基、ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有し、エーテル結合を有する炭素数1〜20の基、ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有し、エステル結合を有する炭素数1〜20の基、及びハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有し、ジスルフィド結合を有する炭素数1〜20の基が挙げられるが、潤滑調整剤の基油への溶解度を向上させる観点から、炭素数1〜10のアルキル基、炭素数1〜10のエーテル結合を有する基、炭素数1〜10のエステル結合を有する基であることが好ましい。 When the lubricant adjusting agent has a substituent, the substituent includes a halogen atom, a hydroxy group, a carboxy group, an amino group, a hydrocarbon group having 1 to 20 carbon atoms, a group having an ether bond having 1 to 20 carbon atoms, and carbon. A group having an ester bond of 1 to 20, a group having a disulfide bond having 1 to 20 carbon atoms, a halogen atom, a hydroxy group, a carboxy group, and a group having 1 to 20 carbon atoms having at least one amino group, halogen. It has at least one of an atom, a hydroxy group, a carboxy group, and an amino group, and has at least one of a group having 1 to 20 carbon atoms having an ether bond, a halogen atom, a hydroxy group, a carboxy group, and an amino group. , A group having 1 to 20 carbon atoms having an ester bond, and a group having at least one halogen atom, a hydroxy group, a carboxy group, and an amino group and having a disulfide bond having 1 to 20 carbon atoms can be mentioned. From the viewpoint of improving the solubility of the lubrication modifier in the base oil, the group should be an alkyl group having 1 to 10 carbon atoms, a group having an ether bond having 1 to 10 carbon atoms, or a group having an ester bond having 1 to 10 carbon atoms. Is preferable.

また、潤滑調整剤分子に占める置換基の総分子量の割合は大きくなると、フラーレンと潤滑調整剤との相互作用が弱くなると考えられ、潤滑調整剤分子の分子量に対して、置換基の総分子量の割合は、60%以下であることが好ましく、50%以下であることがより好ましい。 Further, it is considered that the interaction between fullerene and the lubrication regulator becomes weaker as the ratio of the total molecular weight of the substituents to the lubrication regulator molecule increases, and the total molecular weight of the substituents is considered to be weaker than the molecular weight of the lubrication regulator molecule. The ratio is preferably 60% or less, and more preferably 50% or less.

本実施形態に係る潤滑油組成物における潤滑調整剤の含有量は、基油100質量部に対して、1〜100質量部であることが好ましく、2〜50質量部であることがより好ましく、5〜25質量部であることがさらに好ましい。潤滑調整剤の含有量は上記範囲内であれば、フラーレンとの相互作用により、潤滑油組成物の耐摩耗性、耐焼付性を改善させる同時に、潤滑油組成物の引火点、動粘度等の物性の変化を抑えることができる。 The content of the lubricant adjusting agent in the lubricating oil composition according to the present embodiment is preferably 1 to 100 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the base oil. It is more preferably 5 to 25 parts by mass. If the content of the lubricant adjusting agent is within the above range, the wear resistance and seizure resistance of the lubricating oil composition are improved by interaction with fullerene, and at the same time, the ignition point, kinematic viscosity, etc. of the lubricating oil composition are affected. Changes in physical properties can be suppressed.

本実施形態に係る潤滑油組成物のフラーレンの含有量は、潤滑調整剤100質量部に対して、好ましくは0.001〜1.000質量部であり、より好ましくは0.001〜0.500質量部であり、さらに好ましいくは0.005〜0.100質量部である。上記範囲内であれば、フラーレンと潤滑調整剤の相互作用により、潤滑油組成物の耐摩耗性、耐焼付性を改善するとともに、フラーレンの凝集粒子がなく或いは少なく、フラーレンの凝集粒子により摩擦係数上昇の虞が少ない。
(添加剤)
本実施形態に係る潤滑油組成物は、フラーレンと潤滑調整剤以外にも、本実施形態の効果を損なわない範囲で、添加剤を含有することができる。本実施形態の潤滑油組成物に配合する添加剤は、特に限定されない。添加剤としては、例えば、市販の酸化防止剤、粘度指数向上剤、清浄分散剤、流動点降下剤、腐食防止剤、錆び止め剤、抗乳化剤、消泡剤等が挙げられる。これらの添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
The fullerene content of the lubricating oil composition according to the present embodiment is preferably 0.001 to 1.000 parts by mass, and more preferably 0.001 to 0.500 parts by mass with respect to 100 parts by mass of the lubricating regulator. It is by mass, more preferably 0.005 to 0.100 parts by mass. Within the above range, the interaction between the fullerene and the lubricating regulator improves the wear resistance and seizure resistance of the lubricating oil composition, and the agglomerated particles of the fullerene are absent or few, and the agglomerated particles of the fullerene cause a friction coefficient. There is little risk of rising.
(Additive)
The lubricating oil composition according to the present embodiment may contain additives in addition to the fullerene and the lubrication adjusting agent as long as the effects of the present embodiment are not impaired. The additives to be blended in the lubricating oil composition of the present embodiment are not particularly limited. Examples of the additive include a commercially available antioxidant, a viscosity index improver, a cleaning dispersant, a pour point lowering agent, a corrosion inhibitor, a rust inhibitor, an anti-emulsifier, an antifoaming agent and the like. These additives may be used alone or in combination of two or more.

より具体的に、例えば、酸化防止剤としては、ジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、2,6−ジ−tert−ブチル−p−クレゾール(DBPC)、3−アリールベンゾフラン−2−オン(ヒドロキシカルボン酸の分子内環状エステル)、フェニル−α−ナフチルアミン、ジアルキルジフェニルアミン、ベンゾトリアゾール等が挙げられる。粘度指数向上剤としては、例えば、ポリアルキルスチレン、スチレン−ジエンコポリマーの水素化物等が挙げられる。清浄分散剤としては、ベンジルアミンコハク酸誘導体、アルキルフェノールアミン類等が挙げられる。流動点降下剤としては、塩素化パラフィン−ナフタレン縮合物、塩素化パラフィン−フェノール縮合物、ポリアルキルスチレン系等が挙げられる。腐食防止剤として、ジチオリン酸亜鉛、ベンゾトリアゾールおよびその誘導体、2,5−ジアルキルメルカプト−1,3,4−チアジアゾール等が挙げられる。錆び止め剤として、カルボン酸、スルホネート、リン酸塩、アルコール等が挙げられる。抗乳化剤としては、アルキルベンゼンスルホン酸塩等が挙げられる。消泡剤として、ポリメチルシロキサン、シリケート有機フッ素化合物、金属石鹸、脂肪酸エステル、リン酸エステル、高級アルコール、ポリアルキレングリコール等が挙げられる。
(製造方法)
本実施形態に係る潤滑油組成物の製造方法は、基油と、フラーレンと、潤滑調整剤とを、混合する工程を含む。混合順番は特に限定されなく、フラーレンと、潤滑調整剤を同時に基油に加えて、混合してもよく、フラーレンを潤滑調整剤と混合した後に、混合物を基油に添加して混合してもよい。混合方法としては、スターラー、超音波分散装置、ホモジナイザー、ボールミル、ビーズミルなどを用い、室温付近または必要に応じて加熱しながら1時間〜48時間の攪拌を施すことが挙げられる。この混合工程により、本実施形態に係る潤滑油組成物を得ることができる。
More specifically, for example, as the antioxidant, dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-di-tert-butyl-p-cresol (DBPC), 3-arylbenzofuran-2 Examples thereof include −one (intramolecular cyclic ester of hydroxycarboxylic acid), phenyl-α-naphthylamine, dialkyldiphenylamine, and benzotriazole. Examples of the viscosity index improver include polyalkylstyrene and hydrides of styrene-diene copolymers. Examples of the cleaning dispersant include benzylamine succinic acid derivatives, alkylphenol amines and the like. Examples of the pour point lowering agent include chlorinated paraffin-naphthalene condensate, chlorinated paraffin-phenol condensate, polyalkylstyrene type and the like. Examples of the corrosion inhibitor include zinc dithiophosphate, benzotriazole and its derivatives, 2,5-dialkyl mercapto-1,3,4-thiadiazole and the like. Examples of the rust preventive agent include carboxylic acids, sulfonates, phosphates, alcohols and the like. Examples of the anti-emulsifier include alkylbenzene sulfonate and the like. Examples of the defoaming agent include polymethylsiloxane, silicate organic fluorine compound, metal soap, fatty acid ester, phosphoric acid ester, higher alcohol, polyalkylene glycol and the like.
(Production method)
The method for producing a lubricating oil composition according to the present embodiment includes a step of mixing a base oil, a fullerene, and a lubricating adjusting agent. The mixing order is not particularly limited, and the fullerene and the lubrication regulator may be added to the base oil at the same time and mixed, or the fullerene may be mixed with the lubrication regulator and then the mixture may be added to the base oil and mixed. good. As a mixing method, a stirrer, an ultrasonic disperser, a homogenizer, a ball mill, a bead mill or the like may be used, and stirring may be performed for 1 to 48 hours at around room temperature or while heating as needed. By this mixing step, the lubricating oil composition according to the present embodiment can be obtained.

本実施形態に係る潤滑油組成物の製造方法は、さらに、混合工程後、熱処理工程を有することが好ましい。潤滑油組成物の酸化を防止するため、低酸素雰囲気又は不活性ガス素雰囲気下で、熱処理工程を実施することがより好ましい。低酸素雰囲気における酸素ガスの濃度は、1%体積以下であり、好ましくは0.5%体積以下である。熱処理工程の一例として、混合工程で得た潤滑油組成物を気密可能なステンレス等の容器内に収容した後、窒素ガスやアルゴンガス等の不活性ガスで置換し、1〜48時間加熱処理することが挙げられる。熱処理温度は、100℃以上250℃以下であることが好ましく、100℃以上150℃以下であることがより好ましく、120℃以上150℃以下であることがさらに好ましい。この熱処理により、フラーレンと潤滑調整剤との相互作用が強くなると推定され、潤滑油組成物の耐摩耗性及耐焼付性が更に向上される。 The method for producing a lubricating oil composition according to the present embodiment preferably further includes a heat treatment step after the mixing step. In order to prevent oxidation of the lubricating oil composition, it is more preferable to carry out the heat treatment step in a low oxygen atmosphere or an inert gas atmosphere. The concentration of oxygen gas in a low oxygen atmosphere is 1% volume or less, preferably 0.5% volume or less. As an example of the heat treatment step, the lubricating oil composition obtained in the mixing step is housed in a container such as airtight stainless steel, replaced with an inert gas such as nitrogen gas or argon gas, and heat-treated for 1 to 48 hours. Can be mentioned. The heat treatment temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 150 ° C. or lower, and further preferably 120 ° C. or higher and 150 ° C. or lower. It is presumed that this heat treatment strengthens the interaction between the fullerene and the lubricant adjusting agent, and the wear resistance and seizure resistance of the lubricating oil composition are further improved.

なお、上記の工程により得た潤滑油組成物の中に、原料由来の不溶物および製造過程中で混入した不溶物等の固体物が存在する可能性がある。これらの固体物の存在により、摩擦係数が上昇する虞があるため、混合工程後、又は熱処理工程後に、固体物を除去するための工程を設けてもよい。除去方法として、濾過による除去方法、遠心分離による除去方法、それらの除去方法の組み合わせなどを挙げることができる。
(用途)
本実施形態に係る潤滑油組成物は、工業用ギヤ油;油圧作動油;圧縮機油;冷凍機油;切削油;圧延油、プレス油、鍛造油、絞り加工油、引き抜き油、打ち抜き油等の塑性加工油;熱処理油、放電加工油等の金属加工油;すべり案内面油;軸受け油;錆止め油;熱媒体油等の各種用途に使用することができる。
In the lubricating oil composition obtained by the above step, there is a possibility that an insoluble matter derived from a raw material and a solid substance such as an insoluble matter mixed in during the manufacturing process may be present. Since the coefficient of friction may increase due to the presence of these solids, a step for removing the solids may be provided after the mixing step or the heat treatment step. Examples of the removal method include a removal method by filtration, a removal method by centrifugation, and a combination of these removal methods.
(Use)
The lubricating oil composition according to the present embodiment is plastic such as industrial gear oil; hydraulic hydraulic oil; compressor oil; refrigerating machine oil; cutting oil; rolling oil, pressing oil, forging oil, drawing oil, drawing oil, punching oil and the like. It can be used for various purposes such as processing oil; metal processing oil such as heat treatment oil and discharge processing oil; slip guide surface oil; bearing oil; rust preventive oil; heat transfer oil.

以上、本発明の好ましい実施形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various aspects are described within the scope of the claims of the present invention. It can be transformed and changed.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(NH−C8の合成)
デカヒドロ−2−ナフトール150g(東京化成工業(株)製)に、ヨウ化カリウム200g、リン酸100gを加え、100℃で3時間攪拌の後、カラムクロマトグラフィー法により、デカヒドロ−2−ヨウ化ナフタレンを分離した。得たデカヒドロ−2−ヨウ化ナフタレンを、トルエン200gに加え、−20℃まで冷却して、金属マグネシウム30gを添加し、3時間攪拌して溶液を得た。得た溶液に1−ヨードオクタン(東京化成工業(株)製)160gを加え、25℃で12時間攪拌した後、蒸留法により、下記の式(1)で示すデカヒドロ−2−オクチルナフタレン(NH−C8)を得た。得たNH−C8の置換基の分子量は113で、分子全体の分子量(251)の45%である。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(Synthesis of NH-C8)
To 150 g of decahydro-2-naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of potassium iodide and 100 g of phosphoric acid are added, and after stirring at 100 ° C. for 3 hours, decahydro-2-naphthalene iodide is obtained by column chromatography. Was separated. The obtained decahydro-2-naphthalene iodide was added to 200 g of toluene, cooled to −20 ° C., 30 g of metallic magnesium was added, and the mixture was stirred for 3 hours to obtain a solution. 160 g of 1-iodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 25 ° C. for 12 hours, and then decahydro-2-octylnaphthalene (NH) represented by the following formula (1) was obtained by a distillation method. -C8) was obtained. The molecular weight of the obtained NH-C8 substituent is 113, which is 45% of the total molecular weight (251) of the molecule.

Figure 2020137651
(NP−C5C5の合成)
2,6−ジヒドロキシナフタレン(東京化成工業(株)製)75gに、ヨウ化カリウム200g、リン酸100gを加え、100℃で3時間攪拌の後、カラムクロマトグラフィー法により、2,6−ヨウ化ナフタレンを分離した。得た2,6−ヨウ化ナフタレンを、トルエン200gに加え、−20℃まで冷却して、金属マグネシウム30gを添加し、3時間攪拌して溶液を得た。得た溶液に1−ヨード−3−メチルブタン(東京化成工業(株)製)70gを加え、25℃で12時間攪拌した後、蒸留法により、下記の式(2)で示す2,6−ビス(3−メチルブチル)ナフタレン(NP−C5C5)を得た。得たNP−C5C5の置換基の総分子量は142で、分子全体の分子量(268)の53%である。
Figure 2020137651
(Synthesis of NP-C5C5)
To 75 g of 2,6-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of potassium iodide and 100 g of phosphoric acid are added, and the mixture is stirred at 100 ° C. for 3 hours and then 2,6-iolated by column chromatography. Naphthalene was separated. The obtained 2,6-naphthalene iodide was added to 200 g of toluene, cooled to −20 ° C., 30 g of metallic magnesium was added, and the mixture was stirred for 3 hours to obtain a solution. 70 g of 1-iodo-3-methylbutano (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 25 ° C. for 12 hours, and then 2,6-bis represented by the following formula (2) by a distillation method. (3-Methylbutyl) naphthalene (NP-C5C5) was obtained. The total molecular weight of the obtained substituents of NP-C5C5 is 142, which is 53% of the total molecular weight of the molecule (268).

Figure 2020137651
(NH−C4PAの合成)
デカヒドロ−2−ナフトール150g(東京化成工業(株)製)に、ヨウ化カリウム200g、リン酸100gを加え、100℃で3時間攪拌の後、カラムクロマトグラフィー法により、2−ヨウ化デカヒドロナフタレンを分離した。得た2−ヨウ化デカヒドロナフタレンを、トルエン200gに加え、−20℃まで冷却して、金属マグネシウム30gを添加し、3時間攪拌して溶液を得た。得た溶液に2,2−ジメチルプロピオン酸ヨードメチル(東京化成工業(株)製)160gを加え、25℃で12時間攪拌した後、蒸留法により、下記の式(3)で示す2−(2,2−ジメチルプロピオン酸メチレン)デカヒドロナフタレン(NH−C4PA)を得た。得たNH−C4PAの置換基の分子量は115で、分子全体の分子量(252)の46%である。
Figure 2020137651
(Synthesis of NH-C4PA)
To 150 g of decahydro-2-naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of potassium iodide and 100 g of phosphoric acid are added, and the mixture is stirred at 100 ° C. for 3 hours and then 2-decahydronaphthalene iodide by column chromatography. Was separated. The obtained decahydronaphthalene iodide was added to 200 g of toluene, cooled to −20 ° C., 30 g of metallic magnesium was added, and the mixture was stirred for 3 hours to obtain a solution. 160 g of iodomethyl 2,2-dimethylpropionate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 25 ° C. for 12 hours and then distilled by a distillation method to obtain 2- (2) represented by the following formula (3). , 2-Methylene 2-dimethylpropionate) decahydronaphthalene (NH-C4PA) was obtained. The molecular weight of the obtained NH-C4PA substituent is 115, which is 46% of the total molecular weight (252) of the molecule.

Figure 2020137651
(NT−DEGの合成)
1,2,3,4−テトラヒドロ−1−ナフトール150g(東京化成工業(株)製)に、ヨウ化カリウム200g、リン酸100gを加え、100℃で3時間攪拌の後、カラムクロマトグラフィー法により、1−ヨウ化−1,2,3,4−テトラヒドロナフタレンを分離した。得た1−ヨウ化−1,2,3,4−テトラヒドロナフタレンを、トルエン200gに加え、−20℃まで冷却して、金属マグネシウム30gを添加し、3時間攪拌して溶液を得た。得た溶液にジエチレングリコール−2−ブロモエチルメチルエーテル(東京化成工業(株)製)140gを加え、25℃で12時間攪拌した後、蒸留法により、下記の式(4)で示す1−メチルトリエチレングリコール−1,2,3,4−テトラヒドロナフタレン(NT−DEG)を得た。得たNT−DEGの置換基の分子量は147で、分子全体の分子量(278)の53%である。
Figure 2020137651
(Synthesis of NT-DEG)
To 150 g of 1,2,3,4-tetrahydro-1-naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.), 200 g of potassium iodide and 100 g of phosphoric acid are added, and the mixture is stirred at 100 ° C. for 3 hours and then subjected to column chromatography. , 1-Iodiation-1,2,3,4-tetrahydronaphthalene was separated. The obtained 1-iodinated-1,2,3,4-tetrahydronaphthalene was added to 200 g of toluene, cooled to −20 ° C., 30 g of metallic magnesium was added, and the mixture was stirred for 3 hours to obtain a solution. 140 g of diethylene glycol-2-bromoethylmethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the obtained solution, and the mixture was stirred at 25 ° C. for 12 hours, and then 1-methyltri represented by the following formula (4) by a distillation method. Ethylene glycol-1,2,3,4-tetrahydronaphthalene (NT-DEG) was obtained. The molecular weight of the obtained NT-DEG substituent is 147, which is 53% of the total molecular weight of the molecule (278).

Figure 2020137651
(基油)
本発明の実施例及び比較例に使用する基油は以下となる。
合成油1:エクソンモービル社製 Spectra Syn(ポリ−α−オレフィン)
合成油2:日油株式会社製 ユニスターH−334R(ポリオールエステル型)
合成油3:日油株式会社製 ユニスターMB−881(ポリオキシエチレンモノエステル型)
鉱油A:出光興産株式会社製 ダイアナフレシアP46
[実施例1]
(潤滑油組成物の調製)
基油として合成油1 100gに、フラーレン(フロンティアカーボン(株)製nanom(登録商標) mix ST C60:60質量%、C70:25質量%、残部が他高次フラーレンの混合物である)0.005g、潤滑調整剤NH−C8 20gを添加して、室温でスターラーを用いて36時間撹拌したのち、0.1μmメッシュのメンブランフィルターを通すことで濾過して潤滑油組成物を得た。
Figure 2020137651
(Base oil)
The base oils used in Examples and Comparative Examples of the present invention are as follows.
Synthetic oil 1: ExxonMobil Spectra Syn (poly-α-olefin)
Synthetic oil 2: NOF CORPORATION Unistar H-334R (polyol ester type)
Synthetic oil 3: NOF Corporation Unistar MB-881 (polyoxyethylene monoester type)
Mineral oil A: Diana Fresia P46 manufactured by Idemitsu Kosan Co., Ltd.
[Example 1]
(Preparation of lubricating oil composition)
Fullerene (Nanom (registered trademark) mix ST C 60 : 60% by mass, C 70 : 25% by mass, the balance is a mixture of other higher-order fullerenes) in 100 g of synthetic oil as a base oil 0 .005 g and 20 g of the lubrication adjuster NH-C8 were added, and the mixture was stirred at room temperature using a stirrer for 36 hours and then filtered through a 0.1 μm mesh membrane filter to obtain a lubricating oil composition.

得た潤滑油組成物の潤滑調整剤の含有量は、基油100質量部に対して20質量部である。潤滑油組成物の潤滑調整剤の含有量は、基油100質量部に対して、潤滑調整剤の仕込み量より算出した。潤滑油組成物のフラーレンの含有量は、潤滑調整剤を100質量部にしたときに、0.025質量部であり、基油を100質量部にしたときに、0.00500質量部である。潤滑油組成物のフラーレンの含有量は、潤滑油組成物中の潤滑調整剤及び基油をそれぞれ100質量部とした時に、潤滑油組成物中に溶解したフラーレンの量より算出した。溶解したフラーレンの量は、高速液体クロマトグラフィーより確認した。高速液体クロマトグラフ(アジレント・テクノロジー株式会社製 1200シリーズ)とカラム YMC−Pack ODS−AM(株式会社ワイエムシィ製、150mm×4.6)を用い、トルエンとメタノールの1:1(体積比)の展開溶媒で、波長309nmでの吸光度を検出し、潤滑油組成物中のフラーレン濃度を測定して、潤滑油組成物中に溶解したフラーレンの量を算出した。
(耐摩耗性評価)
ボールオンディスクトライボメーター(Antonparr製)により、潤滑油組成物の耐摩耗性を評価した。直径6mmのSUJ2製のボールを用い、荷重15N、速度5cm/秒の条件で、潤滑油組成物を塗布した基板(SUJ2製)の一主面上に、同心円状の軌道を描くように、摺動させた。摺動距離が積算300mの時のボール面の擦り面(円形)を光学顕微鏡で観察し、擦り面の直径を測定した。結果を表1に示す。本評価においては、擦り面の直径が小さいほど、耐摩耗特性に優れることを意味する
(ラメラ長の測定)
日本工業規格 JIS K2241:2000の7.3に規定されている表面張力試験方法に準ずる方法により、潤滑油組成物のラメラ長を測定した。表面張力計DY−500(協和界面科学株式会社製)を用い、約20mLの潤滑油組成物をガラス製シャーレ(深さ20mm、内径75mm)に入れ、表面張力計のステージに設置し、白金製の直径14.4mmmのリングを用い、ステージ上昇速度0.5mm/秒、ステージ下降速度0.1mm/秒、潤滑油組成物中へのリングの浸漬距離2.5mmとし、測定で得られたステージの位置とリングに働いた張力のグラフから、リングを引き下げる力が最大値を示してから液体膜が破壊されてゼロになるまでのステージの移動距離を、ラメラ長として算出した。なお、この測定は25±2℃の環境下で行った。結果を表1に示す。
[実施例2]
潤滑油組成物の調製において、濾過した後に、窒素ガス雰囲気で、150℃、12時間熱処理工程を実施した以外は実施例1と同様に、潤滑油組成物を作製して、耐摩耗性評価とラメラ長測定を実施した。測定結果を表1に示す。
[実施例3〜21、比較例1〜12]
The content of the lubricant adjusting agent in the obtained lubricating oil composition is 20 parts by mass with respect to 100 parts by mass of the base oil. The content of the lubricating oil composition in the lubricating oil composition was calculated from the amount of the lubricating oil charged with respect to 100 parts by mass of the base oil. The content of fullerene in the lubricating oil composition is 0.025 parts by mass when the lubricating oil is 100 parts by mass, and 0.00500 parts by mass when the base oil is 100 parts by mass. The content of fullerene in the lubricating oil composition was calculated from the amount of fullerene dissolved in the lubricating oil composition when 100 parts by mass of each of the lubricating adjusting agent and the base oil in the lubricating oil composition was taken. The amount of dissolved fullerenes was confirmed by high performance liquid chromatography. Development of 1: 1 (volume ratio) of toluene and methanol using a high performance liquid chromatograph (1200 series manufactured by Azilent Technology Co., Ltd.) and column YMC-Pack ODS-AM (manufactured by YMC Co., Ltd., 150 mm x 4.6). With a solvent, the absorbance at a wavelength of 309 nm was detected, the fullerene concentration in the lubricating oil composition was measured, and the amount of fullerene dissolved in the lubricating oil composition was calculated.
(Abrasion resistance evaluation)
The wear resistance of the lubricating oil composition was evaluated by a ball-on-disc tribometer (manufactured by Antonioparr). Using a SUJ2 ball with a diameter of 6 mm, slide it so as to draw a concentric trajectory on one main surface of the substrate (made by SUJ2) coated with the lubricating oil composition under the conditions of a load of 15 N and a speed of 5 cm / sec. I moved it. The rubbing surface (circular) of the ball surface when the sliding distance was 300 m in total was observed with an optical microscope, and the diameter of the rubbing surface was measured. The results are shown in Table 1. In this evaluation, the smaller the diameter of the rubbing surface, the better the wear resistance (measurement of lamella length).
The lamella length of the lubricating oil composition was measured by a method according to the surface tension test method specified in 7.3 of Japanese Industrial Standard JIS K2241: 2000. Using a surface tension meter DY-500 (manufactured by Kyowa Interface Science Co., Ltd.), put about 20 mL of the lubricating oil composition into a glass chalet (depth 20 mm, inner diameter 75 mm), install it on the stage of the surface tension meter, and make it made of platinum. Using a ring with a diameter of 14.4 mm, the stage ascending speed was 0.5 mm / sec, the stage descending speed was 0.1 mm / sec, and the immersion distance of the ring in the lubricating oil composition was 2.5 mm. From the graph of the position of and the tension acting on the ring, the moving distance of the stage from the time when the force to pull down the ring showed the maximum value to the time when the liquid film was broken and became zero was calculated as the lamella length. This measurement was performed in an environment of 25 ± 2 ° C. The results are shown in Table 1.
[Example 2]
In the preparation of the lubricating oil composition, the lubricating oil composition was prepared in the same manner as in Example 1 except that the heat treatment step was carried out at 150 ° C. for 12 hours in a nitrogen gas atmosphere after filtering, and the abrasion resistance was evaluated. Lamella length measurement was performed. The measurement results are shown in Table 1.
[Examples 3 to 21, Comparative Examples 1 to 12]

基油と、潤滑調整剤種類及びそれらの含有量と、フラーレン含有量とを除き、実施例1と同様に潤滑油組成物を調製し、各測定を実施した。なお、実施例3〜21及び比較例1〜12の潤滑油組成物は、表1に記載の組成を有する潤滑油組成物となるようにそれぞれ調製した。 A lubricating oil composition was prepared in the same manner as in Example 1 except for the base oil, the type of lubricating oil, their contents, and the fullerene content, and each measurement was carried out. The lubricating oil compositions of Examples 3 to 21 and Comparative Examples 1 to 12 were prepared so as to be the lubricating oil compositions having the compositions shown in Table 1, respectively.

Figure 2020137651
「含有量※1」は、基油100質量部に対して、潤滑調整剤の含有量を意味する。「含有量※2」は、潤滑調整剤100質量部対して、フラーレンの含有量を意味する。「含有量※3」は、基油100質量部に対して、フラーレンの含有量を意味する。
Figure 2020137651
"Content * 1 " means the content of the lubrication adjuster with respect to 100 parts by mass of the base oil. "Content * 2 " means the content of fullerene with respect to 100 parts by mass of the lubricating regulator. "Content * 3 " means the content of fullerene with respect to 100 parts by mass of the base oil.

表1の結果により、基油種類が同一の実施例及び比較例について、実施例は比較例と比べて、ボールの擦り面の直径はいずれも小さくなり、ラメラ長が長くなって、優れた耐摩耗性、及び成膜性を有することを示した。また、フラーレンのみ添加した比較例1、4、7、10は、それぞれの基油のみ含む比較例3、6、9,12と比較して、ボールの擦り面の直径の縮小と、ラメラ長の延長が観察されたが、同種類の基油を含む実施例と比べて、未だ不十分である。一方、潤滑調整剤のみ添加した比較例2、5、8,11は、それぞれの基油のみ含む比較例3、6、9,12と比べて、ラメラ長が変わらないが、ボールの擦り面の直径が大きくなって、耐摩耗性が劣化した。これらの結果から、潤滑調整剤とフラーレンの相互作用により、潤滑油組成物の耐摩耗性及び耐焼付性が改善されたと考えられる。また、熱処理された潤滑油組成物(実施例2)は、実施例1と比べて、ボールの擦り面の直径が小さくて、ラメラ長が長い。熱処理により、耐摩耗性、耐焼付性が更に改善されることが分かった。 According to the results in Table 1, for Examples and Comparative Examples having the same base oil type, the diameter of the rubbing surface of the balls was smaller and the lamella length was longer in the Examples as compared with the Comparative Examples, resulting in excellent resistance. It was shown to have abrasion resistance and film formation property. Further, in Comparative Examples 1, 4, 7, and 10 in which only fullerene was added, the diameter of the rubbing surface of the ball was reduced and the lamella length was reduced as compared with Comparative Examples 3, 6, 9, and 12 containing only the respective base oils. Prolongation was observed, but is still inadequate compared to the examples containing the same type of base oil. On the other hand, Comparative Examples 2, 5, 8 and 11 to which only the lubrication adjusting agent was added had the same lamella length as those of Comparative Examples 3, 6, 9 and 12 containing only the respective base oils, but the rubbing surface of the ball. As the diameter increased, the wear resistance deteriorated. From these results, it is considered that the wear resistance and seizure resistance of the lubricating oil composition were improved by the interaction between the lubrication regulator and the fullerene. Further, in the heat-treated lubricating oil composition (Example 2), the diameter of the rubbing surface of the ball is smaller and the lamella length is longer than in Example 1. It was found that the heat treatment further improved the wear resistance and the seizure resistance.

本出願は2018年12月27日に出願した日本国特許出願第2018−243901号に基づくものであり、その全内容は参照することによりここに組み込まれる。 This application is based on Japanese Patent Application No. 2018-243901 filed on December 27, 2018, the entire contents of which are incorporated herein by reference.

Claims (11)

基油と、
フラーレンと、
潤滑調整剤と、を含み、
前記潤滑調整剤は、ヒドリンダン、ナフタレン、1,2,3,4,−テトラヒドロナフタレン、テトラヒドロジシクロペンタジエン、デカヒドロナフタレン、シクロドデカトリエン、シクロドデカン、ドデカヒドロフルオレン、アントラセン、フェナントラセン、9,10−ジヒドロアントラセン、ヘキサデカヒドロピレン、及びそれらの少なくとも1個の水素原子が置換基によって置換された化合物から選ばれる少なくとも一種である潤滑油組成物。
Base oil and
With fullerenes
Lubrication regulator and, including
The lubricant adjusting agents include hydrindan, naphthalene, 1,2,3,4, -tetrahydronaphthalene, tetrahydrodicyclopentadiene, decahydronaphthalene, cyclododecatriene, cyclododecane, dodecahydrofluorene, anthracene, phenanthracene, 9, A lubricating oil composition which is at least one selected from 10-dihydroanthracene, hexadecahydropyrene, and compounds in which at least one hydrogen atom thereof is substituted with a substituent.
前記潤滑調整剤の置換基は、
ハロゲン原子、
ヒドロキシ基、
カルボキシ基、
アミノ基、
炭素数1〜20の炭化水素基、
炭素数1〜20のエーテル結合を有する基、
炭素数1〜20のエステル結合を有する基、
炭素数1〜20のジスルフィド結合を有する基、及び
ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有する炭素数1〜20の基、
から選ばれる少なくとも1種である請求項1に記載の潤滑油組成物。
The substituent of the lubrication regulator is
Halogen atom,
Hydroxy group,
Carboxy group,
Amino group,
Hydrocarbon groups with 1 to 20 carbon atoms,
A group having an ether bond having 1 to 20 carbon atoms,
A group having an ester bond having 1 to 20 carbon atoms,
A group having a disulfide bond having 1 to 20 carbon atoms, and a group having 1 to 20 carbon atoms having at least one of a halogen atom, a hydroxy group, a carboxy group, and an amino group.
The lubricating oil composition according to claim 1, which is at least one selected from.
炭素数1〜20のエーテル結合を有する前記基、炭素数1〜20のエステル結合を有する前記基、及び炭素数1〜20のジスルフィド結合を有する前記基は、ハロゲン原子、ヒドロキシ基、カルボキシ基、及びアミノ基の少なくとも1つを有する請求項2に記載の潤滑油組成物。 The group having an ether bond having 1 to 20 carbon atoms, the group having an ester bond having 1 to 20 carbon atoms, and the group having a disulfide bond having 1 to 20 carbon atoms are halogen atoms, hydroxy groups, carboxy groups, and the like. And the lubricating oil composition according to claim 2, which has at least one amino group. 前記潤滑調整剤における置換基の総分子量は、前記潤滑調整剤の分子量の60%以下である請求項1〜3に記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 3, wherein the total molecular weight of the substituents in the lubricating oil adjusting agent is 60% or less of the molecular weight of the lubricating oil adjusting agent. 前記基油は合成油である請求項1〜4のいずれかに記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 4, wherein the base oil is a synthetic oil. 前記フラーレンは、C60を含む請求項1〜5のいずれかに記載の潤滑油組成物。The fullerene, the lubricating oil composition according to claim 1 comprising a C 60. 前記潤滑調整剤を、基油100質量部に対し、1〜100質量部を含有する請求項1〜6のいずれかに記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6, wherein the lubricating oil is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the base oil. 前記フラーレンを、前記潤滑調整剤100質量部に対して、0.001〜1.000質量部を含有する請求項1〜7のいずれかに記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 7, wherein the fullerene is contained in an amount of 0.001 to 1.000 parts by mass with respect to 100 parts by mass of the lubricant adjusting agent. 基油と、フラーレンと、潤滑調整剤と、を混合する混合工程を有する請求項1〜8のいずれかに記載の潤滑油組成物の製造方法。 The method for producing a lubricating oil composition according to any one of claims 1 to 8, further comprising a mixing step of mixing a base oil, a fullerene, and a lubricating adjusting agent. さらに、前記混合工程後に、熱処理工程を含む請求項9に記載の潤滑油組成物の製造方法。 The method for producing a lubricating oil composition according to claim 9, further comprising a heat treatment step after the mixing step. 前記熱処理工程における熱処理温度は、100〜250℃である請求項10に記載の潤滑油組成物の製造方法。 The method for producing a lubricating oil composition according to claim 10, wherein the heat treatment temperature in the heat treatment step is 100 to 250 ° C.
JP2020563097A 2018-12-27 2019-12-16 Lubricating oil composition and method for producing the same Active JP7384175B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018243901 2018-12-27
JP2018243901 2018-12-27
PCT/JP2019/049138 WO2020137651A1 (en) 2018-12-27 2019-12-16 Lubricating oil composition and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2020137651A1 true JPWO2020137651A1 (en) 2021-11-11
JP7384175B2 JP7384175B2 (en) 2023-11-21

Family

ID=71126285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020563097A Active JP7384175B2 (en) 2018-12-27 2019-12-16 Lubricating oil composition and method for producing the same

Country Status (2)

Country Link
JP (1) JP7384175B2 (en)
WO (1) WO2020137651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058272A (en) * 2022-06-20 2022-09-16 太原理工大学 Lithium-based lubricating grease and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907906B (en) * 2022-06-20 2023-03-10 太原理工大学 Lithium-based lubricating grease containing alkyl tetrahydronaphthalene compound and preparation method thereof
CN114907909B (en) * 2022-06-20 2023-04-11 太原理工大学 Lithium-based lubricating grease with alkyl tetrahydronaphthalene compound as blending oil and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231739A (en) * 2003-01-29 2004-08-19 Mitsubishi Chemicals Corp Composition containing fullerene compounds
JP2008266501A (en) 2007-04-24 2008-11-06 Sumikou Junkatsuzai Kk Additive composition for engine oil
CN105062618B (en) * 2015-08-11 2017-08-01 王严绪 Fullerene boron nitrogen lubricant and preparation method thereof
JP6659932B2 (en) 2015-12-03 2020-03-04 昭和電工株式会社 Lubricating oil composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058272A (en) * 2022-06-20 2022-09-16 太原理工大学 Lithium-based lubricating grease and preparation method thereof
CN115058272B (en) * 2022-06-20 2023-03-10 太原理工大学 Lithium-based lubricating grease and preparation method thereof

Also Published As

Publication number Publication date
JP7384175B2 (en) 2023-11-21
WO2020137651A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
US7914697B2 (en) Refrigerating machine oil composition
JP7384175B2 (en) Lubricating oil composition and method for producing the same
JP6603951B1 (en) Lubricating oil composition inspection method and lubricating oil composition manufacturing method
TW200923071A (en) Lubricating oil base oil and lubricating oil composition
JP5643634B2 (en) Grease composition
JP7005650B2 (en) Lubricating oil composition and its manufacturing method
CN104350137A (en) Grease composition
JP6623503B2 (en) Lubricating oil composition and method for producing the same
US8153569B2 (en) Lubricant base oil
JP4769463B2 (en) Lubricating base oil and lubricating oil composition
JP2018168356A (en) Lubricant composition and its manufacturing method
JP7084794B2 (en) Ionic liquids and lubricant compositions
WO2017131059A1 (en) Foreign substance removing lubricating composition, member coated with foreign substance removing lubricating composition, and use of foreign substance removing lubricating composition
JP7001899B2 (en) Fullerene-containing lubricating oil composition and its manufacturing method
JP5994074B2 (en) Alkylated diphenyl ether compound and lubricating oil containing the compound
JP2011178990A (en) Lubricating oil additive and lubricating oil composition containing the same
JP5659422B2 (en) Alkylated diphenyl ether and lubricating oil containing the compound
JPWO2014069669A1 (en) Alkylated diphenyl ether compound and lubricating oil containing the compound
JPH06279777A (en) Silicone grease composition
US11492566B2 (en) Ether-based lubricant compositions, methods and uses
JP2004018677A (en) Additive composition for lubricant oil and lubricant oil composition
JP2017132887A (en) Debris removal lubricant composition, member coated with debris removal lubricant composition and method of using debris removal lubricant composition
US20200102520A1 (en) Ether-Based Lubricant Compositions, Methods and Uses
JP2008222997A (en) Additive for lubrication fluid, lubrication fluid composition and method for producing polyolefin sulfide
US20200115651A1 (en) Ether-Based Lubricant Compositions, Methods and Uses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113