JPWO2020121899A1 - High-strength galvanized steel sheet with tensile strength of 1180 MPa or more, its manufacturing method, and surface treatment liquid - Google Patents

High-strength galvanized steel sheet with tensile strength of 1180 MPa or more, its manufacturing method, and surface treatment liquid Download PDF

Info

Publication number
JPWO2020121899A1
JPWO2020121899A1 JP2020519461A JP2020519461A JPWO2020121899A1 JP WO2020121899 A1 JPWO2020121899 A1 JP WO2020121899A1 JP 2020519461 A JP2020519461 A JP 2020519461A JP 2020519461 A JP2020519461 A JP 2020519461A JP WO2020121899 A1 JPWO2020121899 A1 JP WO2020121899A1
Authority
JP
Japan
Prior art keywords
film
steel sheet
metal salt
galvanized steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020519461A
Other languages
Japanese (ja)
Inventor
謙太郎 秦
武士 松田
昌浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020121899A1 publication Critical patent/JPWO2020121899A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

耐遅れ破壊性に優れた高強度亜鉛めっき鋼板を提供する。
高強度亜鉛めっき鋼板の表面に皮膜(x)を有し、この皮膜(x)は、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が該皮膜(x)の膜厚以上の粒子成分を含有しない。金属塩(b)がZnとキレート錯体を形成することで鋼板表面に緻密な不働態皮膜が形成されること、金属塩(b)に含まれるイオンのpH緩衝効果によりpH8〜11に安定することでZnの溶解が抑制され、地鉄上での水素発生が抑えられること、皮膜(x)が金属塩(b)以外の粒径の大きい微粒子成分を含有しないため、粒子と皮膜の界面が腐食の起点となることが防止されること、などの結果、鋼板内部への水素侵入が抑制され、優れた耐遅れ破壊性が得られる。
Provided is a high-strength galvanized steel sheet having excellent delay fracture resistance.
It has a film (x) on the surface of a high-strength zinc-plated steel plate, and this film (x) is an organic resin (a) and at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group. It contains a metal salt (b) containing one kind, and does not contain a particle component having a maximum particle diameter equal to or larger than the film thickness of the film (x) other than the metal salt (b). The metal salt (b) forms a chelate complex with Zn to form a dense passivation film on the surface of the steel sheet, and the pH buffering effect of the ions contained in the metal salt (b) stabilizes the pH at 8 to 11. Since the dissolution of Zn is suppressed, the generation of hydrogen on the base steel is suppressed, and the film (x) does not contain fine particle components other than the metal salt (b) with a large particle size, the interface between the particles and the film is corroded. As a result of being prevented from becoming the starting point of the steel sheet, hydrogen intrusion into the inside of the steel sheet is suppressed, and excellent delayed fracture resistance can be obtained.

Description

本発明は、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板およびその製造方法並びに表面処理液に関する。本発明は、主として自動車、建材用の強度部材に適した鋼板であって、耐遅れ破壊性に優れた1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板およびその製造技術に関する。 The present invention relates to a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, a method for producing the same, and a surface treatment liquid. The present invention relates to a high-strength galvanized steel sheet which is mainly suitable for a strength member for automobiles and building materials and has a tensile strength of 1180 MPa or more, which is excellent in delayed fracture resistance, and a manufacturing technique thereof.

近年、自動車のCO排出量の低減および安全性確保の観点から、自動車に用いられる鋼板は高強度化が図られており、引張強度が1180MPaを超えるような高強度鋼板の適用も進められている。In recent years, from the viewpoint of reducing CO 2 emissions of automobiles and ensuring safety, steel sheets used in automobiles have been increased in strength, and the application of high-strength steel sheets having a tensile strength exceeding 1180 MPa has been promoted. There is.

しかしながら、強度の高い鋼材では、遅れ破壊が発生することが知られており、特に高張力ボルトが使用環境中において破断することが、しばしば報告されている。遅れ破壊とは、高強度鋼材が静的な負荷応力(引張り強さ以下の負荷応力)を受けた状態で、ある時間が経過したとき、外見上はほとんど塑性変形を伴うことなく、突然脆性的な破壊が生じる現象である。遅れ破壊は、鋼材強度が高くなるほど生じやすく、特に引張強度が1180MPa以上の高強度鋼でより顕著となる。 However, it is known that delayed fracture occurs in high-strength steel materials, and it is often reported that high-strength bolts break in a usage environment. Delayed fracture is a state in which a high-strength steel material is subjected to static load stress (load stress less than tensile strength), and when a certain period of time elapses, it is suddenly brittle with almost no plastic deformation in appearance. It is a phenomenon that causes severe destruction. Delayed fracture is more likely to occur as the strength of the steel material increases, and is particularly remarkable in high-strength steel having a tensile strength of 1180 MPa or more.

鋼板の場合、遅れ破壊は、プレス加工により所定の形状に成形したときの残留応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。この水素脆性の原因となる水素は、ほとんどの場合、外部環境から鋼中に侵入、拡散した水素であると考えられており、代表的には、鋼板の腐食の際に発生した水素が鋼中に侵入、拡散したものがある。 In the case of steel sheets, it is known that delayed fracture is caused by residual stress when formed into a predetermined shape by press working and hydrogen brittleness of steel in the stress concentration portion. In most cases, the hydrogen that causes this hydrogen brittleness is considered to be hydrogen that has penetrated and diffused into the steel from the external environment, and typically, the hydrogen generated during the corrosion of the steel sheet is in the steel. Some have invaded and spread to.

高強度鋼板におけるこのような遅れ破壊を防止するために、例えば、特許文献1では、鋼板の組織や成分を調整することにより、遅れ破壊感受性を弱める検討がなされている。また、特許文献2では、遅れ破壊を防止する高強度合金化溶融亜鉛めっき鋼板に関する検討がなされている。 In order to prevent such delayed fracture in a high-strength steel sheet, for example, Patent Document 1 has studied to weaken the delayed fracture sensitivity by adjusting the structure and composition of the steel sheet. Further, in Patent Document 2, a study has been made on a high-strength alloyed hot-dip galvanized steel sheet that prevents delayed fracture.

特開2004−231992号公報Japanese Unexamined Patent Publication No. 2004-231992 特開平6−145893号公報Japanese Unexamined Patent Publication No. 6-145893

しかし、特許文献1の手法では、外部環境から鋼板内部に侵入する水素量は変化しないため、遅れ破壊の発生を遅らせることは可能であるが、遅れ破壊自体を防止することはできない。また、特許文献2の手法では、亜鉛めっきの犠牲防食効果により素地への水素の侵入が促進されるため、優れた耐遅れ破壊性は期待できない。 However, in the method of Patent Document 1, since the amount of hydrogen invading the inside of the steel sheet from the external environment does not change, it is possible to delay the occurrence of delayed fracture, but it is not possible to prevent the delayed fracture itself. Further, in the method of Patent Document 2, since the invasion of hydrogen into the substrate is promoted by the sacrificial anticorrosion effect of zinc plating, excellent delayed fracture resistance cannot be expected.

したがって本発明の目的は、以上のような従来技術の課題を解決し、耐遅れ破壊性に優れた1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-strength galvanized steel sheet having excellent delayed fracture resistance and a tensile strength of 1180 MPa or more.

また、本発明の他の目的は、上記のような優れた特性を有する1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法および表面処理液を提供することにある。
なお、以下、本発明の「1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板」を、単に「高強度亜鉛めっき鋼板」ともいう。
Another object of the present invention is to provide a method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more having the above-mentioned excellent properties and a surface treatment liquid.
Hereinafter, the "high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more" of the present invention is also simply referred to as a "high-strength galvanized steel sheet".

本発明者らは、使用環境中における亜鉛めっき鋼板の遅れ破壊を防止するために、鋼板内部に侵入する水素量を低減する手段について鋭意検討および研究を重ねた。その結果、亜鉛めっき鋼板の表面に特定の金属塩を含有し且つ他の特定の粒子成分を含まない樹脂皮膜を形成することにより、鋼板内部への水素侵入が抑制され、優れた耐遅れ破壊性が得られることを見出した。 The present inventors have conducted extensive studies and studies on means for reducing the amount of hydrogen invading the inside of the galvanized steel sheet in order to prevent delayed fracture of the galvanized steel sheet in the usage environment. As a result, by forming a resin film containing a specific metal salt and not containing other specific particle components on the surface of the galvanized steel sheet, hydrogen intrusion into the steel sheet is suppressed and excellent delay fracture resistance is achieved. Was found to be obtained.

本発明は、以上のような知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の表面に皮膜(x)を含む皮膜を有し、該皮膜(x)は、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が該皮膜(x)の膜厚以上の粒子成分を含有せず、膜厚が0.3μm以上であり、皮膜(x)中での金属塩(b)の含有量が5質量%以上である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[2]上記[1]の高強度亜鉛めっき鋼板において、金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[3]上記[1]または[2]の高強度亜鉛めっき鋼板において、金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[4]上記[1]〜[3]のいずれかの高強度亜鉛めっき鋼板において、金属塩(b)の鋼板片面あたりの付着量が50mg/m以上である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[5]上記[1]〜[4]のいずれかの高強度亜鉛めっき鋼板において、金属塩(b)がトリポリリン酸二水素アルミニウムであり、皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[6]上記[1]〜[5]のいずれかの高強度亜鉛めっき鋼板において、皮膜(x)は、導電性粒子および固体潤滑剤粒子を含有しない、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[7]上記[1]〜[6]のいずれかの高強度亜鉛めっき鋼板において、皮膜(x)は、金属塩(b)以外の粒子成分を含有しない、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[8]上記[1]〜[7]のいずれかの高強度亜鉛めっき鋼板において、皮膜(x)中に存在する金属塩(b)の含有量が40質量%以下である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[9]上記[1]〜[8]のいずれかの高強度亜鉛めっき鋼板において、皮膜(x)の膜厚が4.0μm以下である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet) has a film containing a film (x) on the surface, and the film (x) is an organic resin (a). ) And a metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group, and has a maximum particle size other than the metal salt (b). It does not contain a particle component equal to or larger than the film thickness of the film (x), has a film thickness of 0.3 μm or more, and has a metal salt (b) content of 5% by mass or more in the film (x). A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more.
[2] In the high-strength galvanized steel sheet of the above [1], the metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum, and has a tensile strength of 1180 MPa or more. High-strength galvanized steel sheet with.
[3] In the high-strength galvanized steel sheet of the above [1] or [2], the metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphite group, and a silicic acid group. A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more.
[4] In any of the above [1] to [3], the high-strength galvanized steel sheet has a tensile strength of 1180 MPa or more, in which the amount of the metal salt (b) adhered to one side of the steel sheet is 50 mg / m 2 or more. High-strength galvanized steel sheet.
[5] In the high-strength galvanized steel sheet according to any one of [1] to [4] above, the metal salt (b) is aluminum dihydrogen tripolyphosphate, and the film thickness (x) is 1.0 μm or more. , A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, in which the content of aluminum dihydrogen tripolyphosphate in the film (x) is 17 to 45% by mass.
[6] In the high-strength galvanized steel sheet according to any one of [1] to [5] above, the film (x) does not contain conductive particles and solid lubricant particles, and has a tensile strength of 1180 MPa or more. Plated steel plate.
[7] In the high-strength galvanized steel sheet according to any one of [1] to [6] above, the film (x) does not contain any particle components other than the metal salt (b) and has a high strength of 1180 MPa or more. Galvanized steel sheet.
[8] In the high-strength galvanized steel sheet according to any one of [1] to [7] above, the content of the metal salt (b) present in the film (x) is 40% by mass or less, and the tension is 1180 MPa or more. High-strength galvanized steel sheet with strength.
[9] In the high-strength galvanized steel sheet according to any one of [1] to [8] above, a high-strength galvanized steel sheet having a film thickness (x) of 4.0 μm or less and a tensile strength of 1180 MPa or more.

[10]引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の表面に皮膜(x)を含む皮膜を有する1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法であって、該皮膜(x)は、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が該皮膜(x)の膜厚以上の粒子成分を含有せず、膜厚が0.3μm以上であり、皮膜(x)中での金属塩(b)の含有量が5質量%以上であり、前記皮膜(x)を、前記有機樹脂(a)と、前記金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が形成すべき前記皮膜(x)の膜厚以上の粒子成分を含有しない表面処理液を、前記皮膜(x)を形成すべき表面に付着させることにより形成する、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[11]上記[10]の製造方法において、金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[12]上記[10]または[11]の製造方法において、金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[13]上記[10]〜[12]のいずれかの製造方法において、金属塩(b)の鋼板片面あたりの付着量が50mg/m以上である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[14]上記[10]〜[13]のいずれかの製造方法において、金属塩(b)がトリポリリン酸二水素アルミニウムであり、皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[15]上記[10]〜[14]のいずれかの製造方法において、皮膜(x)は、導電性粒子および固体潤滑剤粒子を含有しない、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[16]上記[10]〜[15]のいずれかの製造方法において、表面処理液は、金属塩(b)以外の粒子成分を含有しない、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[17]上記[10]〜[16]のいずれかの製造方法において、皮膜(x)中に存在する金属塩(b)の含有量が40質量%以下である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[18]上記[10]〜[17]のいずれかの製造方法において、皮膜(x)の膜厚が4.0μm以下である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[10] A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more having a film containing a film (x) on the surface of a galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet). In the production method, the film (x) is composed of an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group. In addition to the metal salt (b), it does not contain a particle component having a maximum particle size equal to or larger than the film thickness of the film (x), and has a film thickness of 0.3 μm or more in the film (x). The content of the metal salt (b) is 5% by mass or more, and the film (x) contains the organic resin (a) and the metal salt (b), and is other than the metal salt (b). Is formed by adhering a surface treatment liquid containing no particle components equal to or larger than the film thickness of the film (x) to be formed to the surface on which the film (x) should be formed, and having a maximum particle size of 1180 MPa or more. A method for manufacturing a high-strength galvanized steel sheet having tensile strength.
[11] In the production method of the above [10], the metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum, and has a high strength having a tensile strength of 1180 MPa or more. Manufacturing method of galvanized steel sheet.
[12] In the production method of [10] or [11] above, the metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphorous acid group, and a silicic acid group, and is 1180 MPa or more. A method for manufacturing a high-strength zinc-plated steel sheet having the tensile strength of.
[13] In any of the above-mentioned production methods [10] to [12], high-strength zinc having a tensile strength of 1180 MPa or more, in which the amount of the metal salt (b) adhered to one side of the steel sheet is 50 mg / m 2 or more. Manufacturing method of plated steel sheet.
[14] In any of the above-mentioned production methods [10] to [13], the metal salt (b) is aluminum dihydrogen tripolyphosphate, the film thickness (x) is 1.0 μm or more, and the film ( A method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, wherein the content of aluminum dihydrogen tripolyphosphate in x) is 17 to 45% by mass.
[15] In any of the above-mentioned production methods [10] to [14], the film (x) is a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, which does not contain conductive particles and solid lubricant particles. Production method.
[16] In any of the above-mentioned production methods [10] to [15], the surface treatment liquid is a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more and containing no particle components other than the metal salt (b). Production method.
[17] In any of the above-mentioned production methods [10] to [16], the content of the metal salt (b) present in the film (x) is 40% by mass or less, and the tensile strength is 1180 MPa or more. A method for manufacturing high-strength galvanized steel sheets.
[18] A method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more and having a film thickness (x) of 4.0 μm or less in any of the above-mentioned production methods [10] to [17].

[19]引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の遅れ破壊を抑制するための皮膜(x)を含む皮膜を前記亜鉛めっき鋼板の表面に形成するための表面処理液であって、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が形成すべき前記皮膜(x)の膜厚以上の粒子成分を含有せず、全固形分中での前記金属塩(b)の含有割合が5質量%以上である、表面処理液。 [19] A film containing a film (x) for suppressing delayed fracture of a galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet) is formed on the surface of the galvanized steel sheet. A surface treatment liquid for this purpose, which contains an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group, and Other than the metal salt (b), no particle component equal to or larger than the thickness of the film (x) to be formed by the maximum particle size is contained, and the content ratio of the metal salt (b) in the total solid content is 5. A surface treatment liquid having a mass% or more.

[20]上記[1]〜[9]のいずれかの高強度亜鉛めっき鋼板において、皮膜が、無機皮膜と前記無機皮膜上に形成された皮膜(x)を含み、前記無機皮膜は、シラン化合物、ジルコニウム化合物から選ばれる少なくとも1種((c)成分)を含有し、前記(c)成分の鋼板片面あたりの付着量が200〜500mg/mである、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
[21]上記[10]〜[18]のいずれかの製造方法において、皮膜が、無機皮膜と前記無機皮膜上に形成された皮膜(x)を含み、シラン化合物、ジルコニウム化合物から選ばれる少なくとも1種((c)成分)を含有する表面処理液を、前記亜鉛めっき鋼板に付着させることにより、前記(c)成分の鋼板片面あたりの付着量が200〜500mg/mである前記無機皮膜を形成し、その後、前記無機皮膜の表面に前記皮膜(x)を形成する、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
[20] In the high-strength zinc-plated steel sheet according to any one of [1] to [9] above, the film includes an inorganic film and a film (x) formed on the inorganic film, and the inorganic film is a silane compound. , At least one selected from zirconium compounds (component (c)) is contained, and the amount of the component (c) adhered to one side of the steel sheet is 200 to 500 mg / m 2 , and the strength has a tensile strength of 1180 MPa or more. Zinc plated steel sheet.
[21] In any of the above-mentioned production methods [10] to [18], the film comprises an inorganic film and a film (x) formed on the inorganic film, and at least one selected from a silane compound and a zirconium compound. By adhering the surface treatment liquid containing the seed (component (c)) to the zinc-plated steel sheet, the inorganic film in which the amount of the component (c) adhered per one side of the steel sheet is 200 to 500 mg / m 2. A method for producing a high-strength zinc-plated steel sheet having a tensile strength of 1180 MPa or more, which is formed and then the film (x) is formed on the surface of the inorganic film.

本発明の高強度亜鉛めっき鋼板は、耐遅れ破壊性に優れる。
本発明の高強度亜鉛めっき鋼板は、亜鉛めっき表面に形成される特定の皮膜により、腐食抑制を通じて鋼板内部への水素の侵入が抑制され、遅れ破壊が効果的に抑制される優れた耐遅れ破壊性を有する。
The high-strength galvanized steel sheet of the present invention has excellent delayed fracture resistance.
The high-strength galvanized steel sheet of the present invention has an excellent delayed fracture resistance in which the intrusion of hydrogen into the steel sheet is suppressed through corrosion suppression by a specific film formed on the galvanized surface, and delayed fracture is effectively suppressed. Has sex.

また、皮膜構成がより適正化された本発明の高強度亜鉛めっき鋼板は、優れた耐遅れ破壊性とともに、良好な塗装後耐食性を有する。 Further, the high-strength galvanized steel sheet of the present invention having a more optimized film structure has excellent delayed fracture resistance and good post-painting corrosion resistance.

また、皮膜構成がより適正化された本発明の高強度亜鉛めっき鋼板は、優れた耐遅れ破壊性とともに、良好な塗膜密着性を有する。 Further, the high-strength galvanized steel sheet of the present invention having a more optimized film structure has excellent delayed fracture resistance and good coating film adhesion.

また、本発明の高強度亜鉛めっき鋼板は、主として自動車、建材用の強度部材に適する。本発明の高強度亜鉛めっき鋼板は、鋼板の強度向上により鋼板の板厚を削減できるため、自動車分野、建材分野に適用する強度部材の重量削減が可能となる。 Further, the high-strength galvanized steel sheet of the present invention is mainly suitable for strength members for automobiles and building materials. Since the high-strength galvanized steel sheet of the present invention can reduce the thickness of the steel sheet by improving the strength of the steel sheet, it is possible to reduce the weight of the strength member applied to the fields of automobiles and building materials.

また、本発明の高強度亜鉛めっき鋼板の製造方法と表面処理液によれば、上記のような優れた特性を有する高強度亜鉛めっき鋼板を安定して製造することができる。 Further, according to the method for producing a high-strength galvanized steel sheet and the surface treatment liquid of the present invention, a high-strength galvanized steel sheet having the above-mentioned excellent characteristics can be stably produced.

実施例で用いた耐遅れ破壊性評価用試験片を模式的に示す図面The drawing which shows typically the test piece for delay fracture resistance evaluation used in an Example. 実施例において行った複合サイクル腐食試験の工程を示す説明図Explanatory drawing showing process of composite cycle corrosion test performed in Example 実施例で用いた耐食性評価用試験片を模式的に示す図面The drawing which shows typically the test piece for corrosion resistance evaluation used in an Example.

以下、本発明について、実施形態を示して説明する。ただし、本発明は、以下の実施形態に限定されない。 Hereinafter, the present invention will be described with reference to embodiments. However, the present invention is not limited to the following embodiments.

<第一実施形態>
本発明の第一実施形態にかかる高強度亜鉛めっき鋼板は、引張強度が1180MPa以上の亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)の表面に、皮膜(x)を有する。前記皮膜(x)は特定の金属塩を含有する。
<First Embodiment>
The high-strength galvanized steel sheet according to the first embodiment of the present invention has a film (x) on the surface of a galvanized steel sheet (including an alloyed hot-dip galvanized steel sheet) having a tensile strength of 1180 MPa or more. The film (x) contains a specific metal salt.

本発明の高強度亜鉛めっき鋼板の下地(基質)となる鋼板(下地鋼板)は、引張強度が1180MPa以上の高強度鋼板であり、引張強度が1480MPa以上の高強度鋼板であることがより好ましい。引張強度が低い鋼板は、本質的に遅れ破壊が生じにくい。本発明の効果は、引張強度が低い鋼板でも発現されるが、引張強度が1180MPa以上の高強度鋼板で顕著に発現され、引張強度が1480MPa以上の高強度鋼板でより顕著に発現されるためである。下地鋼板の化学組成や鋼組織は特に限定されない。下地鋼板としては、自動車分野や建材分野などで用いられる、特に自動車分野などで多く用いられる引張強度が1180MPa以上の高強度鋼板が好ましく、引張強度が1480MPa以上の高強度鋼板がさらに好ましい。 The steel sheet (base steel sheet) serving as the base (substrate) of the high-strength galvanized steel sheet of the present invention is a high-strength steel sheet having a tensile strength of 1180 MPa or more, and more preferably a high-strength steel sheet having a tensile strength of 1480 MPa or more. Steel sheets with low tensile strength are inherently less prone to delayed fracture. The effect of the present invention is exhibited even in a steel sheet having a low tensile strength, but it is remarkably exhibited in a high-strength steel sheet having a tensile strength of 1180 MPa or more, and more remarkably in a high-strength steel sheet having a tensile strength of 1480 MPa or more. be. The chemical composition and steel structure of the base steel sheet are not particularly limited. As the base steel sheet, a high-strength steel sheet having a tensile strength of 1180 MPa or more, which is often used in the automobile field or the building material field, is preferable, and a high-strength steel sheet having a tensile strength of 1480 MPa or more is more preferable.

本発明において、下地鋼板として好ましく用いられる高強度鋼板は、所望の引張強度を有するものであれば、いかなる組成および組織を有するものでもよい。かかる高強度鋼板としては、機械特性などの諸特性を向上させるために、例えば、C、Nなどの侵入型固溶元素およびSi、Mn、P、Crなどの置換型固溶元素の添加による固溶体強化、Ti、Nb、V、Alなどの炭・窒化物による析出強化、W、Zr、Hf、Co、B、Cu、希土類元素などの強化元素の添加などの化学組成的改質、再結晶の起こらない温度で回復焼きなましすることによる強靭化あるいは完全に再結晶させずに未再結晶領域を残す部分再結晶強化、ベイナイトやマルテンサイト単相化あるいはフェライトとこれら変態組織の複合組織化といった変態組織による強化、フェライト粒径をdとしたときのHall-Petchの式:σ=σ+kd-1/2(式中σ:応力、σ,k:材料定数)で表される細粒化強化、圧延などによる加工強化といった組織的ないし構造的改質を単独でまたは複数組み合わせて施した高強度鋼板を用いることができる。In the present invention, the high-strength steel sheet preferably used as the base steel sheet may have any composition and structure as long as it has a desired tensile strength. In such a high-strength steel sheet, in order to improve various properties such as mechanical properties, for example, a solid solution obtained by adding an intrusive solid solution element such as C or N and a substitution type solid solution element such as Si, Mn, P or Cr. Reinforcement, precipitation strengthening with charcoal / nitride such as Ti, Nb, V, Al, chemical composition modification such as addition of strengthening elements such as W, Zr, Hf, Co, B, Cu and rare earth elements, recrystallization Transformational structures such as toughening by recovery annealing at a temperature that does not occur, partial recrystallization strengthening that leaves unrecrystallized regions without complete recrystallization, bainite or martensite monophasic formation, or composite assembly of ferrite and these transformational structures. Reinforcement by, Hall-Petch equation when ferrite particle size is d: σ = σ 0 + kd -1 / 2 (in the equation σ: stress, σ 0 , k: material constant) A high-strength steel plate that has undergone structural or structural modification such as strengthening or processing strengthening by rolling, alone or in combination, can be used.

このような高強度鋼板の組成としては、例えば、C:0.1〜0.4質量%、Si:0〜2.5質量%、Mn:1〜3質量%、P:0〜0.05質量%、S:0〜0.005質量%、残部がFeおよび不可避的不純物からなる組成が挙げられる。さらに、前記組成にCu、Ti、V、Al、Crなどの任意元素を1種または2種以上含有する組成が挙げられる。一般にこれらの任意元素は、合計で10質量%程度を限度に添加されることが好ましい。 The composition of such a high-strength steel sheet is, for example, C: 0.1 to 0.4% by mass, Si: 0 to 2.5% by mass, Mn: 1 to 3% by mass, P: 0 to 0.05. The composition includes mass%, S: 0 to 0.005 mass%, and the balance is Fe and unavoidable impurities. Further, a composition containing one or more arbitrary elements such as Cu, Ti, V, Al, and Cr in the composition can be mentioned. Generally, it is preferable that these arbitrary elements are added up to a total of about 10% by mass.

また、前記高強度鋼板として商業的に入手可能なものとしては、例えば、JFE−CA1180、JFE−CA1370、JFE−CA1470、JFE−CA1180SF、JFE−CA1180Y1、JFE−CA1180Y2(以上、JFEスチール(株)製)、SAFC1180D(新日鐵住金(株)製)などが非限定的に例示できる。 Commercially available high-strength steel sheets include, for example, JFE-CA1180, JFE-CA1370, JFE-CA1470, JFE-CA1180SF, JFE-CA1180Y1, and JFE-CA1180Y2 (all, JFE Steel Corporation). , SAFC1180D (manufactured by Nippon Steel & Sumitomo Metal Corporation), etc. can be exemplified without limitation.

また、前記高強度鋼板の板厚も特に限定されないが、一例として、前記高強度鋼板の板厚は、0.8mm以上が好ましく、1.2mm以上がより好ましい。また、一例として、前記高強度鋼板の板厚は、2.5mm以下が好ましく、2.0mm以下がより好ましい。 Further, the plate thickness of the high-strength steel plate is not particularly limited, but as an example, the plate thickness of the high-strength steel plate is preferably 0.8 mm or more, more preferably 1.2 mm or more. Further, as an example, the thickness of the high-strength steel sheet is preferably 2.5 mm or less, more preferably 2.0 mm or less.

高強度鋼板(下地鋼板)を被覆する亜鉛めっきは、溶融めっき法、電気めっき法、無電解めっき法、蒸着めっき法などのいずれのめっき方法で形成されたものでもよい。工業的には溶融亜鉛めっき(溶融亜鉛めっき鋼板)、電気亜鉛めっき(電気亜鉛めっき鋼板)などが一般的である。本発明における亜鉛めっき鋼板には、上記めっき方法で形成された亜鉛めっき鋼板が含まれ、例えば、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、無電解亜鉛めっき鋼板、蒸着亜鉛めっき鋼板が含まれる。また、本発明の亜鉛めっき鋼板には、前記溶融亜鉛めっき後に合金化処理して得られる合金化溶融亜鉛めっき鋼板が含まれる。 The zinc plating for coating the high-strength steel plate (base steel plate) may be formed by any plating method such as a hot-dip plating method, an electroplating method, an electrolytic-free plating method, and a vapor deposition plating method. Industrially, hot-dip galvanized (hot-dip galvanized steel sheet), electrogalvanized (electrogalvanized steel sheet), and the like are common. The galvanized steel sheet in the present invention includes a galvanized steel sheet formed by the above plating method, and includes, for example, a hot-dip galvanized steel sheet, an electrogalvanized steel sheet, an electrolytically electroless galvanized steel sheet, and a vapor-deposited galvanized steel sheet. Further, the galvanized steel sheet of the present invention includes an alloyed hot-dip galvanized steel sheet obtained by alloying after the hot-dip galvanizing.

本発明者らの研究および検討結果によれば、腐食過程における亜鉛めっきが被覆された鋼板内部への水素侵入は、湿潤下における腐食過程において、亜鉛めっきの犠牲防食作用により、地鉄上で多くの水素が発生することが大きく寄与していると考えられ、水素侵入を抑制するためには、腐食過程におけるZnの溶解を抑制することが重要であることが判明した。そして、亜鉛めっき表面に特定の金属塩を存在させることにより、その特定の金属塩がZnと錯体を形成することで鋼板表面に緻密な不働態皮膜が形成され、さらに、その特定の金属塩に含まれるイオンのpH緩衝効果によりpH8〜11に安定することでZnの溶解が抑制され、地鉄上での水素発生が抑えられ、それらの結果、鋼板内部への水素侵入を抑制できると考えられる。 According to the research and examination results of the present inventors, hydrogen invasion into the inside of the steel plate coated with zinc plating during the corrosion process is large on the base iron due to the sacrificial anticorrosive action of zinc plating during the corrosion process under wet conditions. It was found that it is important to suppress the dissolution of Zn in the corrosion process in order to suppress the invasion of hydrogen. Then, by allowing a specific metal salt to be present on the zinc-plated surface, the specific metal salt forms a complex with Zn to form a dense passivation film on the surface of the steel sheet, and further, the specific metal salt is formed. It is considered that the dissolution of Zn is suppressed by stabilizing the pH at pH 8 to 11 due to the pH buffering effect of the contained ions, the generation of hydrogen on the base metal is suppressed, and as a result, the invasion of hydrogen into the steel sheet can be suppressed. ..

このため本発明の高強度亜鉛めっき鋼板は、引張強度が1180MPa以上である亜鉛めっき鋼板の表面に、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有する皮膜(x)を含む皮膜を形成する。この皮膜(x)は2種以上の金属塩(b)を含むものでもよい。 Therefore, the high-strength galvanized steel sheet of the present invention has an organic resin (a) and a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group on the surface of the galvanized steel sheet having a tensile strength of 1180 MPa or more. A film containing a film (x) containing a metal salt (b) containing at least one of them is formed. This film (x) may contain two or more kinds of metal salts (b).

本発明では、有機樹脂(a)により形成された樹脂皮膜中に金属塩(b)を含有させることで、金属塩(b)を鋼板表面に保持する形態を採るが、これは、樹脂皮膜が、腐食環境に晒されたときに鋼板表面を腐食環境から遮断するバリア層として機能するとともに、金属塩(b)を鋼板表面に強固に保持する機能を有するためである。 In the present invention, the metal salt (b) is contained in the resin film formed of the organic resin (a) to hold the metal salt (b) on the surface of the steel sheet. This is because it functions as a barrier layer that shields the surface of the steel sheet from the corrosive environment when exposed to a corrosive environment, and also has a function of firmly holding the metal salt (b) on the surface of the steel sheet.

有機樹脂(a)の種類に特に制限はなく、例えば、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、アルキド樹脂、アクリル樹脂、ポリエチレン樹脂、ポリブタジエン樹脂等のポリオレフィン樹脂、ポリエステル樹脂、アミノ樹脂、フェノール樹脂、フッ素樹脂、シリコン樹脂などが挙げられ、これらの1種以上を用いることができる。また、これらのなかで、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリエチレン樹脂が、腐食因子である水分や塩化物をバリアする効果が高いため特に好ましい。 The type of the organic resin (a) is not particularly limited, and for example, polyolefin resins such as epoxy resin, modified epoxy resin, urethane resin, alkyd resin, acrylic resin, polyethylene resin, and polybutadiene resin, polyester resin, amino resin, and phenol resin. Fluororesin, silicon resin and the like can be mentioned, and one or more of these can be used. Among these, urethane resin, epoxy resin, acrylic resin, and polyethylene resin are particularly preferable because they have a high effect of barriering moisture and chloride, which are corrosion factors.

リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)は、Zn2+とキレート錯体を形成し、安定した不働態皮膜を形成するものである。前記金属塩(b)としては、無機金属塩が挙げられる。前記金属塩(b)としては、アルカリ金属、アルカリ土類金属、アルミニウム、亜鉛、ジルコニウム等を含む金属塩が挙げられる。前記金属塩(b)としては、例えば、ポリリン酸ナトリウム(二リン酸ナトリウム)、トリポリリン酸ナトリウム、トリポリリン酸二水素アルミニウム、ポリリン酸亜鉛、トリポリリン酸亜鉛、リン酸カルシウム、リン酸マグネシウム亜鉛、亜リン酸亜鉛、亜リン酸カルシウム、亜リン酸亜鉛カルシウム、亜リン酸亜鉛マグネシウム、ケイ酸カルシウムジルコニウム、リン酸ジルコニウム、モリブデン酸亜鉛、モリブデン酸カルシウム、リンモリブデン酸アルミニウムなどが挙げられ、これらの1種以上を用いることができる。A metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group forms a chelate complex with Zn 2+ to form a stable inactive film. be. Examples of the metal salt (b) include inorganic metal salts. Examples of the metal salt (b) include metal salts containing alkali metals, alkaline earth metals, aluminum, zinc, zirconium and the like. Examples of the metal salt (b) include sodium polyphosphate (sodium diphosphate), sodium tripolyphosphate, aluminum dihydrogen tripolyphosphate, zinc polyphosphate, zinc tripolyphosphate, calcium phosphate, magnesium magnesium phosphate, and zinc phosphite. , Calcium phosphite, Calcium zinc phosphite, Zinc magnesium phosphite, Calcium zirconium silicate, Zirconium phosphate, Zinc molybdate, Calcium molybdate, Aluminum phosphate, etc., and one or more of these should be used. Can be done.

また、これらのなかでも、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩は、pHを高く保つ効果(pH緩衝効果)が得られるため、特に好ましい。アルカリ金属、アルカリ土類金属、アルミニウムは、イオン化傾向が高いため、他の金属塩に比べて、電離した際に水酸化物を作りにくい傾向がある。つまり、水酸化物イオン(OH)の消費が他の金属イオンに比べ少ないため、pHを高く(OH濃度を高く)保つと考えられる。このため金属塩(b)は、特にアルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩であることが好ましい。この場合も、皮膜(x)は2種以上の金属塩(b)を含むことができる。Further, among these, a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum is particularly preferable because it has an effect of keeping the pH high (pH buffering effect). Since alkali metals, alkaline earth metals, and aluminum have a high ionization tendency, they tend to be less likely to form hydroxides when ionized as compared with other metal salts. That is, since the consumption of hydroxide ion (OH − ) is smaller than that of other metal ions, it is considered that the pH is kept high (OH concentration is high). Therefore, the metal salt (b) is particularly preferably a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum. Also in this case, the film (x) can contain two or more kinds of metal salts (b).

金属塩(b)としては、コスト的に有利である点から、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩であることが好ましい。 The metal salt (b) is preferably a metal salt containing at least one of a phosphoric acid group, a phosphorous acid group, and a silicic acid group from the viewpoint of cost advantage.

腐食過程でのZnの溶解を抑制して遅れ破壊の発生を抑制する効果を発現するためには、皮膜(x)中の金属塩(b)の含有量(皮膜質量に対する割合)を5質量%以上とする必要がある。また、遅れ破壊を抑制するという観点からは金属塩(b)の含有量が多くなることに制限はないが、金属塩(b)の含有量が多すぎると、自動車などの用途において塗膜密着性が劣化するため、特に自動車などの用途の場合には、金属塩(b)の含有量は44質量%以下とすることが好ましく、40質量%以下とすることがより好ましい。 In order to exhibit the effect of suppressing the dissolution of Zn in the corrosion process and suppressing the occurrence of delayed fracture, the content of the metal salt (b) in the film (x) (ratio to the film mass) is 5% by mass. It is necessary to do the above. Further, from the viewpoint of suppressing delayed fracture, there is no limitation that the content of the metal salt (b) increases, but if the content of the metal salt (b) is too large, the coating film adheres to the application such as automobiles. Since the properties deteriorate, the content of the metal salt (b) is preferably 44% by mass or less, more preferably 40% by mass or less, particularly in the case of applications such as automobiles.

また、鋼板片面あたりの金属塩(b)の付着量が少ないと、遅れ破壊の発生を抑制する効果が十分に得られないおそれがあり、このため金属塩(b)の付着量は鋼板片面あたり50mg/m以上とすることが好ましい。Further, if the amount of metal salt (b) adhered per one side of the steel sheet is small, the effect of suppressing the occurrence of delayed fracture may not be sufficiently obtained. Therefore, the amount of metal salt (b) adhered per one side of the steel sheet. It is preferably 50 mg / m 2 or more.

皮膜(x)の膜厚については、皮膜(x)が薄過ぎると鋼板を腐食環境から遮断するバリア層としての機能を発揮できなくなるため、皮膜(x)の膜厚は0.3μm以上とする。一方、自動車などの用途では、鋼板はプレス加工により所定の形状に加工された後に、スポット溶接により鋼板どうしを組み付ける工程がある。このとき、皮膜(x)が厚過ぎると溶接時の電流が流れず溶接不良となる場合があるため、スポット溶接を鋼板の接合に用いる場合は、皮膜(x)の膜厚は4.0μm以下であることが好ましい。 Regarding the film thickness of the film (x), if the film (x) is too thin, it cannot function as a barrier layer that shields the steel sheet from the corrosive environment, so the film thickness of the film (x) should be 0.3 μm or more. .. On the other hand, in applications such as automobiles, there is a step of assembling steel sheets to each other by spot welding after the steel sheets are processed into a predetermined shape by press working. At this time, if the film (x) is too thick, the current during welding may not flow and welding may be defective. Therefore, when spot welding is used for joining steel sheets, the film thickness of the film (x) is 4.0 μm or less. Is preferable.

また、耐遅れ破壊性がさらに高められる点から、金属塩(b)がトリポリリン酸二水素アルミニウムであり、皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%である態様が好ましい。 Further, from the viewpoint of further enhancing the delayed fracture resistance, the metal salt (b) is aluminum dihydrogen tripolyphosphate, the film (x) has a film thickness of 1.0 μm or more, and the tripolyline in the film (x). An embodiment in which the content of aluminum dihydrogen acid is 17 to 45% by mass is preferable.

本発明において亜鉛めっき鋼板上に形成される皮膜(x)は、上述したように有機樹脂(a)と特定の金属塩(b)を含む。この際、前記金属塩(b)は、前記皮膜(x)中に溶解された状態で含まれてもよいし、粒子の形態で含まれてもよい。また、前記金属塩(b)が皮膜(x)中に粒子の形態で含まれる場合、その粒子径(最大粒子径)は、特に制限されない。 In the present invention, the film (x) formed on the galvanized steel sheet contains the organic resin (a) and the specific metal salt (b) as described above. At this time, the metal salt (b) may be contained in the film (x) in a dissolved state, or may be contained in the form of particles. When the metal salt (b) is contained in the film (x) in the form of particles, the particle size (maximum particle size) is not particularly limited.

ただし、本発明では、皮膜(x)は、金属塩(b)以外には、最大粒子径が該皮膜(x)の膜厚以上である粒子成分を含有しないことが必要である。従来の樹脂被覆鋼板では、例えば、皮膜の導電性を向上させて溶接性を改善する目的で、皮膜中に導電性粒子を添加する場合がある。また、その他にも、プレス加工性を改善するために固体潤滑剤を添加するなど、種々の目的で粒子成分を添加する場合がある。 However, in the present invention, the film (x) needs to contain no particle components other than the metal salt (b) whose maximum particle size is equal to or larger than the film thickness of the film (x). In the conventional resin-coated steel sheet, for example, conductive particles may be added to the film for the purpose of improving the conductivity of the film and improving the weldability. In addition, particle components may be added for various purposes, such as adding a solid lubricant to improve press workability.

しかし、本発明の高強度亜鉛めっき鋼板の場合、皮膜(x)中に金属塩(b)以外の粒子成分を添加すると、粒子と皮膜(有機樹脂)の界面が腐食の起点となり、本発明の効果(耐遅れ破壊性の向上)の妨げとなりやすい。特に、粒子成分の粒径が皮膜(x)の膜厚に比べて大きいと欠陥が生じやすく、腐食の起点となる懸念がある。このため皮膜(x)には、金属塩(b)以外には、最大粒子径が皮膜(x)の膜厚以上である粒子成分を含有させない。このような粒子成分としては、導電性粒子、固体潤滑剤粒子が挙げられる。導電性粒子としては、セラミックス粒子、鉄合金粒子、ステンレス粒子等が挙げられる。固体潤滑剤粒子としては、二硫化モリブデン、グラファイト、窒化ホウ素等の無機固体潤滑剤粒子が挙げられる。 However, in the case of the high-strength galvanized steel sheet of the present invention, when a particle component other than the metal salt (b) is added to the film (x), the interface between the particles and the film (organic resin) becomes the starting point of corrosion, and the present invention It tends to hinder the effect (improvement of delayed fracture resistance). In particular, if the particle size of the particle component is larger than the film thickness of the film (x), defects are likely to occur, and there is a concern that it may become a starting point of corrosion. Therefore, the film (x) does not contain any particle components other than the metal salt (b) whose maximum particle size is equal to or larger than the film thickness of the film (x). Examples of such particle components include conductive particles and solid lubricant particles. Examples of the conductive particles include ceramic particles, iron alloy particles, stainless steel particles and the like. Examples of the solid lubricant particles include inorganic solid lubricant particles such as molybdenum disulfide, graphite, and boron nitride.

なお、皮膜(x)の膜厚の下限は0.3μmであるので、含有が許容される粒子成分の最大粒子径を0.3μm未満、好ましくは0.2μm以下とすれば、皮膜(x)の膜厚に拘わりなく、その条件を満たすことになる。
ここで、粒子成分の最大粒子径とは、皮膜(x)を、トルエンやアセトン等の前記皮膜(x)を溶解可能な有機溶媒により溶解させたのち、粒子成分を、ポリテトラフルオロエチレン等のフィルターで捕集し、洗浄、電解質溶媒に分散させたのちにコールター法により体積球相当径を測定して得られる粒度分布の最大値である。なお、皮膜(x)に複数種類の粒子成分が含まれる場合には、上記捕集後の粒子成分を電解質溶媒に分散させたのちに遠心分離法で粒子成分ごとに分離してから、それぞれの粒子成分についてコールター法により体積球相当径を測定すればよい。また、前記粒子成分が市販品として入手可能である場合、前記粒子成分の最大粒子径のカタログ値を、前記粒子成分の最大粒子径として用いてもよい。また、ここでいう最大粒子径とは一次粒子の最大粒子径を意味する。
Since the lower limit of the film thickness of the film (x) is 0.3 μm, if the maximum particle size of the particle components allowed to be contained is less than 0.3 μm, preferably 0.2 μm or less, the film (x) Regardless of the film thickness of, the condition is satisfied.
Here, the maximum particle size of the particle component means that the film (x) is dissolved in an organic solvent capable of dissolving the film (x) such as toluene or acetone, and then the particle component is made of polytetrafluoroethylene or the like. It is the maximum value of the particle size distribution obtained by collecting with a filter, washing, dispersing in an electrolyte solvent, and then measuring the equivalent volume sphere diameter by the Coulter method. When the film (x) contains a plurality of types of particle components, the collected particle components are dispersed in an electrolyte solvent, separated by a centrifugal separation method, and then separated into each particle component. The volume sphere equivalent diameter may be measured for the particle component by the Coulter method. When the particle component is available as a commercially available product, the catalog value of the maximum particle size of the particle component may be used as the maximum particle size of the particle component. Further, the maximum particle size referred to here means the maximum particle size of the primary particles.

本発明の皮膜(x)は、有機樹脂(a)と特定の金属塩(b)を含有し、且つ金属塩(b)以外には、上述したような粒径の大きい粒子成分を含有しないため、金属塩(b)以外に皮膜中に塗膜欠陥として作用する粒子が存在せず、粒子近傍が腐食起点となることもなく、耐遅れ破壊性を担保することができる。 This is because the film (x) of the present invention contains an organic resin (a) and a specific metal salt (b), and does not contain a particle component having a large particle size as described above other than the metal salt (b). In addition to the metal salt (b), there are no particles acting as coating film defects in the film, and the vicinity of the particles does not become a corrosion starting point, so that delayed fracture resistance can be ensured.

また、以上のような観点からは、皮膜(x)は、導電性粒子および固体潤滑剤粒子を含まないことが好ましく、皮膜(x)は、金属塩(b)以外の粒子成分を含まないことがより好ましく、また、皮膜(x)は、有機樹脂(a)と金属塩(b)のみからなることがさらに好ましいと言える。 From the above viewpoint, the film (x) preferably does not contain conductive particles and solid lubricant particles, and the film (x) does not contain particle components other than the metal salt (b). It can be said that the film (x) is more preferably composed of only the organic resin (a) and the metal salt (b).

本発明の高強度亜鉛めっき鋼板は、皮膜(x)を鋼板片面に形成したもの、鋼板両面に形成したもの、のいずれでもよい。 The high-strength galvanized steel sheet of the present invention may be either one in which a film (x) is formed on one side of the steel sheet or one in which the film (x) is formed on both sides of the steel sheet.

皮膜(x)中の金属塩(b)の含有量や鋼板片面あたりの付着量を測定する方法としては、例えば、蛍光X線分析が挙げられる。具体的には、皮膜表面にX線を照射し、金属塩(b)に含まれる金属元素の蛍光X線の強度を測定し、検量線と比較することで算出することができる。 Examples of the method for measuring the content of the metal salt (b) in the film (x) and the amount of adhesion per one side of the steel sheet include fluorescent X-ray analysis. Specifically, it can be calculated by irradiating the surface of the film with X-rays, measuring the intensity of the fluorescent X-rays of the metal element contained in the metal salt (b), and comparing it with the calibration curve.

また、皮膜(x)の膜厚については、皮膜断面を観察し、任意視野の複数箇所(例えば、3箇所)で皮膜(x)の厚さ(基材の亜鉛めっき鋼板面から皮膜(x)の表面までの厚さ)を測定し、それらの平均値を膜厚とする。断面加工の方法としては特に限定されないが、例えばFIB(Focused Ion Beam)加工などが挙げられる。 Regarding the film thickness of the film (x), observe the cross section of the film, and the thickness of the film (x) at multiple points (for example, 3 points) in an arbitrary field of view (from the galvanized steel sheet surface of the base material to the film (x)). (Thickness to the surface of) is measured, and the average value thereof is taken as the film thickness. The method of cross-section processing is not particularly limited, and examples thereof include FIB (Focused Ion Beam) processing.

次に、以上述べた本発明の実施形態にかかる高強度亜鉛めっき鋼板の製造方法について説明する。
この製造方法では、上述したような引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む)の表面に、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ金属塩(b)以外には、最大粒子径が形成すべき皮膜(x)の膜厚以上である粒子成分を含有しない表面処理液(樹脂皮膜形成用表面処理液)を付着させることにより、前記亜鉛めっき鋼板の表面に上述の皮膜(x)を形成する。
Next, a method for manufacturing a high-strength galvanized steel sheet according to the embodiment of the present invention described above will be described.
In this production method, an organic resin (a), a phosphoric acid group, and a phosphite group are formed on the surface of a galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet) as described above. It contains a metal salt (b) containing at least one of a silicic acid group and a molybdic acid group, and other than the metal salt (b), the maximum particle size is equal to or greater than the film thickness of the film (x) to be formed. The above-mentioned film (x) is formed on the surface of the galvanized steel sheet by adhering a surface treatment liquid (surface treatment liquid for forming a resin film) that does not contain a certain particle component.

なお、この製造方法において、前記表面処理液に金属塩(b)以外の粒子成分を含有させる場合、形成すべき皮膜(x)の膜厚の下限を予め設定し、その膜厚に応じた最大粒子径の粒子成分を表面処理液に含有させればよい。ここで、形成される皮膜(x)の膜厚の下限は0.3μmであるので、表面処理液中に含有させる粒子成分の最大粒子径を0.3μm未満、好ましくは0.2μm以下とすれば、皮膜(x)の膜厚に拘わりなく、上記の条件を満たすことになる。 In this production method, when the surface treatment liquid contains a particle component other than the metal salt (b), the lower limit of the film thickness of the film (x) to be formed is set in advance, and the maximum film thickness is set according to the film thickness. The particle component having a particle size may be contained in the surface treatment liquid. Here, since the lower limit of the film thickness of the film (x) to be formed is 0.3 μm, the maximum particle size of the particle components contained in the surface treatment liquid should be less than 0.3 μm, preferably 0.2 μm or less. For example, the above conditions are satisfied regardless of the film thickness of the film (x).

この製造方法において、表面処理液が含有する有機樹脂(a)及び金属塩(b)の詳細、表面処理液が、金属塩(b)以外には所定粒径以上の粒子成分を含有しない理由、形成される皮膜(x)の膜厚や金属塩(b)の含有量の限定理由などは、さきに説明した高強度亜鉛めっき鋼板に関する理由と同様である。 Details of the organic resin (a) and the metal salt (b) contained in the surface treatment liquid in this production method, the reason why the surface treatment liquid does not contain particle components having a predetermined particle size or more other than the metal salt (b). The reasons for limiting the film thickness of the formed film (x) and the content of the metal salt (b) are the same as the reasons for the high-strength galvanized steel sheet described above.

また、この製造方法における好ましい条件は以下の通りであり、その理由も、さきに説明した高強度亜鉛めっき鋼板に関する理由と同様である。
(i)金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩であること。
(ii)金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩であること。
(iii)皮膜(x)中での鋼板片面あたりの金属塩(b)の付着量が50mg/m以上であること。
(iv)金属塩(b)がトリポリリン酸二水素アルミニウムであり、皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%であること。
(v)表面処理液は、導電性粒子および固体潤滑剤粒子を含有しないこと。好ましくは、表面処理液は金属塩(b)以外の粒子成分を含有しないこと。特に好ましくは、表面処理液は、溶媒中に有機樹脂(a)と金属塩(b)のみを含有すること。
(vi)皮膜(x)中での金属塩(b)の含有量が44質量%以下であること、好ましくは40質量%以下であること。
(vii)皮膜(x)の膜厚が4.0μm以下であること。
Further, the preferable conditions in this manufacturing method are as follows, and the reason is the same as the reason for the high-strength galvanized steel sheet described above.
(I) The metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum.
(Ii) The metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphorous acid group, and a silicic acid group.
(Iii) The amount of metal salt (b) adhered to one side of the steel sheet in the film (x) is 50 mg / m 2 or more.
(Iv) The metal salt (b) is aluminum dihydrogen tripolyphosphate, the film thickness (x) is 1.0 μm or more, and the content of aluminum dihydrogen tripolyphosphate in the film (x) is 17 to. Must be 45% by mass.
(V) The surface treatment liquid shall not contain conductive particles and solid lubricant particles. Preferably, the surface treatment liquid does not contain any particle components other than the metal salt (b). Particularly preferably, the surface treatment liquid contains only the organic resin (a) and the metal salt (b) in the solvent.
(Vi) The content of the metal salt (b) in the film (x) is 44% by mass or less, preferably 40% by mass or less.
(Vii) The film thickness of the film (x) is 4.0 μm or less.

亜鉛めっき鋼板表面に皮膜(x)を形成するには、有機樹脂(a)を溶媒(水および/または有機溶剤)に溶解および/または分散させ、これに金属塩(b)(さらに必要に応じて他の成分)を添加した表面処理液を亜鉛めっき鋼板表面に付着させてコーティングした後、乾燥(一般に加熱乾燥)させる方法が採られる。 To form a film (x) on the surface of a galvanized steel sheet, the organic resin (a) is dissolved and / or dispersed in a solvent (water and / or an organic solvent), to which a metal salt (b) (and optionally) A method is adopted in which a surface treatment liquid to which (other components) is added is adhered to the surface of a galvanized steel sheet, coated, and then dried (generally heat-dried).

表面処理液を亜鉛めっき鋼板表面に付着させてコーティングする方法に特別な制限はなく、公知の方法、例えば、塗布方式、浸漬方式、スプレー方式などのいずれかを適用できる。塗布方式では、バーコーター、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーター、ダイコーターなどのいずれの塗布手段を用いてもよい。また、スクイズコーターなどによる塗布処理、浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。 There are no particular restrictions on the method of adhering the surface treatment liquid to the surface of the galvanized steel sheet for coating, and any of known methods such as a coating method, a dipping method, and a spraying method can be applied. In the coating method, any coating means such as a bar coater, a roll coater (3-roll method, 2-roll method, etc.), a squeeze coater, and a die coater may be used. Further, after the coating treatment by a squeeze coater or the like, the dipping treatment, and the spray treatment, it is possible to adjust the coating amount, make the appearance uniform, and make the film thickness uniform by the air knife method or the roll drawing method.

亜鉛めっき鋼板表面に付着させコーティングした表面処理液を加熱乾燥する方法は任意であり、例えば、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉等の手段を用いることができる。 The method of heating and drying the surface treatment liquid adhered to and coated on the surface of the galvanized steel sheet is arbitrary, and for example, means such as a dryer, a hot air furnace, a high frequency induction heating furnace, and an infrared furnace can be used.

上記の方法で亜鉛めっき鋼板表面に皮膜(x)を形成する際に、皮膜(x)中での金属塩(b)の含有量は、有機樹脂(a)と金属塩(b)の配合比率を変えることにより調整することができる。また、鋼板片面あたり金属塩(b)の付着量や皮膜(x)の膜厚は、表面処理液の濃度や付着量(コーティング量)を変えることにより調整することができる。 When the film (x) is formed on the surface of the galvanized steel sheet by the above method, the content of the metal salt (b) in the film (x) is the mixing ratio of the organic resin (a) and the metal salt (b). It can be adjusted by changing. Further, the adhesion amount of the metal salt (b) and the film thickness of the film (x) per one side of the steel sheet can be adjusted by changing the concentration and the adhesion amount (coating amount) of the surface treatment liquid.

本発明においてめっき下地鋼板として使用される高強度鋼板の製造方法は特に限定されない。本発明の理解を容易にするために、製鋼からの一連のプロセスについて、一例を挙げて簡単に説明する。但し、めっき下地鋼板となる高強度鋼板の製造工程としては、以下の例示に限定されるものではない。 The method for producing a high-strength steel sheet used as a plating base steel sheet in the present invention is not particularly limited. In order to facilitate the understanding of the present invention, a series of processes from steelmaking will be briefly described with an example. However, the manufacturing process of the high-strength steel sheet to be the plating base steel sheet is not limited to the following examples.

所定の成分組成の鋼を溶製し、常法に従い連続鋳造でスラブとする。次いで、得られたスラブを加熱炉中で1100〜1300℃の温度で加熱し、750〜950℃の仕上げ温度で熱間圧延を行い、500〜650℃にて巻き取る。これに続いて酸洗後、圧下率30〜70%の冷間圧延を行う。その後、必要に応じて、常法に従い、アルカリまたはアルカリと界面活性剤および鋼板に吸着して分子膜を形成する窒素や硫黄を含む有機化合物との混合溶液による洗浄、電解洗浄、温水洗浄、乾燥を行う清浄化処理を行った後、650〜900℃にて加熱処理し、急速冷却を行い、鋼板の引張強度の調整を行う。さらに必要に応じて、常法に従い0.01〜0.5%程度の調質圧延を行うことで所望の引張強度を有する鋼板を得る。 Steel having a predetermined composition is melted and continuously cast into a slab according to a conventional method. Next, the obtained slab is heated in a heating furnace at a temperature of 1100 to 1300 ° C., hot-rolled at a finishing temperature of 750 to 950 ° C., and wound at 500 to 650 ° C. Following this, after pickling, cold rolling with a reduction ratio of 30 to 70% is performed. Then, if necessary, according to a conventional method, cleaning with a mixed solution of alkali or alkali and an organic compound containing nitrogen or sulfur that adsorbs to a surfactant and a steel plate to form a molecular film, electrolytic cleaning, hot water cleaning, and drying. After performing the cleaning treatment, heat treatment is performed at 650 to 900 ° C., rapid cooling is performed, and the tensile strength of the steel plate is adjusted. Further, if necessary, a steel sheet having a desired tensile strength is obtained by performing temper rolling of about 0.01 to 0.5% according to a conventional method.

本発明の表面処理液は、引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の遅れ破壊を抑制するための皮膜(x)を含む皮膜を前記亜鉛めっき鋼板の表面に形成するためのものであり、有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ金属塩(b)以外には最大粒子径が形成すべき皮膜(x)の膜厚以上である粒子成分を含有せず、全固形分中での金属塩(b)の含有割合が5質量%以上である。なお、この表面処理液では、金属塩(b)以外の粒子成分を含有させる場合、当該表面処理液を適用して形成すべき皮膜(x)の膜厚の下限を予め設定し、その膜厚に応じた最大粒子径の粒子成分を含有させればよい。 The surface treatment liquid of the present invention is a galvanized steel sheet containing a film (x) for suppressing delayed fracture of a galvanized steel sheet having a tensile strength of 1180 MPa or more (however, including an alloyed hot-dip galvanized steel sheet). It contains an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group. In addition, the metal salt (b) does not contain any particle components other than the metal salt (b) whose maximum particle size is equal to or larger than the film thickness of the film (x) to be formed, and the content ratio of the metal salt (b) in the total solid content is 5. It is mass% or more. When the surface treatment liquid contains a particle component other than the metal salt (b), the lower limit of the film thickness of the film (x) to be formed by applying the surface treatment liquid is set in advance, and the film thickness is set. It is sufficient to contain the particle component having the maximum particle size according to the above.

この表面処理液で亜鉛めっき鋼板表面に形成される皮膜によって腐食過程での遅れ破壊の発生を抑制する効果を発現するためには、表面処理液の全固形分中での金属塩(b)の含有割合(表面処理液中の全固形分の含有質量に対する前記金属塩(b)の含有質量の割合)を5質量%以上とする必要がある。また、遅れ破壊を抑制するという観点からは金属塩(b)の含有割合が多くなることに制限はないが、金属塩(b)の含有割合が多すぎると、自動車などの用途において塗膜密着性および塗装後耐食性が劣化するため、特に自動車などの用途の場合には、表面処理液の全固形分中での金属塩(b)の含有割合は44質量%以下とすることが好ましく、40質量%以下とすることがより好ましい。 In order to exert the effect of suppressing the occurrence of delayed fracture in the corrosion process by the film formed on the surface of the galvanized steel sheet with this surface treatment liquid, the metal salt (b) in the total solid content of the surface treatment liquid must be used. The content ratio (ratio of the content mass of the metal salt (b) to the content mass of the total solid content in the surface treatment liquid) needs to be 5% by mass or more. Further, from the viewpoint of suppressing delayed fracture, there is no limitation that the content ratio of the metal salt (b) increases, but if the content ratio of the metal salt (b) is too large, the coating film adheres to the application such as automobiles. Since the properties and corrosion resistance after painting deteriorate, the content ratio of the metal salt (b) in the total solid content of the surface treatment liquid is preferably 44% by mass or less, especially in applications such as automobiles. It is more preferably mass% or less.

また、この表面処理液において、含有する有機樹脂(a)および金属塩(b)と溶媒の詳細、金属塩(b)以外には所定粒径以上の粒子成分を含有しない理由などは、さきに説明した高強度亜鉛めっき鋼板及びその製造方法に関するものと同様である。 In addition, the details of the organic resin (a) and the metal salt (b) and the solvent contained in this surface treatment liquid, the reason why the particle component having a predetermined particle size or more is not contained other than the metal salt (b), etc. It is the same as that relating to the high-strength galvanized steel sheet described and the method for producing the same.

また、この表面処理液における好ましい条件は以下の通りであり、その理由も、さきに説明した高強度亜鉛めっき鋼板に関する理由と同様である。
(i)金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩であること。
(ii)金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩であること。
(iii)金属塩(b)がトリポリリン酸二水素アルミニウムであること。
(iv)導電性粒子および固体潤滑剤粒子を含有しないこと。好ましくは、金属塩(b)以外の粒子成分を含有しないこと。特に好ましくは、溶媒中に有機樹脂(a)と金属塩(b)のみを含有すること。
Further, the preferable conditions for this surface treatment liquid are as follows, and the reason is the same as the reason for the high-strength galvanized steel sheet described above.
(I) The metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum.
(Ii) The metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphorous acid group, and a silicic acid group.
(Iii) The metal salt (b) is aluminum dihydrogen tripolyphosphate.
(Iv) Do not contain conductive particles or solid lubricant particles. Preferably, it does not contain any particle components other than the metal salt (b). Particularly preferably, only the organic resin (a) and the metal salt (b) are contained in the solvent.

以上のようにして、引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の表面に皮膜(x)を含む皮膜を有する1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板を製造できる。かかる高強度亜鉛めっき鋼板は、耐遅れ破壊性に優れる。さらに、良好な塗装後耐食性を有する。 As described above, high-strength zinc having a tensile strength of 1180 MPa or more having a film containing a film (x) on the surface of a galvanized steel sheet having a tensile strength of 1180 MPa or more (however, including an alloyed hot-dip galvanized steel sheet). Can manufacture plated steel sheets. Such a high-strength galvanized steel sheet is excellent in delayed fracture resistance. In addition, it has good post-painting corrosion resistance.

<第二実施形態>
次に、本発明の第二実施形態にかかる高強度亜鉛めっき鋼板について説明する。本発明の第二実施形態にかかる高強度亜鉛めっき鋼板は、鋼板表面に、無機皮膜と、上述の皮膜(x)を含む皮膜を有する。具体的には、前記高強度亜鉛めっき鋼板は、引張強度が1180MPa以上の亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)の表面に、所定の無機皮膜を有し、さらにその上に上述の皮膜(x)を有する。なお、本実施形態において、無機皮膜以外の構成については、上述した第一実施形態と同様であるので、その詳細な説明は省略する。
<Second embodiment>
Next, the high-strength galvanized steel sheet according to the second embodiment of the present invention will be described. The high-strength galvanized steel sheet according to the second embodiment of the present invention has an inorganic film and a film containing the above-mentioned film (x) on the surface of the steel sheet. Specifically, the high-strength galvanized steel sheet has a predetermined inorganic film on the surface of a galvanized steel sheet (including an alloyed hot-dip galvanized steel sheet) having a tensile strength of 1180 MPa or more, and further described above. Has a film (x) of. In this embodiment, the configurations other than the inorganic film are the same as those in the first embodiment described above, and thus detailed description thereof will be omitted.

本実施形態において、亜鉛めっき鋼板表面に形成される無機皮膜は、シラン化合物、ジルコニウム化合物から選ばれる少なくとも1種((c)成分)を含有する。(c)成分としては、特に限定されないが、シラン化合物としては、官能基を有するシラン化合物、例えば、ビニル基、エポキシ基、メタクリル基、アクリル基、アミノ基、メルカプト基、イソシアネート基などを有するシラン化合物が挙げられる。また、ジルコニウム化合物としては、塩化ジルコニウム、塩化ジルコニル、硫酸ジルコニウム、硫酸ジルコニル、硝酸ジルコニウム、硝酸ジルコニル、ジルコニウムフッ化水素酸、臭化ジルコニル、酢酸ジルコニル、炭酸ジルコニル、炭酸ジルコニウムアンモニウムなどが挙げられる。 In the present embodiment, the inorganic film formed on the surface of the galvanized steel sheet contains at least one kind (component (c)) selected from a silane compound and a zirconium compound. The component (c) is not particularly limited, but the silane compound includes a silane compound having a functional group, for example, a silane having a vinyl group, an epoxy group, a methacryl group, an acrylic group, an amino group, a mercapto group, an isocyanate group and the like. Examples include compounds. Examples of the zirconium compound include zirconium chloride, zirconium chloride, zirconium sulfate, zirconium sulfate, zirconium nitrate, zirconium nitrate, zirconium hydrofluoric acid, zirconium bromide, zirconium acetate, zirconium carbonate, and ammonium zirconium carbonate.

前記(c)成分の鋼板片面あたりの付着量は200〜500mg/mが好ましい。鋼板片面あたりの(c)成分の付着量が前記範囲であると、塗膜密着性をより高めやすくなる。The amount of the component (c) adhered to one side of the steel sheet is preferably 200 to 500 mg / m 2. When the amount of the component (c) adhered to one side of the steel sheet is within the above range, it becomes easier to improve the adhesion of the coating film.

前記(c)成分の鋼板片面あたりの付着量を測定する方法は、例えば、蛍光X線分析が挙げられる。具体的には、皮膜表面にX線を照射し、(c)成分に含まれる金属元素の蛍光X線の強度を測定し、検量線と比較することで算出することができる。 Examples of the method for measuring the amount of the component (c) adhered to one side of the steel sheet include fluorescent X-ray analysis. Specifically, it can be calculated by irradiating the surface of the film with X-rays, measuring the intensity of the fluorescent X-rays of the metal element contained in the component (c), and comparing it with the calibration curve.

本実施形態の高強度亜鉛めっき鋼板の製造方法としては、亜鉛めっき鋼板の表面に無機皮膜を形成する工程と、前記工程で形成した無機皮膜の表面に皮膜(x)を形成する工程を有する製造方法が挙げられる。 The method for producing a high-strength galvanized steel sheet of the present embodiment includes a step of forming an inorganic film on the surface of the galvanized steel sheet and a step of forming a film (x) on the surface of the inorganic film formed in the above step. The method can be mentioned.

無機皮膜を鋼板表面に形成するには、上記(c)成分を溶媒(主に水)に溶解および/または分散させた表面処理液(無機皮膜形成用表面処理液)を亜鉛めっき鋼板表面に付着させてコーティングした後、乾燥(一般に加熱乾燥)させる方法が採られる。 In order to form an inorganic film on the surface of a steel sheet, a surface treatment liquid (surface treatment liquid for forming an inorganic film) in which the above component (c) is dissolved and / or dispersed in a solvent (mainly water) is adhered to the surface of a galvanized steel sheet. After coating, a method of drying (generally heat-drying) is adopted.

前記表面処理液を亜鉛めっき鋼板表面に付着させてコーティングする方法に特別な制限はなく、公知の方法、例えば、塗布方式、浸漬方式、スプレー方式などのいずれかを適用できる。塗布方式では、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーター、ダイコーターなどのいずれの塗布手段を用いてもよい。また、スクイズコーターなどによる塗布処理、浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。 There are no particular restrictions on the method of adhering the surface treatment liquid to the surface of the galvanized steel sheet for coating, and any of known methods such as a coating method, a dipping method, and a spraying method can be applied. In the coating method, any coating means such as a roll coater (3-roll method, 2-roll method, etc.), a squeeze coater, or a die coater may be used. Further, after the coating treatment by a squeeze coater or the like, the dipping treatment, and the spray treatment, it is possible to adjust the coating amount, make the appearance uniform, and make the film thickness uniform by the air knife method or the roll drawing method.

亜鉛めっき鋼板表面に付着させコーティングした表面処理液を加熱乾燥する方法は任意であり、例えば、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉等の手段を用いることができる。 The method of heating and drying the surface treatment liquid adhered to and coated on the surface of the galvanized steel sheet is arbitrary, and for example, means such as a dryer, a hot air furnace, a high frequency induction heating furnace, and an infrared furnace can be used.

そして、上記のようにして亜鉛めっき鋼板表面に形成した無機皮膜の表面に、皮膜(x)を形成する。皮膜(x)の形成方法は、上述した第一実施形態と同様とすることができる。 Then, a film (x) is formed on the surface of the inorganic film formed on the surface of the galvanized steel sheet as described above. The method for forming the film (x) can be the same as that of the first embodiment described above.

これにより、引張強度が1180MPa以上の亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)の表面に、所定の無機皮膜を有し、さらにその上に上述の皮膜(x)を有する1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板を製造できる。かかる高強度亜鉛めっき鋼板は、耐遅れ破壊性に優れる。さらに、良好な塗膜密着性を有する。 As a result, the surface of the galvanized steel sheet (including the alloyed hot-dip galvanized steel sheet) having a tensile strength of 1180 MPa or more has a predetermined inorganic film, and further has the above-mentioned film (x) on the surface of the galvanized steel sheet (including the alloyed hot-dip galvanized steel sheet) of 1180 MPa or more. A high-strength galvanized steel sheet having tensile strength can be manufactured. Such a high-strength galvanized steel sheet is excellent in delayed fracture resistance. Furthermore, it has good coating film adhesion.

(実施例1)
基材である亜鉛めっき鋼板として、下地鋼板の成分組成がC:0.18質量%、Si:1.0質量%、Mn:3.0質量%、P:0.007質量%、S:0.0005質量%、残部Feおよび不可避的不純物からなり、引張強度が1480MPa、板厚が1.6mmの溶融亜鉛めっき鋼板を用いた(ただし、後掲の表2中のNo.43、No.44は、それぞれ前記下地鋼板の電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を用いた)。これらの亜鉛めっき鋼板をトルエンに浸漬して5分間超音波洗浄を行って防錆油を除去した後、表面に樹脂皮膜を形成した。
(Example 1)
As the galvanized steel sheet as the base material, the component composition of the base steel sheet is C: 0.18% by mass, Si: 1.0% by mass, Mn: 3.0% by mass, P: 0.007% by mass, S: 0. A hot-dip galvanized steel sheet consisting of 0005 mass%, balance Fe and unavoidable impurities, with a tensile strength of 1480 MPa and a plate thickness of 1.6 mm was used (however, No. 43 and No. 44 in Table 2 below). Used the electrogalvanized steel sheet and the alloyed hot-dip galvanized steel sheet of the base steel sheet, respectively). These galvanized steel sheets were immersed in toluene and ultrasonically cleaned for 5 minutes to remove rust preventive oil, and then a resin film was formed on the surface.

樹脂皮膜用の有機樹脂(有機樹脂(a))として下記A1〜A4を用い、いずれかの有機樹脂と所定の金属塩(金属塩(b))を含む表面処理液(比較例の一部では有機樹脂のみを含む表面処理液)を、亜鉛めっき鋼板表面に塗布方式(バーコート)、スプレー方式、浸漬方式(およびロール絞り)のいずれかで付着させてコーティングした後、到達板温が120℃となるようにインダクションヒーターで加熱することで樹脂皮膜を形成した。
A1:エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名:jER1009)
A2:アクリル樹脂(DIC(株)製、商品名:40−418EF)
A3:ウレタン樹脂(大日本塗料(株)製、商品名:VトップRCクリヤー)
A4:フッ素樹脂(旭硝子(株)製、商品名:ルミフロン LF552)
The following A1 to A4 are used as the organic resin (organic resin (a)) for the resin film, and a surface treatment liquid containing any of the organic resins and a predetermined metal salt (metal salt (b)) (in some of the comparative examples). A surface treatment liquid containing only an organic resin) is adhered to the surface of a galvanized steel sheet by any of a coating method (bar coat), a spray method, and a dipping method (and a roll drawing) to coat the surface, and then the plate temperature reaches 120 ° C. A resin film was formed by heating with an induction heater so as to be.
A1: Epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., product name: jER1009)
A2: Acrylic resin (manufactured by DIC Corporation, trade name: 40-418EF)
A3: Urethane resin (manufactured by Dai Nippon Toryo Co., Ltd., product name: V-top RC clear)
A4: Fluororesin (manufactured by Asahi Glass Co., Ltd., product name: Lumiflon LF552)

上記のようにして樹脂皮膜が形成された発明例および比較例の高強度亜鉛めっき鋼板について、以下のようにして耐遅れ破壊性および塗装後耐食性を評価した。その結果を製造条件とともに表1〜表3に示す。 The delayed fracture resistance and post-painting corrosion resistance of the high-strength galvanized steel sheets of the invention and comparative examples in which the resin film was formed as described above were evaluated as follows. The results are shown in Tables 1 to 3 together with the manufacturing conditions.

なお、樹脂皮膜の膜厚の測定では、FIB加工により得られた断面をSEM観察し、任意視野の3箇所で樹脂皮膜の厚さ(基材の亜鉛めっき鋼板面から樹脂皮膜の表面までの厚さ)を測定し、それらの平均値を膜厚とした。また、表中の「その他の粒子成分」(金属塩(b)以外の粒子成分)としては、SUS粉(エプソンアトミックス(株)製)、窒化チタン粒子(日本新金属(株)製)を用い、これらの粒子成分の最大粒子径としてはそれぞれの商品のカタログ値を示した。 In the measurement of the film thickness of the resin film, the cross section obtained by FIB processing is observed by SEM, and the thickness of the resin film (thickness from the galvanized steel sheet surface of the base material to the surface of the resin film) is observed at three points in an arbitrary field of view. ) Was measured, and the average value thereof was taken as the film thickness. In addition, as "other particle components" (particle components other than metal salt (b)) in the table, SUS powder (manufactured by Epson Atmix Co., Ltd.) and titanium nitride particles (manufactured by Nippon Shinkin Co., Ltd.) are used. As the maximum particle size of these particle components, the catalog values of each product are shown.

(1)耐遅れ破壊性の評価
発明例および比較例の高強度亜鉛めっき鋼板を、それぞれ幅35mm×長さ100mmにせん断した後、せん断時の残留応力を除去するために幅が30mmとなるまで研削加工を施し、試験片を作製した。この試験片に対して、3点曲げ試験機を用いて180°曲げ加工を施し、図1に示すように、内側間隔が8mmとなるようにして曲げ試験片1とし、ボルト2とナット3で拘束して試験片形状を固定し、耐遅れ破壊性評価用試験片を得た。このようにして作製した耐遅れ破壊性評価用試験片に対し、米国自動車技術会で定めたSAE J2334に規定された、乾燥・湿潤・塩水浸漬の工程からなる複合サイクル腐食試験(図2参照)を、最大40サイクルまで実施した。各サイクルの塩水浸漬の工程前に目視により割れの発生の有無を調査し、割れ発生サイクルを測定した。また、本試験は、各高強度亜鉛めっき鋼板につき3検体ずつ実施し、その平均値をもって評価を行った。評価はサイクル数から、以下の基準により評価した。なお、表3中の割れ発生サイクル数40超とは、本実施例の結果では、割れが発生しなかったことを示す。この評価で、◎、〇を評価合格(耐遅れ破壊性に優れる)とし、△、×を評価不合格(耐遅れ破壊性に劣る)とした。
◎:40サイクル超
〇:30サイクル以上、40サイクル以下
△:10サイクル以上、30サイクル未満
×:10サイクル未満
(1) Evaluation of Delayed Fracture Resistance After shearing the high-strength galvanized steel sheets of the invention example and the comparative example to a width of 35 mm and a length of 100 mm, respectively, until the width becomes 30 mm in order to remove residual stress during shearing. A test piece was prepared by grinding. This test piece is bent 180 ° using a 3-point bending tester, and as shown in FIG. 1, the test piece 1 is bent so that the inner spacing is 8 mm, and the bolt 2 and the nut 3 are used. The shape of the test piece was fixed by restraining it, and a test piece for evaluation of delayed fracture resistance was obtained. A composite cycle corrosion test consisting of drying, wetting, and salt water immersion processes specified in SAE J2334 specified by the Society of Automotive Engineers of Japan for the test piece for delay fracture resistance evaluation thus produced (see FIG. 2). Was carried out up to a maximum of 40 cycles. Before the process of dipping in salt water in each cycle, the presence or absence of cracks was visually inspected, and the crack generation cycle was measured. In addition, this test was carried out for each high-strength galvanized steel sheet with 3 samples, and the average value was used for evaluation. The evaluation was based on the number of cycles according to the following criteria. The number of crack occurrence cycles exceeding 40 in Table 3 indicates that cracks did not occur in the results of this embodiment. In this evaluation, ⊚ and 〇 were evaluated as passing (excellent in delayed fracture resistance), and Δ and × were evaluated as failing (inferior in delayed fracture resistance).
⊚: Over 40 cycles 〇: 30 cycles or more, 40 cycles or less Δ: 10 cycles or more, less than 30 cycles ×: Less than 10 cycles

(2)塗装後耐食性の評価
発明例および比較例の高強度亜鉛めっき鋼板を130mm×70mmと110mm×40mmにせん断して平板試験片とし、この2枚の平板試験片の評価面どうしを重ね合わせてスポット溶接により接合し、図3に示すような耐食性試験用試験片とした。この耐食性試験用試験片に、日本パーカライジング(株)製「パルボンド」を用い、標準条件(35℃、120秒)で浸漬による化成処理を施し、次いで、関西ペイント(株)製の電着塗料「GT−100」を用いた電着塗装と焼付処理を行い塗膜を形成した。電着塗装の塗膜厚は15μmとし、市販の電磁膜厚計を用いて膜厚の測定を行った。
(2) Evaluation of Corrosion Resistance after Painting The high-strength galvanized steel sheets of the invention and comparative examples were sheared to 130 mm × 70 mm and 110 mm × 40 mm to form flat plate test pieces, and the evaluation surfaces of these two flat plate test pieces were overlapped with each other. It was joined by spot welding to obtain a test piece for corrosion resistance test as shown in FIG. This corrosion resistance test piece was subjected to chemical conversion treatment by immersion under standard conditions (35 ° C, 120 seconds) using "Palbond" manufactured by Nihon Parkerizing Co., Ltd., and then electrodeposited paint "Palbond" manufactured by Kansai Paint Co., Ltd. A coating film was formed by electrodeposition coating and baking treatment using "GT-100". The coating thickness of the electrodeposition coating was 15 μm, and the film thickness was measured using a commercially available electromagnetic film thickness meter.

この電着塗装を施した耐食性試験用試験片に対し、米国自動車技術会で定めたSAE J2334に規定された、乾燥・湿潤・塩水浸漬の工程からなる複合サイクル腐食試験(図2参照)を30サイクル実施し、下記の手順で塗装後耐食性の評価を行った。
(1)スポット溶接部を打ち抜き、合わせ構造部を分解する
(2)塗装の剥離(ネオス社製「デスコート300」15分浸漬)
(3)めっき・錆の除去(希薄塩酸浸漬)
(4)合わせ構造部に生じた最大侵食深さをポイントマイクロメーターで測定
The electrodeposition-coated test piece for corrosion resistance test was subjected to a combined cycle corrosion test (see Fig. 2) consisting of drying, wetting, and salt water immersion processes specified in SAE J2334 specified by the American Society of Automotive Engineers of Japan. A cycle was carried out, and the corrosion resistance after painting was evaluated according to the following procedure.
(1) Punch out the spot welded part and disassemble the combined structure part (2) Peel off the paint (immerse in "Deathcoat 300" manufactured by Neos for 15 minutes)
(3) Plating and rust removal (immersion in dilute hydrochloric acid)
(4) Measure the maximum erosion depth generated in the combined structure with a point micrometer

塗装後耐食性は、表面に樹脂皮膜を形成していない亜鉛めっき鋼板の最大侵食深さを1とした場合の最大侵食深さ比(A)を算出し、以下のように評価した。
◎:A≦0.6
○:0.6<A≦0.95
△:0.95<A≦1.2
×:1.2<A
The post-painting corrosion resistance was evaluated as follows by calculating the maximum erosion depth ratio (A) when the maximum erosion depth of the galvanized steel sheet having no resin film formed on the surface was 1.
⊚: A ≦ 0.6
◯: 0.6 <A ≦ 0.95
Δ: 0.95 <A ≦ 1.2
×: 1.2 <A

Figure 2020121899
Figure 2020121899

Figure 2020121899
Figure 2020121899

Figure 2020121899
Figure 2020121899

表1〜表3において、No.1の鋼板は、基材(溶融亜鉛めっき鋼板)表面上に樹脂皮膜を形成していない比較例(溶融亜鉛めっき鋼板ままの比較例)であるが、早期に遅れ破壊が発生しており、耐遅れ破壊性が低いことが判る。 In Tables 1 to 3, the No. 1 steel sheet is a comparative example in which a resin film is not formed on the surface of the base material (hot-dip galvanized steel sheet) (comparative example of the hot-dip galvanized steel sheet as it is), but at an early stage It can be seen that delayed fracture has occurred and the delayed fracture resistance is low.

No.3〜No.15の鋼板は、エポキシ樹脂(A1)に金属塩(b)としてトリポリリン酸二水素アルミニウムを混合した表面処理液を塗布方式(バーコート)で溶融亜鉛めっき鋼板表面に塗布し、樹脂皮膜を形成した例である。また、No.2の鋼板は、金属塩(b)が添加されていないエポキシ樹脂(A1)の表面処理液を、同様に塗布して樹脂皮膜を形成した例である。これらのうち、金属塩(b)の含有量の下限が本発明範囲を満たし、かつ本発明の好適な要件を満たすNo.5〜No.14の鋼板は、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。これに対して、金属塩(b)が添加されていないNo.2の鋼板や、金属塩(b)の含有量が本発明範囲を下回るNo.3、No.4の鋼板は、樹脂皮膜を形成していないNo.1の鋼板に比べて、耐遅れ破壊性が若干向上しているが、発明例の鋼板に比べて耐遅れ破壊性が劣っている。また、金属塩(b)の含有量が本発明の好適範囲を超えるNo.15の鋼板は、塗装後耐食性がNo.5〜No.14の鋼板に比べて低下しており、したがって、通常レベルの塗装後耐食性が要求される用途には特に問題はないが、特に高度な塗装後耐食性が要求される用途には不向きであると言える。 For the steel sheets No. 3 to No. 15, a surface treatment liquid obtained by mixing aluminum dihydrogen tripolyphosphate as a metal salt (b) with an epoxy resin (A1) is applied to the surface of a hot-dip galvanized steel sheet by a coating method (bar coat). , This is an example of forming a resin film. Further, the No. 2 steel sheet is an example in which a surface treatment liquid of an epoxy resin (A1) to which a metal salt (b) is not added is similarly applied to form a resin film. Of these, the steel sheets No. 5 to No. 14 in which the lower limit of the content of the metal salt (b) satisfies the range of the present invention and the suitable requirements of the present invention are all excellent in delayed fracture resistance. In addition to being obtained, the corrosion resistance after painting is also good. On the other hand, the No. 2 steel sheet to which the metal salt (b) is not added and the No. 3 and No. 4 steel sheets having a metal salt (b) content below the range of the present invention have a resin film. The delayed fracture resistance is slightly improved as compared with the unformed No. 1 steel sheet, but the delayed fracture resistance is inferior to that of the steel sheet of the invention example. Further, the No. 15 steel sheet having a metal salt (b) content exceeding the preferable range of the present invention has a lower corrosion resistance after painting than the No. 5 to No. 14 steel sheets, and therefore is at a normal level. There is no particular problem in applications that require post-painting corrosion resistance, but it can be said that it is not particularly suitable for applications that require a high degree of post-painting corrosion resistance.

No.16、No.17の鋼板は、No.11の鋼板に対して樹脂皮膜の成膜法を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。 The steel sheets of No. 16 and No. 17 are examples of inventions in which the method of forming a resin film is changed with respect to the steel sheet of No. 11, but all of them can obtain excellent delayed fracture resistance and corrosion resistance after painting. Is also good.

No.18〜No.31の鋼板は、エポキシ樹脂(A1)に混合する金属塩(b)の種類を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。 The steel sheets No. 18 to No. 31 are examples of inventions in which the type of metal salt (b) mixed with the epoxy resin (A1) is changed, but all of them have excellent delayed fracture resistance and after painting. Corrosion resistance is also good.

No.32〜No.37の鋼板は、樹脂皮膜の膜厚を変えた例である。膜厚が本発明範囲であるNo.33〜No.37の鋼板は、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。これに対して、樹脂皮膜の膜厚が本発明範囲を下回るNo.32の鋼板は、発明例であるNo.33〜No.37の鋼板に比べて耐遅れ破壊性が劣っている。さらに塗装後耐食性も劣っている。なお、樹脂皮膜の膜厚が本発明の好適範囲を超えるNo.37の鋼板は、スポット溶接時に通電せず接合できないことから、溶接性が要求されない用途には特に問題はないが、溶接性が要求される用途には不向きであると言える。 The steel sheets No. 32 to No. 37 are examples in which the film thickness of the resin film is changed. The steel sheets No. 33 to No. 37 having a film thickness within the range of the present invention all have excellent delayed fracture resistance and good corrosion resistance after painting. On the other hand, the steel sheet No. 32 having a resin film thickness less than the range of the present invention is inferior in delayed fracture resistance to the steel sheets No. 33 to No. 37 which are examples of the invention. Furthermore, the corrosion resistance after painting is also inferior. The steel sheet No. 37 whose resin film thickness exceeds the preferable range of the present invention cannot be joined without being energized during spot welding. Therefore, there is no particular problem in applications where weldability is not required, but weldability is good. It can be said that it is not suitable for the required applications.

No.38〜No.40の鋼板は、有機樹脂の種類を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。 The steel sheets No. 38 to No. 40 are examples of inventions in which the type of organic resin is changed, but all of them have excellent delayed fracture resistance and good corrosion resistance after painting.

No.41、No.42は、本発明が規定する金属塩(b)(トリポリリン酸二水素アルミニウム)に加えて、膜厚以上の最大粒子径を有する粒径が大きい他の粒子成分(導電性粒子であるSUS粉、窒化チタン粒子)を皮膜中に添加した比較例であるが、発明例であるNo.11の鋼板に較べて耐遅れ破壊性が劣っている。 No. 41 and No. 42 are, in addition to the metal salt (b) (aluminum dihydrogen tripolyphosphate) defined by the present invention, other particle components (conductive) having a maximum particle size equal to or larger than the film thickness and having a large particle size. This is a comparative example in which particles (SUS powder, titanium nitride particles) are added to the film, but the delayed fracture resistance is inferior to that of the steel plate of No. 11 which is an example of the invention.

No.43、No.44は、それぞれ基材として電気亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を用いた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗装後耐食性も良好である。 No. 43 and No. 44 are examples of inventions in which an electrogalvanized steel sheet and an alloyed hot-dip galvanized steel sheet are used as base materials, respectively, but both have excellent delayed fracture resistance and corrosion resistance after painting. It is good.

(実施例2)
基材である亜鉛めっき鋼板として、下地鋼板の成分組成がC:0.18質量%、Si:1.0質量%、Mn:3.0質量%、P:0.007質量%、S:0.0005質量%、残部Feおよび不可避的不純物からなり、引張強度が1480MPa、板厚が1.6mmの溶融亜鉛めっき鋼板を用いた。この溶融亜鉛めっき鋼板をトルエンに浸漬して5分間超音波洗浄を行って防錆油を除去した後、表面にまず無機皮膜を形成し、その後樹脂皮膜を形成した。
(Example 2)
As the galvanized steel sheet as the base material, the component composition of the base steel sheet is C: 0.18% by mass, Si: 1.0% by mass, Mn: 3.0% by mass, P: 0.007% by mass, S: 0. A hot-dip galvanized steel sheet having a tensile strength of 1480 MPa and a plate thickness of 1.6 mm, which was composed of 0005% by mass, the balance Fe and unavoidable impurities, was used. This hot-dip galvanized steel sheet was immersed in toluene and ultrasonically cleaned for 5 minutes to remove rust preventive oil, and then an inorganic film was first formed on the surface, and then a resin film was formed.

無機皮膜形成用の(c)成分として、表4、表5に記載のシラン化合物またはジルコニウム化合物を含む表面処理液を、亜鉛めっき鋼板表面に、バーコート方式による塗布法で付着させてコーティングした後、到達板温が120℃となるようにインダクションヒーターで加熱することで無機皮膜を形成した。(c)成分の片面あたりの付着量の測定は、皮膜表面にX線を照射し(c)成分に含まれる金属元素の蛍光X線の強度を測定し、検量線と比較することで算出した。 After coating a surface treatment liquid containing the silane compound or zirconium compound shown in Tables 4 and 5 as the component (c) for forming an inorganic film on the surface of a galvanized steel sheet by a coating method using a bar coat method. An inorganic film was formed by heating with an induction heater so that the temperature of the reached plate reached 120 ° C. The amount of adhesion of the component (c) per side was calculated by irradiating the surface of the film with X-rays, measuring the intensity of the fluorescent X-rays of the metal element contained in the component (c), and comparing it with the calibration curve. ..

樹脂皮膜は、上記のようにして形成した無機皮膜の表面に、実施例1と同様の方法で形成した。また、樹脂皮膜の膜厚を、実施例1と同様の方法で測定した。その他の粒子成分としては、実施例1と同様のものを用いた。 The resin film was formed on the surface of the inorganic film formed as described above by the same method as in Example 1. Moreover, the film thickness of the resin film was measured by the same method as in Example 1. As other particle components, the same ones as in Example 1 were used.

(3)耐遅れ破壊性の評価
発明例および比較例の高強度亜鉛めっき鋼板の耐遅れ破壊性の評価を実施例1と同様にして実施した。
(3) Evaluation of Delayed Fracture Resistance The delayed fracture resistance of the high-strength galvanized steel sheets of the invention and comparative examples was evaluated in the same manner as in Example 1.

(4)塗膜密着性の評価
発明例および比較例の高強度亜鉛めっき鋼板を130mm×70mmにせん断して平板試験片とした。この塗膜密着性試験用試験片に、日本パーカライジング(株)製「パルボンド」を用い、標準条件(35℃、120秒)で浸漬による化成処理を施し、次いで、関西ペイント(株)製の電着塗料「GT−100」を用いた電着塗装と焼付処理を行い塗膜を形成した。電着塗装の塗膜厚は15μmとし、市販の電磁膜厚計を用いて膜厚の測定を行った。
(4) Evaluation of Coating Film Adhesion The high-strength galvanized steel sheets of the invention and comparative examples were sheared to 130 mm × 70 mm to prepare flat plate test pieces. This coating film adhesion test piece was subjected to chemical conversion treatment by immersion under standard conditions (35 ° C., 120 seconds) using "Palbond" manufactured by Nippon Parkering Co., Ltd., and then subjected to chemical conversion treatment by Kansai Paint Co., Ltd. A coating film was formed by electrodeposition coating and baking treatment using the coating paint "GT-100". The coating thickness of the electrodeposition coating was 15 μm, and the film thickness was measured using a commercially available electromagnetic film thickness meter.

この電着塗装を施した塗膜密着性試験用試験片に対し、下記の手順で塗膜密着性の評価を行った。
(1)試験面にカッターナイフを用いて、素地(基材である亜鉛めっき鋼板表面)に達する11本の切り傷を1mm間隔でつける。
(2)90°向きを変え、同様に11本の切り傷をつけ、100個の碁盤目を作る。
(3)碁盤目部分にセロテープ((登録商標)、NICHIBAN社製、品番CT−24)を強く圧着させ、テープの端を45°の角度で引きはがす。
(4)碁盤目の状態を確認する
The coating film adhesion test piece subjected to this electrodeposition coating was evaluated by the following procedure.
(1) Using a utility knife on the test surface, make 11 cuts that reach the base material (the surface of the galvanized steel plate that is the base material) at 1 mm intervals.
(2) Turn 90 ° and make 11 cuts in the same way to make 100 grids.
(3) Strongly press cellophane tape ((registered trademark), manufactured by NICHIBAN, product number CT-24) on the grid, and peel off the end of the tape at an angle of 45 °.
(4) Check the condition of the grid

塗膜密着性は、碁盤目の格子の内、塗膜が剥がれた格子数(N)を測定、さらに塗膜の状態を確認し、以下のように評価した。
◎:N=0、かつ、格子の一部も剥がれていない。
○:N=0、かつ、カット(切り傷)の交差点においてわずかに剥がれている。
△:1≦N<15
×:15≦N
The coating film adhesion was evaluated as follows by measuring the number of lattices (N) in which the coating film was peeled off from among the grids of the grid, and further confirming the state of the coating film.
⊚: N = 0, and a part of the grid is not peeled off.
◯: N = 0, and it is slightly peeled off at the intersection of cuts (cuts).
Δ: 1 ≦ N <15
X: 15 ≦ N

Figure 2020121899
Figure 2020121899

Figure 2020121899
Figure 2020121899

Figure 2020121899
Figure 2020121899

表4〜6において、No.51の鋼板は、基材(溶融亜鉛めっき鋼板)表面上に樹脂皮膜を形成していない比較例(溶融亜鉛めっき鋼板ままの比較例)であるが、早期に遅れ破壊が発生しており耐遅れ破壊性が低いことがわかる。 In Tables 4 to 6, No. The steel sheet of 51 is a comparative example in which a resin film is not formed on the surface of the base material (hot-dip galvanized steel sheet) (comparative example of the hot-dip galvanized steel sheet as it is). It can be seen that the destructiveness is low.

No.53〜65の鋼板は、溶融亜鉛めっき鋼板表面に、コーティング法で炭酸ジルコニウムアンモニウムを含有した無機皮膜を形成し、その上層にエポキシ樹脂(A1)に金属塩(b)としてポリリン酸二水素アルミニウムを混合した表面処理液を塗布方式(バーコート)で塗布して皮膜を形成した例である。また、No.52の鋼板は、金属塩(b)が添加されていないエポキシ樹脂(A1)の表面処理液を、同様に塗布して皮膜を形成した例である。これらのうち、金属塩(b)の含有量の下限が本発明範囲を満たし、かつ本発明の好適な要件を満たすNo.55〜No.64の鋼板は、いずれも優れた耐遅れ破壊性が得られるとともに、塗膜密着性も良好である。これに対して、金属塩(b)が添加されていないNo.52の鋼板や、金属塩(b)の含有量が本発明範囲を下回るNo.53、No.54の鋼板は、樹脂皮膜を形成していないNo.51の鋼板に比べて、耐遅れ破壊性が若干向上しているが、発明例の鋼板に比べて耐遅れ破壊性が劣っている。また、金属塩(b)の含有量が本発明の好適範囲を超えるNo.65の鋼板は、塗膜密着性がNo.55〜No.64の鋼板に比べて劣化してしまうことから、通常レベルの塗膜密着性が要求される用途には特に問題はないが、特に高度な塗膜密着性が要求される用途には不向きであると言える。 In the steel sheets No. 53 to 65, an inorganic film containing ammonium zirconium carbonate was formed on the surface of the hot-dip galvanized steel sheet by a coating method, and dihydrogen polyphosphate was formed on the epoxy resin (A1) as a metal salt (b) on the upper layer. This is an example in which a surface treatment liquid mixed with aluminum is applied by a coating method (bar coat) to form a film. Further, the steel sheet of No. 52 is an example in which a surface treatment liquid of an epoxy resin (A1) to which a metal salt (b) is not added is similarly applied to form a film. Of these, the steel sheets No. 55 to No. 64, in which the lower limit of the content of the metal salt (b) satisfies the scope of the present invention and satisfies the suitable requirements of the present invention, all have excellent delayed fracture resistance. In addition to being obtained, the adhesion to the coating film is also good. On the other hand, the No. 52 steel sheet to which the metal salt (b) is not added and the No. 53 and No. 54 steel sheets having a metal salt (b) content below the range of the present invention have a resin film. The delayed fracture resistance is slightly improved as compared with the unformed No. 51 steel sheet, but the delayed fracture resistance is inferior to that of the steel sheet of the invention example. Further, the steel sheet of No. 65 in which the content of the metal salt (b) exceeds the preferable range of the present invention is usually deteriorated as compared with the steel sheet of No. 55 to No. 64 in coating film adhesion. There is no particular problem in applications that require a high level of coating film adhesion, but it can be said that it is not suitable for applications that require a particularly high level of coating film adhesion.

No.66、67の鋼板は、No.61の鋼板に対して樹脂皮膜の成膜法を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗膜密着性も良好である。 The steel sheets No. 66 and 67 are examples of inventions in which the method of forming a resin film is changed from that of the steel sheet No. 61, but all of them have excellent delayed fracture resistance and coating film adhesion. It is good.

No.68〜81の鋼板は、エポキシ樹脂(A1)に混合する金属塩(b)の種類を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗膜密着性も良好である。 The steel sheets No. 68 to 81 are examples of inventions in which the type of metal salt (b) mixed with the epoxy resin (A1) is changed, but all of them have excellent delayed fracture resistance and coating film adhesion. Is also good.

No.82〜87の鋼板は、樹脂皮膜の膜厚を変えた例である。膜厚が本発明範囲であるNo.83〜No.87の鋼板は、いずれも優れた耐遅れ破壊性が得られるとともに、塗膜密着性も良好である。これに対して、樹脂皮膜の膜厚が本発明範囲を下回るNo.82の鋼板は、発明例であるNo.83〜No.87の鋼板に比べて耐遅れ破壊性が劣っている。なお、樹脂皮膜の膜厚が本発明の好適範囲を超えるNo.87の鋼板は、スポット溶接時に通電せず接合できないことから、溶接性が要求されない用途には特に問題はないが、溶接性が要求される用途には不向きであると言える。 The steel sheets No. 82 to 87 are examples in which the film thickness of the resin film is changed. The steel sheets No. 83 to No. 87 having a film thickness within the range of the present invention all have excellent delayed fracture resistance and good coating film adhesion. On the other hand, the steel sheet of No. 82 whose resin film thickness is less than the range of the present invention is inferior in delayed fracture resistance to the steel sheets of No. 83 to No. 87 which are examples of the invention. The steel sheet No. 87 whose resin film thickness exceeds the preferable range of the present invention cannot be joined without being energized during spot welding. Therefore, there is no particular problem in applications where weldability is not required, but weldability is good. It can be said that it is not suitable for the required applications.

No.88〜90の鋼板は、有機樹脂の種類を変えた発明例であるが、いずれも優れた耐遅れ破壊性が得られるとともに、塗膜密着性も良好である。 The steel sheets No. 88 to 90 are examples of inventions in which the type of organic resin is changed, but all of them have excellent delayed fracture resistance and good coating film adhesion.

No.91、92は、本発明が規定する金属塩(b)(トリポリリン酸二水素アルミニウム)に加えて、膜厚以上の最大粒子径を有する粒径が大きい他の粒子成分(導電性粒子であるSUS粉、窒化チタン粒子)を皮膜中に添加した比較例であるが、発明例であるNo.61の鋼板に較べて耐遅れ破壊性が劣っている。 Nos. 91 and 92 are, in addition to the metal salt (b) (aluminum dihydrogen tripolyphosphate) defined by the present invention, other particle components (conductive particles) having a maximum particle size equal to or larger than the film thickness and a large particle size. This is a comparative example in which certain SUS powder and titanium nitride particles) are added to the film, but the delayed fracture resistance is inferior to that of the steel plate of No. 61, which is an example of the invention.

No.93は、下層の無機皮膜を形成せず、溶融亜鉛めっき鋼板に直接樹脂皮膜を形成した発明例であり、優れた耐遅れ破壊性が得られているが、塗膜密着性が劣位である。また、No.94〜98は、下層の炭酸ジルコニウムアンモニウム化合物の鋼板片面あたりの付着量を変えた発明例であるが、炭酸ジルコニウムアンモニウムの鋼板片面あたりの付着量が本発明の好適範囲を下回るNo.94の鋼板は、No.95〜97に比べ塗膜密着性が劣っている。No.99〜101は、下層の無機皮膜中に含まれる化合物を変えた発明例であるが、いずれも良好な耐遅れ破壊性と塗膜密着性が得られている。 No. 93 is an example of an invention in which a resin film is directly formed on a hot-dip galvanized steel sheet without forming an inorganic film on the lower layer, and excellent delay fracture resistance is obtained, but the coating film adhesion is inferior. be. Nos. 94 to 98 are examples of inventions in which the amount of the lower layer zirconium ammonium carbonate compound adhered to one side of the steel sheet is changed. The .94 steel sheet is inferior in coating adhesion to Nos. 95 to 97. Nos. 99 to 101 are examples of inventions in which the compound contained in the inorganic film of the lower layer is changed, and all of them have obtained good delayed fracture resistance and coating film adhesion.

1 曲げ試験片
2 ボルト
3 ナット
1 Bending test piece 2 Bolt 3 Nut

Claims (21)

引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の表面に皮膜(x)を含む皮膜を有し、
該皮膜(x)は、
有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が該皮膜(x)の膜厚以上の粒子成分を含有せず、
膜厚が0.3μm以上であり、皮膜(x)中での金属塩(b)の含有量が5質量%以上である、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
A galvanized steel sheet having a tensile strength of 1180 MPa or more (however, including an alloyed hot-dip galvanized steel sheet) has a film containing a film (x) on its surface.
The film (x) is
It contains an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphorous acid group, a silicic acid group, and a molybdic acid group, and other than the metal salt (b). It does not contain a particle component whose maximum particle size is larger than the film thickness of the film (x).
A high-strength galvanized steel sheet having a film thickness of 0.3 μm or more, a metal salt (b) content in the film (x) of 5% by mass or more, and a tensile strength of 1180 MPa or more.
金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩である、請求項1に記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to claim 1, wherein the metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum. 金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩である、請求項1または2に記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The high-strength zinc having a tensile strength of 1180 MPa or more according to claim 1 or 2, wherein the metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphite group, and a silicic acid group. Plated steel plate. 金属塩(b)の鋼板片面あたりの付着量が50mg/m以上である、請求項1〜3のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。The high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 1 to 3, wherein the amount of the metal salt (b) adhered to one side of the steel sheet is 50 mg / m 2 or more. 金属塩(b)がトリポリリン酸二水素アルミニウムであり、
皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%である、請求項1〜4のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
The metal salt (b) is aluminum dihydrogen tripolyphosphate,
The invention according to any one of claims 1 to 4, wherein the film thickness (x) is 1.0 μm or more, and the content of aluminum dihydrogen tripolyphosphate in the film (x) is 17 to 45% by mass. A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more.
皮膜(x)は、導電性粒子および固体潤滑剤粒子を含有しない、請求項1〜5のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The film (x) is a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 1 to 5, which does not contain conductive particles and solid lubricant particles. 皮膜(x)は、金属塩(b)以外の粒子成分を含有しない、請求項1〜6のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The film (x) is a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 1 to 6, which does not contain a particle component other than a metal salt (b). 皮膜(x)中に存在する金属塩(b)の含有量が40質量%以下である、請求項1〜7のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 1 to 7, wherein the content of the metal salt (b) present in the film (x) is 40% by mass or less. 皮膜(x)の膜厚が4.0μm以下である、請求項1〜8のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。 The high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 1 to 8, wherein the film thickness (x) is 4.0 μm or less. 引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の表面に皮膜(x)を含む皮膜を有する1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法であって、
該皮膜(x)は、
有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が該皮膜(x)の膜厚以上の粒子成分を含有せず、
膜厚が0.3μm以上であり、皮膜(x)中での金属塩(b)の含有量が5質量%以上であり、
前記皮膜(x)を、
前記有機樹脂(a)と、前記金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が形成すべき前記皮膜(x)の膜厚以上の粒子成分を含有しない表面処理液を、前記皮膜(x)を形成すべき表面に付着させることにより形成する、1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
A method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, which has a film containing a film (x) on the surface of a galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet). There,
The film (x) is
It contains an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphorous acid group, a silicic acid group, and a molybdic acid group, and other than the metal salt (b). It does not contain a particle component whose maximum particle size is larger than the film thickness of the film (x).
The film thickness is 0.3 μm or more, and the content of the metal salt (b) in the film (x) is 5% by mass or more.
The film (x) is
It contains the organic resin (a) and the metal salt (b), and does not contain any particle components other than the metal salt (b) that are larger than the film thickness of the film (x) to which the maximum particle size should be formed. A method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more, which is formed by adhering a surface treatment liquid to the surface on which the film (x) should be formed.
金属塩(b)が、アルカリ金属、アルカリ土類金属、アルミニウムのうちの少なくとも1種を含む金属塩である、請求項10に記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to claim 10, wherein the metal salt (b) is a metal salt containing at least one of alkali metal, alkaline earth metal, and aluminum. .. 金属塩(b)が、リン酸基、亜リン酸基、ケイ酸基のうちの少なくとも1種を含む金属塩である、請求項10または11に記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The high-strength zinc having a tensile strength of 1180 MPa or more according to claim 10 or 11, wherein the metal salt (b) is a metal salt containing at least one of a phosphoric acid group, a phosphite group, and a silicic acid group. Manufacturing method of plated steel sheet. 金属塩(b)の鋼板片面あたりの付着量が50mg/m以上である、請求項10〜12のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 10 to 12, wherein the amount of the metal salt (b) adhered to one side of the steel sheet is 50 mg / m 2 or more. 金属塩(b)がトリポリリン酸二水素アルミニウムであり、
皮膜(x)の膜厚が1.0μm以上であり、皮膜(x)中でのトリポリリン酸二水素アルミニウムの含有量が17〜45質量%である、請求項10〜13のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
The metal salt (b) is aluminum dihydrogen tripolyphosphate,
The invention according to any one of claims 10 to 13, wherein the film thickness (x) is 1.0 μm or more, and the content of aluminum dihydrogen dihydrogen tripolyphosphate in the film (x) is 17 to 45% by mass. A method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more.
皮膜(x)は、導電性粒子および固体潤滑剤粒子を含有しない、請求項10〜14のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 10 to 14, wherein the film (x) does not contain conductive particles and solid lubricant particles. 表面処理液は、金属塩(b)以外の粒子成分を含有しない、請求項10〜15のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 10 to 15, wherein the surface treatment liquid does not contain a particle component other than the metal salt (b). 皮膜(x)中に存在する金属塩(b)の含有量が40質量%以下である、請求項10〜16のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 10 to 16, wherein the content of the metal salt (b) present in the film (x) is 40% by mass or less. .. 皮膜(x)の膜厚が4.0μm以下である、請求項10〜17のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more according to any one of claims 10 to 17, wherein the film thickness (x) is 4.0 μm or less. 引張強度が1180MPa以上の亜鉛めっき鋼板(但し、合金化溶融亜鉛めっき鋼板を含む。)の遅れ破壊を抑制するための皮膜(x)を含む皮膜を前記亜鉛めっき鋼板の表面に形成するための表面処理液であって、
有機樹脂(a)と、リン酸基、亜リン酸基、ケイ酸基、モリブデン酸基のうちの少なくとも1種を含む金属塩(b)を含有し、且つ前記金属塩(b)以外には最大粒子径が形成すべき前記皮膜(x)の膜厚以上の粒子成分を含有せず、全固形分中での前記金属塩(b)の含有割合が5質量%以上である、表面処理液。
A surface for forming a film containing a film (x) for suppressing delayed fracture of a galvanized steel sheet having a tensile strength of 1180 MPa or more (including an alloyed hot-dip galvanized steel sheet) on the surface of the galvanized steel sheet. It is a treatment liquid
It contains an organic resin (a) and a metal salt (b) containing at least one of a phosphoric acid group, a phosphite group, a silicic acid group, and a molybdic acid group, and other than the metal salt (b). A surface treatment liquid that does not contain a particle component having a maximum particle size equal to or larger than the film thickness of the film (x) to be formed, and the content ratio of the metal salt (b) in the total solid content is 5% by mass or more. ..
皮膜が、無機皮膜と前記無機皮膜上に形成された皮膜(x)を含み、
前記無機皮膜は、
シラン化合物、ジルコニウム化合物から選ばれる少なくとも1種((c)成分)を含有し、前記(c)成分の鋼板片面あたりの付着量が200〜500mg/mである、請求項1〜9のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板。
The film includes an inorganic film and a film (x) formed on the inorganic film.
The inorganic film is
Any of claims 1 to 9, which contains at least one selected from a silane compound and a zirconium compound (component (c)), and the amount of the component (c) adhered to one side of the steel sheet is 200 to 500 mg / m 2. A high-strength galvanized steel sheet having a tensile strength of 1180 MPa or more as described above.
皮膜が、無機皮膜と前記無機皮膜上に形成された皮膜(x)を含み、
シラン化合物、ジルコニウム化合物から選ばれる少なくとも1種((c)成分)を含有する表面処理液を、前記亜鉛めっき鋼板に付着させることにより、前記(c)成分の鋼板片面あたりの付着量が200〜500mg/mである前記無機皮膜を形成し、その後、前記無機皮膜の表面に前記皮膜(x)を形成する、請求項10〜18のいずれかに記載の1180MPa以上の引張強度を有する高強度亜鉛めっき鋼板の製造方法。
The film includes an inorganic film and a film (x) formed on the inorganic film.
By adhering a surface treatment liquid containing at least one (component (c)) selected from a silane compound and a zirconium compound to the galvanized steel sheet, the amount of the component (c) adhering to one side of the steel sheet is 200 to 2. High strength having a tensile strength of 1180 MPa or more according to any one of claims 10 to 18, wherein the inorganic film having a tensile strength of 500 mg / m 2 is formed, and then the film (x) is formed on the surface of the inorganic film. Manufacturing method of galvanized steel sheet.
JP2020519461A 2018-12-12 2019-12-03 High-strength galvanized steel sheet with tensile strength of 1180 MPa or more, its manufacturing method, and surface treatment liquid Pending JPWO2020121899A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018232999 2018-12-12
JP2018232999 2018-12-12
PCT/JP2019/047285 WO2020121899A1 (en) 2018-12-12 2019-12-03 HIGH-STRENGTH ZINC-PLATED STEEL SHEET HAVING TENSILE STRENGTH OF 1180 MPa OR MORE AND METHOD FOR MANUFACTURING SAME, AND SURFACE TREATMENT SOLUTION

Publications (1)

Publication Number Publication Date
JPWO2020121899A1 true JPWO2020121899A1 (en) 2021-10-21

Family

ID=71076006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020519461A Pending JPWO2020121899A1 (en) 2018-12-12 2019-12-03 High-strength galvanized steel sheet with tensile strength of 1180 MPa or more, its manufacturing method, and surface treatment liquid

Country Status (2)

Country Link
JP (1) JPWO2020121899A1 (en)
WO (1) WO2020121899A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023171143A1 (en) * 2022-03-08 2023-09-14

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640312B2 (en) * 2007-10-24 2014-12-17 新日鐵住金株式会社 Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance
JP2011219791A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Coated plated steel material for concrete structure
JP2013193273A (en) * 2012-03-16 2013-09-30 Nippon Steel & Sumitomo Metal Corp Coated steel sheet, and housing using the same

Also Published As

Publication number Publication date
WO2020121899A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
EP3266900B1 (en) Molten al-zn-mg-si-plated steel sheet
US10584407B2 (en) Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance and method of manufacturing same
CN111328350B (en) Hot-dip Zn-coated steel sheet excellent in corrosion resistance after coating
KR102384093B1 (en) Steel sheet provided with a sacrificial cathodically protected coating comprising lanthane
JP6551518B2 (en) Galvanized steel sheet
TW201840863A (en) Coated steel sheet
AU2014240655A1 (en) Hot-dip Al-Zn alloy coated steel sheet and method for producing same
JP6638741B2 (en) Steel sheet with excellent delayed fracture resistance
KR101648657B1 (en) Coated steel member
WO2020121899A1 (en) HIGH-STRENGTH ZINC-PLATED STEEL SHEET HAVING TENSILE STRENGTH OF 1180 MPa OR MORE AND METHOD FOR MANUFACTURING SAME, AND SURFACE TREATMENT SOLUTION
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP2009120942A (en) Aluminum alloy plated steel sheet having excellent cut edge face corrosion resistance and worked part corrosion resistance
JP6288471B2 (en) Steel sheet with excellent delayed fracture resistance with a tensile strength of 1180 MPa or more
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
JP6443599B1 (en) Galvanized steel sheet and heat treated steel
WO2021241338A1 (en) Zinc-coated steel sheet
JP6638694B2 (en) Steel plate with excellent delayed fracture resistance with tensile strength of 1180 MPa or more
CN111511955B (en) Hot-dip aluminum alloy-coated steel sheet having excellent corrosion resistance and weldability, and method for producing same
JP6358451B2 (en) Steel sheet with excellent delayed fracture resistance
JP2024031589A (en) Galvanized steel sheet with superior delayed fracture resistance characteristic and method of manufacturing the same
JP2011208247A (en) HIGH-STRENGTH STEEL SHEET HAVING TENSILE STRENGTH 1,180 MPa OR MORE EXCELLENT IN DELAYED FRACTURE RESISTANCE
JP2000212674A (en) Aluminum alloy material excellent in corrosion resistance after coating
JP6530923B2 (en) Stainless steel sheet excellent in corrosion resistance and method of manufacturing the same