JPWO2020132149A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020132149A5
JPWO2020132149A5 JP2021535178A JP2021535178A JPWO2020132149A5 JP WO2020132149 A5 JPWO2020132149 A5 JP WO2020132149A5 JP 2021535178 A JP2021535178 A JP 2021535178A JP 2021535178 A JP2021535178 A JP 2021535178A JP WO2020132149 A5 JPWO2020132149 A5 JP WO2020132149A5
Authority
JP
Japan
Prior art keywords
lithium
alloy
copper
sample
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021535178A
Other languages
Japanese (ja)
Other versions
JP2022515736A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/067295 external-priority patent/WO2020132149A1/en
Publication of JP2022515736A publication Critical patent/JP2022515736A/en
Publication of JPWO2020132149A5 publication Critical patent/JPWO2020132149A5/ja
Pending legal-status Critical Current

Links

Description

パックセメンテーション温度は、金属前駆体の融解温度より低く設定可能である。脱合金化溶液は、塩化水素(HCl)、水酸化ナトリウム(NaOH)、硝酸(HNO )、リン酸(HPO)、もしくは過塩素酸(HClO)、またはその組合せの溶液のうちの1つでもよい。 The packing cementation temperature can be set lower than the melting temperature of the metal precursor. The dealloying solution is a solution of hydrogen chloride (HCl), sodium hydroxide (NaOH), nitric acid ( HNO 3 ), phosphoric acid (H 3 PO 4 ), or perchloric acid (HClO 4 ), or a combination thereof. It may be one of.

Claims (13)

パックセメンテーションプロセスを用いて、ホイルの形状の前駆体合金を製造することと、
前記前駆体合金を脱合金化することと、
脱合金化された前記前駆体合金を用いて、試料全体にわたってナノスケール銅ストラットおよび細孔を形成することと、
階層マイクロポーラスまたはナノポーラス銅またはフルナノポーラス銅の前記試料を取得することとを備える、方法。
Using the pack cementation process to produce a precursor alloy in the form of foil,
Dealloying the precursor alloy and
Using the dealloyed precursor alloy to form nanoscale copper struts and pores throughout the sample,
A method comprising obtaining the sample of layered microporous or nanoporous copper or full nanoporous copper.
前記前駆体合金の前記ホイルは、アルミニウム-銅合金を含み、前記アルミニウムの濃度は、約20原子百分率~約85原子百分率の濃度であり、方法は、
塩酸の脱合金化溶液で前記前駆体合金を処理することを備え、リガメントサイズは約50ナノメートル~約500ナノメートルに変更可能であり、方法はさらに、
異なるアルミニウム-銅相について異なる腐食挙動に起因して、細孔径を約10ナノメートル~約10ミクロンに制御することを備える、請求項1に記載の方法。
The foil of the precursor alloy comprises an aluminum-copper alloy, the concentration of the aluminum being from about 20 atomic percent to about 85 atomic percent, the method.
The precursor alloy is treated with a dealloying solution of hydrochloric acid, the ligament size can be varied from about 50 nanometers to about 500 nanometers, and the method is further described.
The method of claim 1, wherein the pore size is controlled from about 10 nanometers to about 10 microns due to different corrosion behaviors for different aluminum-copper phases.
前駆体合金を形成するときに、パックセメンテーション温度をセ氏約400℃~セ氏約900℃に選択するまたは異ならせることを備える、請求項2に記載の方法。 The method of claim 2, wherein when forming the precursor alloy, the pack cementation temperature is selected or varied from about 400 ° C to about 900 ° C. 前記脱合金化溶液は、セ氏約20℃~セ氏約100℃の約0.01モル~約20モル塩酸溶液である、請求項2に記載の方法。 The method according to claim 2, wherein the dealloying solution is an approximately 0.01 mol to approximately 20 mol hydrochloric acid solution at about 20 ° C. to about 100 ° C. 前記パックセメンテーションプロセスは、1種類以上の金属粉末、充填剤、およびハロゲン化物塩活性剤の混合粉末パックを用いることを含む、請求項1に記載の方法。 The method of claim 1, wherein the pack cementation process comprises using a mixed powder pack of one or more metal powders, fillers, and halide salt activators. 前記脱合金化プロセスは、標準的な水素電極に関する化学腐食電位差に基づいて、製造
された前記前駆体合金に対して行うことが可能であり、
アルミニウムは、マグネシウム(Mg)、シリコン(Si)、クロム(Cr)、ニオブ(Nb)、亜鉛(Zn)、チタン(Ti)、モリブデン(Mo)、錫(Sn)、およびマンガン(Mn)からなる群より選択される材料を含むことが可能な、銅と比較してより高い腐食性を有する他の元素に置換えることが可能である、請求項2に記載の方法。
The dealloying process can be performed on the precursor alloy produced based on the chemical corrosion potential difference for a standard hydrogen electrode.
Aluminum is composed of magnesium (Mg), silicon (Si), chromium (Cr), niobium (Nb), zinc (Zn), titanium (Ti), molybdenum (Mo), tin (Sn), and manganese (Mn). The method of claim 2, wherein it can be replaced with another element that is more corrosive than copper and can contain a material selected from the group.
前記ハロゲン化物塩活性剤は、塩化ナトリウム(NaCl)、フッ化ナトリウム(NaF)、および塩化アンモニウム(NHCl)からなる群より選択される材料である、請求項5に記載の方法。 The method according to claim 5, wherein the halide salt activator is a material selected from the group consisting of sodium chloride (NaCl), sodium fluoride (NaF), and ammonium chloride (NH 4 Cl). パックセメンテーション温度は、金属前駆体の融解温度より低く設定可能である、請求項7に記載の方法。 The method of claim 7, wherein the packing cementation temperature can be set lower than the melting temperature of the metal precursor. 前記脱合金化溶液は、塩化水素(HCl)、水酸化ナトリウム(NaOH)、硝酸(HNO )、リン酸(HPO)、および過塩素酸(HClO)からなる群より選択される、請求項2に記載の方法。 The dealloyed solution is selected from the group consisting of hydrogen chloride (HCl), sodium hydroxide (NaOH), nitric acid ( HNO 3 ), phosphoric acid (H 3 PO 4 ), and perchloric acid (HClO 4 ). , The method according to claim 2. 製造された前記階層マイクロポーラスまたはナノポーラスまたはフルナノポーラス銅(NPC)は、表面積が広く3次元構造が固有であるため、さまざまなエネルギー装置に用いられる、請求項1に記載の方法。 The method of claim 1, wherein the manufactured hierarchical microporous or nanoporous or full nanoporous copper (NPC) is used in a variety of energy devices due to its large surface area and unique three-dimensional structure. 請求項1に記載の前記試料を含むリチウムイオン電池アノード集電体であって、前記試料は錫活物質で被覆されて、被覆された前記試料はリチウムイオンと反応し、リチウムイオンを蓄積し、充電および放電サイクリングプロセス中に体積膨張を良好に吸収する、リチウムイオン電池アノード集電体。 A lithium ion battery anode current collector containing the sample according to claim 1, wherein the sample is coated with a tin active material, and the coated sample reacts with lithium ions to accumulate lithium ions. Lithium-ion battery anode current collector that absorbs volume expansion well during the charging and discharging cycling process. 請求項1に記載の前記試料を含むリチウムイオン電池アノード集電体であって、前記試料は錫活物質で被覆され、
付加的なアノード活物質が前記ナノ銅フォームアノードに充填され、前記物質は、グラファイトベースの材料、金属ベースの材料、または酸化物ベースの材料のうちの少なくとも1つを含む、リチウムイオン電池アノード集電体。
A lithium ion battery anode current collector containing the sample according to claim 1, wherein the sample is coated with a tin active material.
An additional anode active material is filled into the nanocopper foam anode, wherein the material comprises at least one of a graphite-based material, a metal-based material, or an oxide-based material. Anode.
前記付加的なアノード活物質は、人造黒鉛、天然黒鉛、軟質炭素、硬質炭素、錫-リチウムベースの合金、シリコン-リチウムベースの合金、インジウム-リチウムベースの合金、アンチモン-リチウムベースの合金、ゲルマニウム-リチウムベースの合金、ビスマス-リチウムベースの合金、ガリウム-リチウムベースの合金、ならびに二酸化スズ(SnO2)、酸化コバルト(Co)、酸化銅(CuO)、酸化ニッケル(NiO)、および酸化鉄(Fe)のうちの少なくとも1つを含む酸化物ベースの材料からなる群より選択される、請求項12に記載のリチウムイオン電池アノード集電体。 The additional anode active material is artificial graphite, natural graphite, soft carbon, hard carbon, tin-lithium-based alloy, silicon-lithium-based alloy, indium-lithium-based alloy, antimony-lithium-based alloy, germanium. -Lithium-based alloys, bismuth-lithium-based alloys, gallium-lithium-based alloys, and tin dioxide (SnO2), cobalt oxide (Co 3O 4 ) , copper oxide (CuO), nickel oxide (NiO), and oxidation. The lithium ion battery anode current collector according to claim 12, selected from the group consisting of oxide-based materials comprising at least one of iron (Fe 3 O 4 ).
JP2021535178A 2018-12-18 2019-12-18 Large area copper nanofoam with a hierarchical structure for use as an electrode Pending JP2022515736A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862781579P 2018-12-18 2018-12-18
US62/781,579 2018-12-18
PCT/US2019/067295 WO2020132149A1 (en) 2018-12-18 2019-12-18 Large-area copper nanofoam with hierarchical structure for use as electrode

Publications (2)

Publication Number Publication Date
JP2022515736A JP2022515736A (en) 2022-02-22
JPWO2020132149A5 true JPWO2020132149A5 (en) 2022-07-21

Family

ID=71101875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021535178A Pending JP2022515736A (en) 2018-12-18 2019-12-18 Large area copper nanofoam with a hierarchical structure for use as an electrode

Country Status (5)

Country Link
US (1) US20220052350A1 (en)
EP (1) EP3899102A4 (en)
JP (1) JP2022515736A (en)
CN (1) CN113454251B (en)
WO (1) WO2020132149A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707890B (en) * 2021-08-17 2023-04-21 复旦大学 Au/Cu 2 O composite material, super-assembly preparation method and application
CN114284505A (en) * 2021-12-23 2022-04-05 山东大学 Porous copper current collector, preparation method thereof and application thereof in zinc/sodium ion battery

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139509A (en) * 1975-05-28 1976-12-01 Showa Electric Wire & Cable Co Ltd A process for production of porous copper moldings
JPS5573346A (en) * 1978-11-24 1980-06-03 Alloy Surfaces Co Inc Independent coagulation structure
KR100195076B1 (en) * 1993-09-16 1999-06-15 윤종용 Method manufactring anode for mcfc
KR100572456B1 (en) * 1998-12-30 2006-11-30 한국전력공사 Alloy fuel electrode for fuel cells with improved conductivity
JP5034047B2 (en) * 2007-01-31 2012-09-26 国立大学法人東北大学 Nanoporous metal and method for producing the same
JP5286972B2 (en) * 2008-06-25 2013-09-11 日産自動車株式会社 Negative electrode for lithium ion secondary battery
JP5329858B2 (en) * 2008-07-10 2013-10-30 株式会社東芝 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
CN101499531B (en) * 2009-03-16 2013-01-02 常德力元新材料有限责任公司 Porous copper strip for battery plate and production method thereof
CN101596598B (en) * 2009-07-01 2011-06-22 济南大学 Preparation method of whole continuous nano-porous copper
CN102363217B (en) * 2011-10-26 2013-04-17 济南大学 Method for preparing nanometer porous copper powder
KR101353262B1 (en) * 2013-04-19 2014-01-23 주식회사 셀모티브 Metal foam for electrode of lithium secondary battery, preparing method thereof and lithium secondary battery including the metalfoam
CN104979559A (en) * 2014-04-03 2015-10-14 上海空间电源研究所 Nano-copper coated porous nano silicon composite material as well as preparation method and application thereof
CN106868536A (en) * 2015-12-13 2017-06-20 中国科学院大连化学物理研究所 The Carbon dioxide electrochemical reduction preparation of porous copper electrode and its electrode and application
CN105648260B (en) * 2016-01-04 2017-11-17 武汉理工大学 A kind of method that copper-iron alloy removal alloying prepares micron porous metal copper billet body
CN105543796B (en) * 2016-02-01 2018-03-27 山东大学 A kind of method that nanoporous copper film material is prepared by magnetron sputtering
US11165067B2 (en) * 2016-03-11 2021-11-02 Honda Motor Co., Ltd. Porous current collector and electrode for an electrochemical battery

Similar Documents

Publication Publication Date Title
Luo et al. P2-type transition metal oxides for high performance Na-ion battery cathodes
US4923770A (en) Amorphous metal alloy compositions for reversible hydrogen storage and electrodes made therefrom
Rongeat et al. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries
Pan et al. Facile synthesis of M-Sb (M= Ni, Sn) alloy nanoparticles embedded in N-doped carbon nanosheets as high performance anode materials for lithium ion batteries
CA2120770A1 (en) Electrochemical cell
WO2011152244A1 (en) Alloy negative electrode for lithium battery and process for production thereof, and lithium battery
WO2002025757A1 (en) Electrode for lithium secondary cell and lithium secondary cell
JPS6145353B2 (en)
CN110352524A (en) The metal fluoride and metal chloride active material of cathode that expanded graphite worm for lithium battery is protected
EP0197680A2 (en) Energy storage devices and amorphous metal alloy electrodes for use in acid environments
JP7203304B2 (en) Aqueous secondary battery
Lee et al. Carbon-and binder-free NiCo 2 O 4 nanoneedle array electrode for sodium-ion batteries: electrochemical performance and insight into sodium storage reaction
JP4848613B2 (en) Battery current collector and non-aqueous electrolyte battery using the same
Chai et al. Elevating kinetics of passivated Fe anodes with NH 4 Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries
CN113454251B (en) Large area copper nanofoam with layered structure for use as an electrode
WO2009067312A2 (en) Preparation of hydrogen storage materials
JPWO2020132149A5 (en)
EP4292150A1 (en) Solid state electrolyte material comprising a chalcogenide-based ionic-conductive structure, particularly a sulfide-based ionic-conductive structure
KR940007634B1 (en) Storage device and amorphous metal alloy electrodes for use in alkaline environments
Geng et al. Synthesis and modification mechanism of vanadium oxide coated LiFePO4 cathode materials with excellent electrochemical performance
JP6984298B2 (en) Manufacturing method of nickel metal hydride battery
CN113614979A (en) Secondary battery
JP3718238B2 (en) Method for stabilizing hydrogen storage alloys
Huang et al. Electrochemical Synthesis of Potassium Titanate Nanowires in Molten Salts with Good Li+-Intercalation Performance
胡先罗 Thermotolerant electrodes and separators for advanced lithium-ion batteries